organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,11-Di­methyl­dibenzo[b,f][1,5]diazocine-6,12(5H,11H)-dione

aDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, and bCrystal Structure Analysis Facility, School of Chemistry, F11, University of Sydney, NSW 2006, Australia
*Correspondence e-mail: andrew.try@mq.edu.au

(Received 7 January 2008; accepted 13 January 2008; online 18 January 2008)

In the mol­ecule of the title compound, C16H14N2O2, an N,N′-dimethyl­dianthranilide, the two methyl groups are disordered over two positions; site occupation factors were kept fixed as 0.75:0.25 and 0.65:0.35. The dihedral angle between the two benzene rings is 75.57 (3)°.

Related literature

For related literature, see: Nadkarni & Hosangadi (1988[Nadkarni, S. S. & Hosangadi, B. D. (1988). Indian J. Chem. Sect. B, 27, 225-228.]). For related structures, see: Ebert et al. (1998[Ebert, B. M., Ugi, I. K., Grosche, M., Herdtweck, E. & Herrmann, W. A. (1998). Tetrahedron, 54, 11887-11898.]); Nonnenmacher et al. (2000[Nonnenmacher, E., Brouant, P., Mrozek, A., Karolak-Wojciechowska, J. & Barbe, J. (2000). J. Mol. Struct. 522, 263-269.]); Gordon-Wylie et al. (2004[Gordon-Wylie, S. W., Teplin, E., Morris, J. C., Trombley, M. I., McCarthy, S. M., Cleaver, W. M. & Clark, G. R. (2004). Cryst. Growth Des. 4, 789-797.]); Olszewska et al. (2004[Olszewska, T., Gdaniec, M. & Polonski, T. (2004). J. Org. Chem. 69, 1248-1255.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O2

  • Mr = 266.29

  • Monoclinic, P 21 /c

  • a = 11.2715 (10) Å

  • b = 7.9113 (7) Å

  • c = 15.4100 (14) Å

  • β = 101.611 (1)°

  • V = 1346.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.55 × 0.42 × 0.24 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.979

  • 12897 measured reflections

  • 3175 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.04

  • 3175 reflections

  • 185 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: modiCIFer (Guzei, 2005[Guzei, I. A. (2005). modiCIFer. Version Dec-16-2005. University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Several structures of the unsubstituted dianthranilide (i.e., lacking methyl groups on the nitrogen atoms) are present in the literature, including ethanol, DMF and pyridine solvates of racemic material (Gordon-Wylie et al., 2004) as well as a DMSO solvate of racemic material, unsolvated racemate and a DMSO solvate of enantiomerically pure crystals (Olszewska et al., 2004).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges. When the crystal structure was solved, the two methyl groups were found to be disordered. The dihedral angle between the two benzene rings is 75.57 (3)°.

The X-ray crystal structures of three N,N'-disubstituted dianthranilides have also been reported and in all cases they have a smaller dihedral angle between the two aryl rings of the dianthranilide in comparison with the structures of the unsubstituted compounds. The N,N'-di[1-(N-t-butylcarbamoyl)-1-(cyclohexyl)- methyl] (Ebert et al., 1998), N,N'-dibenzyl (Nonnenmacher et al., 2000) and N,N'-dicamphanoyl derivatives (Olszewska et al., 2004) have dihedral angles of 78.2, 83.9 and 77.5°, respectively.

Related literature top

For related literature, see: Nadkarni & Hosangadi (1988). For related structures, see: Ebert et al. (1998); Nonnenmacher et al. (2000); Gordon-Wylie et al. (2004); Olszewska et al. (2004).

Experimental top

The title compound was prepared according to the literature procedure (Nadkarni & Hosangadi, 1988) in 89% yield. Single crystals of (I) were produced from slow evaporation of a dichloromethane solution.

Refinement top

When the crystal structure was solved, the two methyl groups were found to be disordered. They were each modelled with disorder over two positions with a common carbon atom. One was assigned a 75:25 split occupancy, the other 65:35. A rotating refinement was used for each methyl position giving staggered orientations for each. H atoms were positioned geometrically, with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and SHELXTL (Bruker, 2003); software used to prepare material for publication: modiCIFer (Version Dec-16-2005; Guzei, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Synthetic scheme for the synthesis of (I).
5,11-Dimethyldibenzo[b,f][1,5]diazocine-6,12(5H,11H)-dione top
Crystal data top
C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.314 Mg m3
Monoclinic, P21/cMelting point: 484 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.2715 (10) ÅCell parameters from 5797 reflections
b = 7.9113 (7) Åθ = 2.7–28.3°
c = 15.4100 (14) ŵ = 0.09 mm1
β = 101.611 (1)°T = 150 K
V = 1346.0 (2) Å3Prism, colourless
Z = 40.55 × 0.42 × 0.24 mm
Data collection top
Bruker 1000 CCD area-detector
diffractometer
3175 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.901, Tmax = 0.979k = 1010
12897 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3606P]
where P = (Fo2 + 2Fc2)/3
3175 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C16H14N2O2V = 1346.0 (2) Å3
Mr = 266.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2715 (10) ŵ = 0.09 mm1
b = 7.9113 (7) ÅT = 150 K
c = 15.4100 (14) Å0.55 × 0.42 × 0.24 mm
β = 101.611 (1)°
Data collection top
Bruker 1000 CCD area-detector
diffractometer
3175 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2686 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.979Rint = 0.022
12897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3175 reflectionsΔρmin = 0.23 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.03631 (7)0.20770 (12)0.36470 (6)0.0392 (2)
O20.32157 (9)0.56190 (11)0.51403 (6)0.0384 (2)
N10.26191 (9)0.43083 (12)0.38154 (6)0.0293 (2)
N20.11807 (8)0.19261 (12)0.48395 (6)0.0280 (2)
C10.07223 (10)0.19025 (14)0.39558 (8)0.0283 (2)
C20.15986 (10)0.16141 (14)0.33568 (7)0.0270 (2)
C30.14642 (11)0.01939 (15)0.28107 (7)0.0313 (3)
H30.08320.05900.28330.038*
C40.22439 (12)0.00839 (16)0.22364 (8)0.0346 (3)
H40.21500.10590.18690.042*
C50.31624 (12)0.10641 (17)0.21977 (7)0.0356 (3)
H50.37060.08640.18110.043*
C60.32876 (11)0.25014 (15)0.27217 (8)0.0323 (3)
H60.39050.32990.26830.039*
C70.25127 (10)0.27809 (14)0.33037 (7)0.0271 (2)
C80.23206 (13)0.59028 (16)0.33401 (9)0.0410 (3)0.75
H8A0.22910.68130.37660.049*0.75
H8B0.15300.58010.29390.049*0.75
H8C0.29410.61620.29960.049*0.75
C8'0.23206 (13)0.59028 (16)0.33401 (9)0.0410 (3)0.25
H8D0.29740.67200.35340.049*0.25
H8E0.15620.63490.34660.049*0.25
H8F0.22260.57070.27020.049*0.25
C90.30500 (10)0.43187 (14)0.47035 (7)0.0271 (2)
C100.33394 (10)0.26308 (13)0.51321 (7)0.0239 (2)
C110.45333 (10)0.22278 (15)0.55095 (7)0.0272 (2)
H110.51660.29940.54600.033*
C120.48022 (10)0.07159 (15)0.59559 (7)0.0304 (3)
H120.56190.04430.62100.036*
C130.38820 (11)0.04021 (15)0.60338 (7)0.0309 (3)
H130.40710.14390.63420.037*
C140.26895 (11)0.00143 (14)0.56646 (7)0.0291 (2)
H140.20590.07770.57230.035*
C150.24198 (9)0.14978 (14)0.52073 (7)0.0243 (2)
C160.03856 (11)0.22890 (17)0.54596 (9)0.0363 (3)0.65
H16A0.03850.27430.51340.044*0.65
H16B0.07740.31210.58970.044*0.65
H16C0.02360.12460.57630.044*0.65
C16'0.03856 (11)0.22890 (17)0.54596 (9)0.0363 (3)0.35
H16D0.03480.15960.53090.044*0.35
H16E0.01630.34880.54210.044*0.35
H16F0.08100.20260.60640.044*0.35
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (4)0.0477 (5)0.0415 (5)0.0008 (4)0.0015 (3)0.0076 (4)
O20.0516 (6)0.0251 (4)0.0385 (5)0.0088 (4)0.0088 (4)0.0029 (3)
N10.0320 (5)0.0229 (5)0.0309 (5)0.0034 (4)0.0012 (4)0.0057 (4)
N20.0235 (4)0.0306 (5)0.0297 (5)0.0045 (4)0.0045 (4)0.0013 (4)
C10.0257 (5)0.0237 (5)0.0330 (6)0.0039 (4)0.0004 (4)0.0043 (4)
C20.0271 (5)0.0272 (5)0.0235 (5)0.0012 (4)0.0029 (4)0.0057 (4)
C30.0334 (6)0.0278 (6)0.0283 (5)0.0026 (4)0.0045 (4)0.0047 (4)
C40.0440 (7)0.0319 (6)0.0242 (5)0.0037 (5)0.0023 (5)0.0014 (5)
C50.0417 (7)0.0416 (7)0.0232 (5)0.0062 (5)0.0055 (5)0.0074 (5)
C60.0341 (6)0.0349 (6)0.0267 (5)0.0022 (5)0.0036 (4)0.0108 (5)
C70.0302 (5)0.0257 (5)0.0226 (5)0.0011 (4)0.0014 (4)0.0064 (4)
C80.0490 (8)0.0270 (6)0.0428 (7)0.0010 (5)0.0012 (6)0.0110 (5)
C8'0.0490 (8)0.0270 (6)0.0428 (7)0.0010 (5)0.0012 (6)0.0110 (5)
C90.0255 (5)0.0248 (5)0.0311 (6)0.0062 (4)0.0055 (4)0.0019 (4)
C100.0268 (5)0.0245 (5)0.0204 (5)0.0039 (4)0.0044 (4)0.0015 (4)
C110.0253 (5)0.0316 (6)0.0245 (5)0.0051 (4)0.0047 (4)0.0022 (4)
C120.0277 (5)0.0365 (6)0.0257 (5)0.0022 (4)0.0024 (4)0.0006 (4)
C130.0392 (6)0.0279 (6)0.0247 (5)0.0016 (5)0.0045 (4)0.0038 (4)
C140.0333 (6)0.0277 (6)0.0258 (5)0.0071 (4)0.0046 (4)0.0016 (4)
C150.0244 (5)0.0262 (5)0.0217 (5)0.0042 (4)0.0031 (4)0.0008 (4)
C160.0297 (6)0.0417 (7)0.0390 (7)0.0057 (5)0.0107 (5)0.0040 (5)
C16'0.0297 (6)0.0417 (7)0.0390 (7)0.0057 (5)0.0107 (5)0.0040 (5)
Geometric parameters (Å, º) top
O1—C11.2280 (13)C6—H60.9500
O2—C91.2229 (14)C8—H8A0.9800
N1—C91.3569 (15)C8—H8B0.9800
N1—C71.4346 (15)C8—H8C0.9800
N1—C81.4635 (14)C9—C101.4964 (15)
N2—C11.3558 (15)C10—C111.3913 (15)
N2—C151.4380 (14)C10—C151.3926 (14)
N2—C161.4642 (15)C11—C121.3827 (16)
C1—C21.4990 (16)C11—H110.9500
C2—C31.3936 (16)C12—C131.3867 (17)
C2—C71.3980 (15)C12—H120.9500
C3—C41.3846 (18)C13—C141.3844 (17)
C3—H30.9500C13—H130.9500
C4—C51.3874 (19)C14—C151.3906 (15)
C4—H40.9500C14—H140.9500
C5—C61.3854 (18)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.3897 (17)C16—H16C0.9800
C9—N1—C7122.20 (9)N1—C8—H8A109.5
C9—N1—C8119.94 (10)N1—C8—H8B109.5
C7—N1—C8117.74 (9)N1—C8—H8C109.5
C1—N2—C15122.43 (9)O2—C9—N1122.97 (10)
C1—N2—C16119.90 (10)O2—C9—C10120.80 (10)
C15—N2—C16117.55 (9)N1—C9—C10116.21 (9)
O1—C1—N2122.43 (11)C11—C10—C15119.42 (10)
O1—C1—C2120.47 (10)C11—C10—C9119.71 (9)
N2—C1—C2117.09 (9)C15—C10—C9120.75 (10)
C3—C2—C7119.27 (11)C12—C11—C10120.20 (10)
C3—C2—C1119.31 (10)C12—C11—H11119.9
C7—C2—C1121.35 (10)C10—C11—H11119.9
C4—C3—C2120.54 (11)C11—C12—C13120.13 (10)
C4—C3—H3119.7C11—C12—H12119.9
C2—C3—H3119.7C13—C12—H12119.9
C3—C4—C5119.91 (11)C14—C13—C12120.29 (11)
C3—C4—H4120.0C14—C13—H13119.9
C5—C4—H4120.0C12—C13—H13119.9
C6—C5—C4120.11 (12)C13—C14—C15119.60 (10)
C6—C5—H5119.9C13—C14—H14120.2
C4—C5—H5119.9C15—C14—H14120.2
C5—C6—C7120.21 (11)C14—C15—C10120.36 (10)
C5—C6—H6119.9C14—C15—N2119.89 (9)
C7—C6—H6119.9C10—C15—N2119.71 (10)
C6—C7—C2119.94 (11)N2—C16—H16A109.5
C6—C7—N1119.66 (10)N2—C16—H16B109.5
C2—C7—N1120.34 (10)N2—C16—H16C109.5
C15—N2—C1—O1171.43 (10)C7—N1—C9—O2175.40 (11)
C16—N2—C1—O14.45 (17)C8—N1—C9—O20.55 (18)
C15—N2—C1—C27.30 (15)C7—N1—C9—C103.60 (15)
C16—N2—C1—C2176.82 (10)C8—N1—C9—C10179.55 (10)
O1—C1—C2—C360.48 (15)O2—C9—C10—C1164.70 (15)
N2—C1—C2—C3118.28 (11)N1—C9—C10—C11114.32 (11)
O1—C1—C2—C7116.44 (12)O2—C9—C10—C15111.25 (12)
N2—C1—C2—C764.81 (14)N1—C9—C10—C1569.72 (14)
C7—C2—C3—C41.56 (16)C15—C10—C11—C120.08 (16)
C1—C2—C3—C4178.54 (10)C9—C10—C11—C12175.93 (10)
C2—C3—C4—C50.46 (17)C10—C11—C12—C130.36 (16)
C3—C4—C5—C61.08 (17)C11—C12—C13—C140.11 (17)
C4—C5—C6—C71.52 (17)C12—C13—C14—C150.59 (17)
C5—C6—C7—C20.41 (16)C13—C14—C15—C101.03 (16)
C5—C6—C7—N1177.39 (10)C13—C14—C15—N2178.59 (10)
C3—C2—C7—C61.12 (15)C11—C10—C15—C140.78 (16)
C1—C2—C7—C6178.04 (10)C9—C10—C15—C14175.18 (10)
C3—C2—C7—N1175.84 (9)C11—C10—C15—N2178.34 (9)
C1—C2—C7—N11.08 (15)C9—C10—C15—N22.37 (15)
C9—N1—C7—C6109.40 (12)C1—N2—C15—C14108.33 (12)
C8—N1—C7—C666.63 (14)C16—N2—C15—C1467.64 (14)
C9—N1—C7—C273.63 (14)C1—N2—C15—C1074.10 (14)
C8—N1—C7—C2110.33 (12)C16—N2—C15—C10109.93 (12)

Experimental details

Crystal data
Chemical formulaC16H14N2O2
Mr266.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.2715 (10), 7.9113 (7), 15.4100 (14)
β (°) 101.611 (1)
V3)1346.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.42 × 0.24
Data collection
DiffractometerBruker 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.901, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
12897, 3175, 2686
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.04
No. of reflections3175
No. of parameters185
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and SHELXTL (Bruker, 2003), modiCIFer (Version Dec-16-2005; Guzei, 2005).

 

Acknowledgements

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180), and Macquarie University for the award of a Macquarie University Research Development grant to ACT and the award of a PhD scholarship to ABM.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEbert, B. M., Ugi, I. K., Grosche, M., Herdtweck, E. & Herrmann, W. A. (1998). Tetrahedron, 54, 11887–11898.  CrossRef CAS Google Scholar
First citationGordon-Wylie, S. W., Teplin, E., Morris, J. C., Trombley, M. I., McCarthy, S. M., Cleaver, W. M. & Clark, G. R. (2004). Cryst. Growth Des. 4, 789–797.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuzei, I. A. (2005). modiCIFer. Version Dec-16-2005. University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationNadkarni, S. S. & Hosangadi, B. D. (1988). Indian J. Chem. Sect. B, 27, 225–228.  Google Scholar
First citationNonnenmacher, E., Brouant, P., Mrozek, A., Karolak-Wojciechowska, J. & Barbe, J. (2000). J. Mol. Struct. 522, 263–269.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlszewska, T., Gdaniec, M. & Polonski, T. (2004). J. Org. Chem. 69, 1248–1255.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds