organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(N-ethyl­methane­sulfonamido)benzoate

aGovernment College University, Department of Chemistry, Lahore, Pakistan, and bUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 December 2007; accepted 2 January 2008; online 9 January 2008)

In the mol­ecule of the title compound, C11H15NO4S, the S atom environment is distorted tetrahedral. The methoxy­carbonyl group is oriented at a dihedral angle of 11.8 (2)° with respect to the benzene ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Reissenweber & Mangold (1982[Reissenweber, G. & Mangold, D. (1982). US Patent 4 310 677.]); Mookherjee et al. (1989[Mookherjee, B. D., Trenkle, R. W., Calderone, N. & Sands, K. P. (1989). US Patent 4 879 271.]); Tadashi et al. (1982[Tadashi, T., Jeffrey, C. G. & James, C. P. (1982). J. Biol. Chem. 257, 5085-5091.]). For related literature, see: Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.],2007a[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007a). J. Chem. Soc. Pak. 29, 44-47.],b[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007b). Synth. Commun. 37, 767-773.]); Lombardino (1972[Lombardino, J. G. (1972). J. Heterocyclic Chem. 9, 315-317.]); Hanson & Hitchcook (2004[Hanson, J. R. & Hitchcook, P. B. (2004). J. Chem. Res (M)., pp. 642-648.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO4S

  • Mr = 257.30

  • Triclinic, [P \overline 1]

  • a = 8.0161 (4) Å

  • b = 8.4386 (4) Å

  • c = 10.5329 (5) Å

  • α = 85.244 (3)°

  • β = 78.721 (3)°

  • γ = 62.650 (3)°

  • V = 620.61 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) Tmin = 0.935, Tmax = 0.958

  • 11895 measured reflections

  • 3012 independent reflections

  • 1817 reflections with I > 3σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.00

  • 3012 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—O1 1.421 (2)
S1—O2 1.4303 (19)
S1—N1 1.6269 (18)
S1—C9 1.747 (2)
O1—S1—O2 119.88 (12)
O1—S1—N1 107.29 (11)
O2—S1—N1 107.34 (11)
O1—S1—C9 108.32 (13)
O2—S1—C9 106.53 (13)
N1—S1—C9 106.83 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.96 2.50 3.372 (5) 151
C7—H7B⋯O3 0.97 2.57 3.044 (4) 110
C9—H9C⋯O3 0.96 2.59 3.152 (4) 117
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/I). Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/I). Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Alkyl anthranilates are valuable starting materials for the preparation of pesticides, dyes and drugs (Reissenweber & Mangold, 1982). They find organoleptic uses in augmenting the aroma or taste of perfume compositions, colognes, perfumed articles, foodstuffs, medicinal products and in enhancing the effects of deodorancy (Mookherjee et al., 1989). Particularly, the N-substituted thioesters of anthranilic acid have been found potent inhibitors of the serine proteases human leukocyte (HL) elastase, porcine pancreatic elastase, cathepsin G, and bovine chymotrypsin Aα (Tadashi et al., 1982). In continuation of our research program to synthesize new biologically important 1,2-benzothiazine 1,1-dioxide molecules (Siddiqui et al., 2006; Siddiqui et al., 2007a,b), we embarked on the syntheses of 2,1-benzothiazine 2,2-dioxide, as well. Contrary to the N-methyl substituent (Lombardino, 1972), the N-ethyl derivative is being reported for the first time.

The title compound, (I), is an important precursor for the synthesis of 2,1-benzothiazine 2,2-dioxide molecule. The structure determination of (I) is undertaken in order to understand the conformational geometry around the sulfur and nitrogen atoms, due to the addition of ethyl group.

In the molecule of (I), (Fig. 1) S1 atom adopts a distorted tetrahedral coordination geometry with two O, one N and one C atoms of methylsulfonyl amino group (Table 1). The sulfur bonds are shortened, while the bond angles aroud it are different with respect to the corresponding values reported in methyl anthranilate N-methanesulfonamide, (II), (Hanson & Hitchcook, 2004).

In (I), the addition of ethyl group at N1, instead of H-atom in (II), has changed the orientation of CH3 group and O4 atom as compared with (II). On the other hand, the O3—C10 [1.193 (3) Å] and O4—C10 [1.328 (3) Å] bonds in (I), are reported as 1.2202 (16) Å and 1.3324 (16) Å, respectively, in (II). The methyl carboxylate group (O3/O4/C10/C11) is oriented at a dihedral angle of 11.8 (2)° with respect to the phenyl ring (C1—C6).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general bakground, see: Reissenweber & Mangold (1982); Mookherjee et al. (1989); Tadashi et al. (1982). For related literature, see: Siddiqui et al. (2006,2007a,b); Lombardino (1972); Hanson & Hitchcook (2004).

Experimental top

For the preparation of the title compound, the suspension of hexane-washed sodium hydride (50% in mineral oil) was prepared in dry dimethylformamide (3 ml). A solution of methyl N-methylsulfonylanthranilate (70 mg, 0.306 mmol) in dry dimethylformamide (5 ml) was added to the suspension (76 mg, 0.368 mmol), and stirred for 45 min at room temperature. Then, a solution of ethyl iodide (144 mg, 0.92 mmol) in ether (5 ml) was added to it. The resulting white suspension was stirred for 1.5 h and poured into hydrochloric acid (3 N, 50 ml) to produce a yellow suspension which was extracted with chloroform (4 × 25 ml). The combined extract was dried over calcium sulfate and evaporated under reduced pressure (11 torr) to get the title compound (yield; 58 mg, 73%, m.p. 330–331 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of CHCl3.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines [symmetry code: (a) -x, -y, -z].
Methyl 2-(N-ethylmethanesulfonamido)benzoate top
Crystal data top
C11H15NO4SZ = 2
Mr = 257.30F(000) = 272
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0161 (4) ÅCell parameters from 3596 reflections
b = 8.4386 (4) Åθ = 2.7–24.8°
c = 10.5329 (5) ŵ = 0.26 mm1
α = 85.244 (3)°T = 296 K
β = 78.721 (3)°Prismatic, colourless
γ = 62.650 (3)°0.25 × 0.18 × 0.12 mm
V = 620.61 (5) Å3
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3012 independent reflections
Radiation source: fine-focus sealed tube1817 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.935, Tmax = 0.958l = 1414
11895 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.1532P]
where P = (Fo2 + 2Fc2)/3
3012 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C11H15NO4Sγ = 62.650 (3)°
Mr = 257.30V = 620.61 (5) Å3
Triclinic, P1Z = 2
a = 8.0161 (4) ÅMo Kα radiation
b = 8.4386 (4) ŵ = 0.26 mm1
c = 10.5329 (5) ÅT = 296 K
α = 85.244 (3)°0.25 × 0.18 × 0.12 mm
β = 78.721 (3)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1817 reflections with I > 3σ(I)
Tmin = 0.935, Tmax = 0.958Rint = 0.032
11895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
3012 reflectionsΔρmin = 0.36 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14595 (10)0.13878 (8)0.07989 (5)0.0507 (2)
O10.0510 (3)0.1954 (3)0.08167 (19)0.0688 (6)
O20.2655 (3)0.1495 (3)0.03718 (16)0.0707 (6)
O30.2630 (3)0.0251 (3)0.40332 (17)0.0811 (7)
O40.0983 (3)0.1413 (3)0.59441 (16)0.0700 (6)
N10.1604 (3)0.2545 (3)0.18962 (17)0.0457 (5)
C10.0041 (3)0.3538 (3)0.2846 (2)0.0443 (6)
C20.0200 (3)0.3048 (3)0.4158 (2)0.0436 (6)
C30.1825 (4)0.4142 (4)0.5006 (3)0.0605 (7)
H30.1950.38450.58780.073*
C40.3251 (4)0.5646 (4)0.4595 (4)0.0758 (9)
H40.43370.63440.51810.091*
C50.3076 (5)0.6121 (4)0.3320 (4)0.0801 (10)
H50.40390.71460.30390.096*
C60.1476 (4)0.5080 (4)0.2458 (3)0.0654 (8)
H60.13560.5420.15960.078*
C70.3401 (4)0.2613 (4)0.1897 (2)0.0565 (7)
H7A0.44450.15940.14170.068*
H7B0.36140.25240.27810.068*
C80.3412 (5)0.4294 (5)0.1310 (3)0.0872 (11)
H8A0.46150.4270.13320.131*
H8B0.24020.53070.17940.131*
H8C0.32280.43780.04290.131*
C90.2485 (4)0.0838 (3)0.1283 (2)0.0573 (7)
H9A0.38190.12450.12760.086*
H9B0.23330.15560.06970.086*
H9C0.18660.09380.21410.086*
C100.1286 (4)0.1421 (3)0.4659 (2)0.0457 (6)
C110.2403 (5)0.0050 (4)0.6546 (3)0.0754 (9)
H11A0.2040.00750.7470.113*
H11B0.36150.00420.62820.113*
H11C0.24990.11570.62850.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0718 (5)0.0469 (4)0.0342 (3)0.0235 (3)0.0201 (3)0.0011 (2)
O10.0720 (13)0.0634 (12)0.0718 (12)0.0208 (10)0.0347 (10)0.0126 (9)
O20.1094 (17)0.0694 (13)0.0324 (9)0.0411 (12)0.0106 (9)0.0037 (8)
O30.0977 (16)0.0587 (12)0.0408 (10)0.0047 (11)0.0141 (10)0.0030 (9)
O40.0661 (13)0.0920 (15)0.0355 (9)0.0220 (11)0.0101 (9)0.0021 (9)
N10.0579 (13)0.0471 (11)0.0337 (9)0.0239 (10)0.0109 (9)0.0018 (8)
C10.0527 (15)0.0365 (12)0.0475 (12)0.0200 (11)0.0169 (11)0.0023 (9)
C20.0484 (14)0.0446 (13)0.0417 (12)0.0224 (12)0.0104 (11)0.0062 (10)
C30.0547 (17)0.0681 (18)0.0569 (15)0.0256 (15)0.0035 (13)0.0186 (13)
C40.0540 (19)0.065 (2)0.095 (2)0.0127 (16)0.0083 (17)0.0345 (17)
C50.067 (2)0.0508 (17)0.106 (3)0.0015 (15)0.038 (2)0.0169 (17)
C60.079 (2)0.0450 (15)0.0677 (17)0.0174 (15)0.0307 (16)0.0023 (12)
C70.0632 (17)0.0686 (17)0.0439 (13)0.0347 (15)0.0087 (12)0.0046 (12)
C80.122 (3)0.094 (3)0.075 (2)0.077 (2)0.013 (2)0.0089 (18)
C90.0779 (19)0.0455 (14)0.0483 (14)0.0252 (14)0.0173 (13)0.0010 (11)
C100.0556 (16)0.0491 (14)0.0348 (11)0.0255 (13)0.0077 (11)0.0016 (10)
C110.082 (2)0.095 (2)0.0440 (14)0.0339 (18)0.0227 (15)0.0166 (14)
Geometric parameters (Å, º) top
S1—O11.421 (2)C4—H40.93
S1—O21.4303 (19)C5—C61.372 (4)
S1—N11.6269 (18)C5—H50.93
S1—C91.747 (2)C6—H60.93
O3—C101.193 (3)C7—C81.503 (4)
O4—C101.328 (3)C7—H7A0.97
O4—C111.443 (3)C7—H7B0.97
N1—C11.431 (3)C8—H8A0.96
N1—C71.468 (3)C8—H8B0.96
C1—C61.380 (3)C8—H8C0.96
C1—C21.408 (3)C9—H9A0.96
C2—C31.387 (3)C9—H9B0.96
C2—C101.485 (3)C9—H9C0.96
C3—C41.369 (4)C11—H11A0.96
C3—H30.93C11—H11B0.96
C4—C51.368 (5)C11—H11C0.96
O1—S1—O2119.88 (12)N1—C7—C8112.8 (2)
O1—S1—N1107.29 (11)N1—C7—H7A109
O2—S1—N1107.34 (11)C8—C7—H7A109
O1—S1—C9108.32 (13)N1—C7—H7B109
O2—S1—C9106.53 (13)C8—C7—H7B109
N1—S1—C9106.83 (11)H7A—C7—H7B107.8
C10—O4—C11116.5 (2)C7—C8—H8A109.5
C1—N1—C7119.82 (18)C7—C8—H8B109.5
C1—N1—S1119.87 (16)H8A—C8—H8B109.5
C7—N1—S1120.29 (16)C7—C8—H8C109.5
C6—C1—C2119.3 (2)H8A—C8—H8C109.5
C6—C1—N1118.0 (2)H8B—C8—H8C109.5
C2—C1—N1122.6 (2)S1—C9—H9A109.5
C3—C2—C1117.9 (2)S1—C9—H9B109.5
C3—C2—C10119.3 (2)H9A—C9—H9B109.5
C1—C2—C10122.8 (2)S1—C9—H9C109.5
C4—C3—C2121.8 (3)H9A—C9—H9C109.5
C4—C3—H3119.1H9B—C9—H9C109.5
C2—C3—H3119.1O3—C10—O4121.8 (2)
C5—C4—C3119.9 (3)O3—C10—C2126.8 (2)
C5—C4—H4120O4—C10—C2111.4 (2)
C3—C4—H4120O4—C11—H11A109.5
C4—C5—C6119.7 (3)O4—C11—H11B109.5
C4—C5—H5120.1H11A—C11—H11B109.5
C6—C5—H5120.1O4—C11—H11C109.5
C5—C6—C1121.3 (3)H11A—C11—H11C109.5
C5—C6—H6119.3H11B—C11—H11C109.5
C1—C6—H6119.3
O1—S1—N1—C114.2 (2)C10—C2—C3—C4179.2 (2)
O2—S1—N1—C1144.26 (18)C2—C3—C4—C51.2 (4)
C9—S1—N1—C1101.8 (2)C3—C4—C5—C60.4 (5)
O1—S1—N1—C7164.23 (18)C4—C5—C6—C11.0 (5)
O2—S1—N1—C734.2 (2)C2—C1—C6—C51.7 (4)
C9—S1—N1—C779.8 (2)N1—C1—C6—C5178.6 (3)
C7—N1—C1—C6104.8 (3)C1—N1—C7—C878.2 (3)
S1—N1—C1—C673.6 (3)S1—N1—C7—C8100.3 (2)
C7—N1—C1—C272.0 (3)C11—O4—C10—O32.3 (4)
S1—N1—C1—C2109.6 (2)C11—O4—C10—C2176.2 (2)
C6—C1—C2—C30.9 (3)C3—C2—C10—O3170.1 (3)
N1—C1—C2—C3177.6 (2)C1—C2—C10—O39.6 (4)
C6—C1—C2—C10179.4 (2)C3—C2—C10—O411.5 (3)
N1—C1—C2—C102.7 (3)C1—C2—C10—O4168.9 (2)
C1—C2—C3—C40.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.962.503.372 (5)151
C7—H7B···O30.972.573.044 (4)110
C9—H9C···O30.962.593.152 (4)117
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC11H15NO4S
Mr257.30
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0161 (4), 8.4386 (4), 10.5329 (5)
α, β, γ (°)85.244 (3), 78.721 (3), 62.650 (3)
V3)620.61 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.18 × 0.12
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.958
No. of measured, independent and
observed [I > 3σ(I)] reflections
11895, 3012, 1817
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.00
No. of reflections3012
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—O11.421 (2)O3—C101.193 (3)
S1—O21.4303 (19)O4—C101.328 (3)
S1—N11.6269 (18)O4—C111.443 (3)
S1—C91.747 (2)
O1—S1—O2119.88 (12)N1—S1—C9106.83 (11)
O1—S1—N1107.29 (11)C10—O4—C11116.5 (2)
O2—S1—N1107.34 (11)O3—C10—O4121.8 (2)
O1—S1—C9108.32 (13)O3—C10—C2126.8 (2)
O2—S1—C9106.53 (13)O4—C10—C2111.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.962.503.372 (5)151
C7—H7B···O30.972.573.044 (4)110
C9—H9C···O30.962.593.152 (4)117
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

References

First citationBruker (2007). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/I). Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHanson, J. R. & Hitchcook, P. B. (2004). J. Chem. Res (M)., pp. 642–648.  CrossRef Google Scholar
First citationLombardino, J. G. (1972). J. Heterocyclic Chem. 9, 315–317.  CrossRef CAS Google Scholar
First citationMookherjee, B. D., Trenkle, R. W., Calderone, N. & Sands, K. P. (1989). US Patent 4 879 271.  Google Scholar
First citationReissenweber, G. & Mangold, D. (1982). US Patent 4 310 677.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007a). J. Chem. Soc. Pak. 29, 44–47.  CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007b). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadashi, T., Jeffrey, C. G. & James, C. P. (1982). J. Biol. Chem. 257, 5085–5091.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds