organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-meth­­oxy-6-methyl-2-pyrid­yl) ether

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 7 December 2007; accepted 19 December 2007; online 4 January 2008)

In the mol­ecule of the title compound, C14H16N2O3, the dihedral angle between the pyridyl rings is 87.74 (3)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into infinite zigzag chains.

Related literature

For related literature, see: Jung et al. (1997[Jung, O.-S., Jo, D. H., Lee, Y.-A., Conklin, B. J. & Pierpont, C. G. (1997). Inorg. Chem. 36, 19-24.]); Dunne et al. (1995[Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1995). Acta Cryst. C51, 1454-1457.]); Wang et al. (2001[Wang, H. F., Tomizawa, H. & Miki, E. (2001). Inorg. Chim. Acta, 321, 215-220.]); Goulle et al. (1993[Goulle, V., Harriman, A. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun. pp. 1034-1035.]); Gilat et al. (1995[Gilat, S. L., Kawai, S. H. & Lehn, J.-M. (1995). Chem. Eur. J. 1, 275-284.]); Kawai et al. (1995[Kawai, S. H., Gilat, S. L., Ponsinet, R. & (1995). Chem. Eur. J. 1, 285-293.]); Gütlich et al. (1994[Gütlich, P., Hauser, A. & Spiering, H. (1994). Angew. Chem. Int. Ed. Engl. 33, 2024-2054.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O3

  • Mr = 260.29

  • Monoclinic, P 21 /c

  • a = 12.146 (2) Å

  • b = 7.5372 (15) Å

  • c = 14.669 (3) Å

  • β = 94.577 (3)°

  • V = 1338.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.29 × 0.21 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.988

  • 8226 measured reflections

  • 2477 independent reflections

  • 1229 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.01

  • 2477 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.93 2.52 3.358 (3) 150
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SHELXTL, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SHELXTL, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2004[Bruker (2004). SHELXTL, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-Dipyridylether and its derivatives are a kind of extensively studied (Jung et al., 1997; Dunne et al., 1995; Wang et al., 2001; Goulle et al., 1993) multifuntional organic ligands. Most research in this area has focused on conjugated organic molecules undergoing frequency-sensitive reversible bond-forming reactions, for the design of inorganic or organometallic switches (Gilat et al., 1995; Kawai et al., 1995; Gütlich et al., 1994). As part of our ongoing studies, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C1/C2/C4—C6) and B (N2/C9/C10/C12—C14) are, of course, planar and the dihedral angle between them is A/B = 87.74 (3)°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into infinite zigzag chains (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Related literature top

For related literature, see: Jung et al. (1997); Dunne et al. (1995); Wang et al. (2001); Goulle et al. (1993); Gilat et al. (1995); Kawai et al. (1995); Gütlich et al. (1994). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-iodo-3-methoxy-6-methylpyridine (250 mg, 1 mmol) and active Cu powder (511 mg, 8 mmol) were added to a solution of DMF (10 ml). The resulting mixture was heated at 428 K for 24 h under nitrogen atmosphere. After the active Cu powder was filtered, the filtrate was washed with water (3 × 20 ml), and the aqueous layer was extracted by ethyl acetate (3 × 20 ml). The combined organic layer was dried over anhydrous MgSO4, and the solvent was removed in vacuo to give the crude product. After purification by silica gel chromatography, a clear solution was set aside to crystallize.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Bis(3-methoxy-6-methyl-2-pyridyl) ether top
Crystal data top
C14H16N2O3F(000) = 552
Mr = 260.29Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1190 reflections
a = 12.146 (2) Åθ = 2.8–20.3°
b = 7.5372 (15) ŵ = 0.09 mm1
c = 14.669 (3) ÅT = 294 K
β = 94.577 (3)°Block, colorless
V = 1338.6 (4) Å30.29 × 0.21 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2477 independent reflections
Radiation source: fine-focus sealed tube1229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.974, Tmax = 0.988k = 98
8226 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.0571P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2477 reflectionsΔρmax = 0.13 e Å3
177 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (19)
Crystal data top
C14H16N2O3V = 1338.6 (4) Å3
Mr = 260.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.146 (2) ŵ = 0.09 mm1
b = 7.5372 (15) ÅT = 294 K
c = 14.669 (3) Å0.29 × 0.21 × 0.13 mm
β = 94.577 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2477 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1229 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.988Rint = 0.041
8226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
2477 reflectionsΔρmin = 0.11 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77209 (13)0.0344 (2)0.12530 (11)0.0774 (6)
O20.97934 (14)0.1001 (2)0.10596 (15)0.0854 (6)
O30.72046 (17)0.3036 (3)0.15773 (14)0.0996 (7)
N10.79139 (16)0.0722 (3)0.28290 (16)0.0669 (6)
N20.59034 (19)0.1178 (3)0.11932 (13)0.0747 (7)
C10.9468 (2)0.1105 (3)0.1925 (2)0.0677 (7)
C20.8363 (2)0.0727 (3)0.2043 (2)0.0630 (7)
C40.8564 (2)0.1129 (3)0.3590 (2)0.0736 (8)
C50.9660 (3)0.1532 (4)0.3532 (2)0.0884 (9)
H51.00990.18100.40610.106*
C61.0115 (2)0.1529 (3)0.2703 (2)0.0837 (9)
H61.08560.18130.26710.100*
C70.8040 (2)0.1079 (4)0.44789 (19)0.0953 (9)
H7A0.73190.16030.44010.143*
H7B0.84890.17310.49320.143*
H7C0.79780.01300.46740.143*
C81.0953 (2)0.1180 (4)0.0964 (2)0.0986 (10)
H8A1.11900.23500.11480.148*
H8B1.10960.09900.03370.148*
H8C1.13520.03180.13430.148*
C90.6354 (2)0.1871 (4)0.14619 (17)0.0750 (8)
C100.6628 (2)0.0120 (4)0.13349 (16)0.0660 (7)
C120.4831 (2)0.0807 (5)0.11836 (18)0.0813 (9)
C130.4500 (3)0.0916 (5)0.1311 (2)0.0928 (10)
H130.37490.11660.13010.111*
C140.5245 (3)0.2276 (5)0.14539 (19)0.0889 (9)
H140.50100.34330.15420.107*
C150.4036 (2)0.2307 (5)0.1025 (2)0.1091 (11)
H15A0.39170.28610.15980.164*
H15B0.33470.18620.07490.164*
H15C0.43320.31600.06240.164*
C160.6933 (3)0.4891 (4)0.1585 (2)0.1124 (11)
H16A0.65200.51430.21000.169*
H16B0.76010.55790.16270.169*
H16C0.64980.51900.10310.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0539 (11)0.1004 (15)0.0774 (12)0.0163 (10)0.0011 (9)0.0035 (10)
O20.0556 (12)0.0860 (14)0.1149 (16)0.0083 (9)0.0090 (10)0.0070 (12)
O30.0906 (15)0.0842 (15)0.1229 (17)0.0000 (12)0.0017 (12)0.0031 (12)
N10.0656 (14)0.0569 (14)0.0764 (15)0.0016 (10)0.0059 (12)0.0004 (11)
N20.0645 (15)0.0939 (18)0.0648 (14)0.0066 (14)0.0002 (11)0.0061 (12)
C10.0533 (16)0.0486 (15)0.100 (2)0.0005 (12)0.0001 (16)0.0009 (15)
C20.0559 (16)0.0473 (15)0.083 (2)0.0043 (12)0.0124 (15)0.0040 (14)
C40.078 (2)0.0514 (16)0.088 (2)0.0046 (14)0.0149 (17)0.0074 (14)
C50.082 (2)0.068 (2)0.108 (3)0.0014 (16)0.0298 (19)0.0185 (18)
C60.0581 (17)0.0625 (19)0.128 (3)0.0084 (14)0.0108 (19)0.0091 (18)
C70.111 (2)0.087 (2)0.086 (2)0.0068 (18)0.0066 (18)0.0127 (17)
C80.0561 (18)0.091 (2)0.150 (3)0.0090 (16)0.0203 (17)0.006 (2)
C90.0730 (19)0.077 (2)0.0749 (19)0.0030 (17)0.0040 (15)0.0077 (16)
C100.0541 (16)0.080 (2)0.0635 (17)0.0112 (15)0.0030 (12)0.0036 (15)
C120.064 (2)0.112 (3)0.0676 (18)0.0007 (18)0.0036 (14)0.0150 (17)
C130.0588 (18)0.127 (3)0.094 (2)0.019 (2)0.0089 (16)0.032 (2)
C140.075 (2)0.099 (2)0.093 (2)0.0320 (19)0.0139 (17)0.0205 (19)
C150.079 (2)0.145 (3)0.102 (2)0.030 (2)0.0016 (17)0.009 (2)
C160.146 (3)0.071 (2)0.124 (3)0.006 (2)0.037 (2)0.000 (2)
Geometric parameters (Å, º) top
O1—C21.374 (3)C7—H7C0.9600
O1—C101.388 (3)C8—H8A0.9600
O2—C11.361 (3)C8—H8B0.9600
O2—C81.433 (3)C8—H8C0.9600
O3—C91.356 (3)C9—C141.381 (4)
O3—C161.437 (3)C10—N21.321 (3)
N1—C21.315 (3)C10—C91.377 (4)
N1—C41.350 (3)C12—C131.377 (4)
N2—C121.331 (3)C12—C151.493 (4)
C1—C61.371 (4)C13—C141.372 (4)
C2—C11.396 (3)C13—H130.9300
C4—C51.375 (4)C14—H140.9300
C4—C71.496 (3)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C51.376 (4)C15—H15C0.9600
C6—H60.9300C16—H16A0.9600
C7—H7A0.9600C16—H16B0.9600
C7—H7B0.9600C16—H16C0.9600
C2—O1—C10117.5 (2)H8A—C8—H8C109.5
C1—O2—C8116.6 (2)H8B—C8—H8C109.5
C9—O3—C16117.3 (2)O3—C9—C10116.6 (2)
C2—N1—C4118.0 (2)O3—C9—C14126.2 (3)
C10—N2—C12119.0 (3)C10—C9—C14117.1 (3)
O2—C1—C6126.9 (3)N2—C10—C9124.5 (2)
O2—C1—C2117.2 (2)N2—C10—O1115.4 (2)
C6—C1—C2115.9 (3)C9—C10—O1119.7 (3)
N1—C2—O1119.5 (2)N2—C12—C13119.6 (3)
N1—C2—C1125.4 (3)N2—C12—C15117.6 (3)
O1—C2—C1115.1 (3)C13—C12—C15122.9 (3)
N1—C4—C5120.3 (3)C14—C13—C12121.9 (3)
N1—C4—C7117.0 (3)C14—C13—H13119.0
C5—C4—C7122.7 (3)C12—C13—H13119.0
C4—C5—C6120.9 (3)C13—C14—C9117.9 (3)
C4—C5—H5119.5C13—C14—H14121.1
C6—C5—H5119.5C9—C14—H14121.1
C1—C6—C5119.5 (3)C12—C15—H15A109.5
C1—C6—H6120.3C12—C15—H15B109.5
C5—C6—H6120.3H15A—C15—H15B109.5
C4—C7—H7A109.5C12—C15—H15C109.5
C4—C7—H7B109.5H15A—C15—H15C109.5
H7A—C7—H7B109.5H15B—C15—H15C109.5
C4—C7—H7C109.5O3—C16—H16A109.5
H7A—C7—H7C109.5O3—C16—H16B109.5
H7B—C7—H7C109.5H16A—C16—H16B109.5
O2—C8—H8A109.5O3—C16—H16C109.5
O2—C8—H8B109.5H16A—C16—H16C109.5
H8A—C8—H8B109.5H16B—C16—H16C109.5
O2—C8—H8C109.5
C10—O1—C2—N13.1 (3)O1—C2—C1—O22.0 (3)
C10—O1—C2—C1177.2 (2)N1—C2—C1—C61.1 (4)
C2—O1—C10—N297.5 (3)O1—C2—C1—C6178.6 (2)
C2—O1—C10—C988.9 (3)N1—C4—C5—C60.0 (4)
C8—O2—C1—C66.7 (4)C7—C4—C5—C6178.7 (3)
C8—O2—C1—C2172.6 (2)C1—C6—C5—C40.5 (4)
C16—O3—C9—C10171.7 (2)O3—C9—C14—C13178.9 (3)
C16—O3—C9—C147.9 (4)C10—C9—C14—C130.7 (4)
C2—N1—C4—C50.0 (4)C9—C10—N2—C121.1 (4)
C2—N1—C4—C7178.8 (2)O1—C10—N2—C12174.4 (2)
C4—N1—C2—O1179.1 (2)N2—C10—C9—O3178.5 (2)
C4—N1—C2—C10.6 (4)O1—C10—C9—O35.4 (4)
C10—N2—C12—C130.7 (4)N2—C10—C9—C141.1 (4)
C10—N2—C12—C15179.8 (2)O1—C10—C9—C14174.2 (2)
O2—C1—C6—C5178.4 (2)N2—C12—C13—C140.3 (4)
C2—C1—C6—C51.0 (4)C15—C12—C13—C14179.8 (3)
N1—C2—C1—O2178.3 (2)C12—C13—C14—C90.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.523.358 (3)150
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H16N2O3
Mr260.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.146 (2), 7.5372 (15), 14.669 (3)
β (°) 94.577 (3)
V3)1338.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.21 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8226, 2477, 1229
Rint0.041
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.01
No. of reflections2477
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.523.358 (3)150.0
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Henan Innovation Project for University Prominent Research Talents (grant No. 2005 KYCX021) and the Natural Science Foundation of Henan Province.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). SHELXTL, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1995). Acta Cryst. C51, 1454–1457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilat, S. L., Kawai, S. H. & Lehn, J.-M. (1995). Chem. Eur. J. 1, 275–284.  CrossRef CAS Web of Science Google Scholar
First citationGoulle, V., Harriman, A. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun. pp. 1034–1035.  CrossRef Web of Science Google Scholar
First citationGütlich, P., Hauser, A. & Spiering, H. (1994). Angew. Chem. Int. Ed. Engl. 33, 2024–2054.  CrossRef Web of Science Google Scholar
First citationJung, O.-S., Jo, D. H., Lee, Y.-A., Conklin, B. J. & Pierpont, C. G. (1997). Inorg. Chem. 36, 19–24.  CSD CrossRef CAS Web of Science Google Scholar
First citationKawai, S. H., Gilat, S. L., Ponsinet, R. & (1995). Chem. Eur. J. 1, 285–293.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, H. F., Tomizawa, H. & Miki, E. (2001). Inorg. Chim. Acta, 321, 215–220.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds