organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 6H,12H-5,11-methano­dibenzo[b,f][1,5]diazo­cine-2,8-di­acetate

aDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, bCrystal Structure Analysis Facility, School of Chemistry, F11, University of Sydney, NSW 2006, Australia, and cDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia
*Correspondence e-mail: andrew.try@mq.edu.au

(Received 18 January 2008; accepted 18 January 2008; online 23 January 2008)

The asymmetric unit of the title compound, C21H22N2O4, a Tröger's base analogue derived from methyl 4-amino­phenyl­acetate, contains two crystallographically independent mol­ecules with dihedral angles of 88.44 (5) and 88.68 (6)° between the two benzene rings.

Related literature

For related literature, see: Faroughi et al. (2006[Faroughi, M., Try, A. C. & Turner, P. (2006). Acta Cryst. E62, o3893-o3894.], 2007[Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett. 48, 6548-6551.], 2008a[Faroughi, M., Try, A. C. & Turner, P. (2008a). Acta Cryst. E64, o39.],b[Faroughi, M., Try, A. C. & Turner, P. (2008b). Acta Cryst. E64, o458.]); Solano et al. (2005[Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510-3517.]); Bag & Maitra (1995[Bag, B. G. & Maitra, U. (1995). Synth. Commun. 25, 1849-1856.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O4

  • Mr = 366.41

  • Monoclinic, P 21 /n

  • a = 11.559 (1) Å

  • b = 10.957 (1) Å

  • c = 28.976 (3) Å

  • β = 100.080 (1)°

  • V = 3613.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.50 × 0.39 × 0.36 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.967

  • 35113 measured reflections

  • 8689 independent reflections

  • 5732 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.01

  • 8689 reflections

  • 491 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: modiCIFer (Guzei, 2005[Guzei, I. A. (2005). modiCIFer. Version Dec-16-2005. University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

The near perpendicular arrangement of the aryl rings in Tröger's base analogues is a result of the methano-strap that is connected to the two nitrogen atoms in the diazocine bridge. Changing the length of this strap has significant effects on the geometry of the resultant compounds, with straps of three and four atoms creating a larger cavity (Faroughi et al., 2007) and a strap of two atoms creating a smaller cavity (Faroughi et al., 2007, 2008a,b). However, even within the methano-strapped family of simple dibenzo Tröger's base analogues there is significant variation of 26° in the dihedral angle that has been measured to lie between 82° (Solano et al., 2005) and 108.44 (4)° (Faroughi et al., 2006). Both types of molecules in the asymmetric unit of (I) shown in Fig. 1 lie toward the middle of this range, with dihedral angles of 91.56 (5)° and 91.32 (6)°.

Related literature top

For related literature, see: Faroughi et al. (2006, 2007, 2008a,b); Solano et al. (2005); Bag & Maitra (1995).

Experimental top

The title compound was prepared according to the literature procedure (Bag & Maitra, 1995). For the preparation of the title compound, methyl 4-aminophenyl- acetate (4.14 g, 25.1 mmol) and paraformaldehyde (1.21 mg, 40.16 mmol) were dissolved in trifluoroacetic acid (50 ml) and the mixture was stirred under an argon atmosphere in the dark for 8 d. The reaction mixture was then treated with a solution of concentrated ammonia (55 ml) in water (100 ml) and further basified by the addition of a saturated sodium hydrogen carbonate solution (150 ml). The crude material was extracted into dichloromethane (3 x 75 ml) and the combined organic layers were washed with brine (100 ml), dried over anhydrous sodium sulfate, filtered and evaporated to dryness to yield brown solid. The crude material was chromatographed (silica gel, ethyl acetate:dichloromethane 1:3) to afford the title compound, (I), (2.82 g, 61%) as a white solid. Single crystals of (I) were produced from slow evaporation of a dichloromethane solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene, and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other H atoms. The methyl groups were free to rotate about the C—O bonds.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: modiCIFer (Guzei, 2005).

Figures top
[Figure 1] Fig. 1. View of one of the two unique molecules present in the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the second of the two unique molecules present in the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Synthetic scheme for the synthesis of (I).
Dimethyl 6H,12H- 5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diacetate top
Crystal data top
C21H22N2O4F(000) = 1552
Mr = 366.41Dx = 1.347 Mg m3
Monoclinic, P21/nMelting point: 395 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.559 (1) ÅCell parameters from 7374 reflections
b = 10.957 (1) Åθ = 2.3–28.3°
c = 28.976 (3) ŵ = 0.09 mm1
β = 100.080 (1)°T = 150 K
V = 3613.2 (6) Å3Prism, colorless
Z = 80.50 × 0.39 × 0.36 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8689 independent reflections
Radiation source: fine-focus sealed tube5732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.919, Tmax = 0.967k = 1414
35113 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0601P)2 + 1.5095P]
where P = (Fo2 + 2Fc2)/3
8689 reflections(Δ/σ)max < 0.001
491 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H22N2O4V = 3613.2 (6) Å3
Mr = 366.41Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.559 (1) ŵ = 0.09 mm1
b = 10.957 (1) ÅT = 150 K
c = 28.976 (3) Å0.50 × 0.39 × 0.36 mm
β = 100.080 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8689 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5732 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.967Rint = 0.036
35113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
8689 reflectionsΔρmin = 0.22 e Å3
491 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13353 (12)0.55544 (13)0.41076 (5)0.0504 (4)
O20.01037 (12)0.45369 (13)0.35657 (5)0.0438 (3)
O30.19132 (12)0.35292 (11)0.23292 (4)0.0380 (3)
O40.27173 (13)0.23178 (11)0.18499 (4)0.0392 (3)
O50.69961 (12)0.11996 (11)0.23969 (4)0.0373 (3)
O60.76216 (12)0.23781 (11)0.18596 (4)0.0357 (3)
O70.45898 (15)1.00557 (18)0.40087 (7)0.0765 (6)
O80.61390 (12)0.93383 (14)0.37529 (5)0.0484 (4)
N10.04445 (12)0.14840 (13)0.40096 (5)0.0265 (3)
N20.13389 (12)0.09436 (13)0.45479 (5)0.0254 (3)
N30.62531 (13)0.36677 (14)0.45458 (5)0.0310 (3)
N40.44164 (12)0.35297 (14)0.39983 (5)0.0302 (3)
C10.10001 (14)0.03141 (15)0.44837 (5)0.0235 (3)
C20.18112 (15)0.12287 (16)0.46428 (5)0.0273 (4)
H20.25890.10100.47820.033*
C30.15049 (15)0.24462 (16)0.46012 (6)0.0295 (4)
H30.20700.30540.47150.035*
C40.03710 (15)0.27907 (15)0.43931 (5)0.0275 (4)
C50.00082 (16)0.41203 (16)0.43529 (6)0.0338 (4)
H5A0.02220.45110.46640.041*
H5B0.08570.41670.42600.041*
C60.05666 (15)0.48195 (15)0.40050 (6)0.0303 (4)
C70.05890 (19)0.51676 (19)0.32034 (7)0.0463 (5)
H7A0.14250.49680.32320.069*
H7B0.01720.49110.28950.069*
H7C0.04980.60500.32380.069*
C80.04269 (15)0.18824 (15)0.42258 (6)0.0269 (4)
H80.11980.21080.40790.032*
C90.01339 (14)0.06501 (15)0.42656 (5)0.0244 (3)
C100.10157 (14)0.03062 (16)0.40602 (6)0.0295 (4)
H10A0.14280.00300.37490.035*
H10B0.16080.04080.42660.035*
C110.03016 (14)0.17429 (15)0.44624 (5)0.0270 (4)
H11A0.01610.16280.47160.032*
H11B0.05610.26050.44690.032*
C120.21233 (14)0.13466 (16)0.42262 (5)0.0266 (4)
H12A0.27710.07510.42340.032*
H12B0.24730.21460.43310.032*
C130.14591 (14)0.14595 (14)0.37304 (5)0.0238 (3)
C140.20687 (15)0.14763 (15)0.33536 (6)0.0271 (4)
H140.29030.15030.34150.033*
C150.14880 (16)0.14550 (15)0.28933 (6)0.0291 (4)
C160.21643 (19)0.13771 (16)0.24954 (6)0.0378 (4)
H16A0.29770.11140.26230.045*
H16B0.18030.07370.22750.045*
C170.22199 (15)0.25389 (15)0.22257 (6)0.0276 (4)
C180.2918 (2)0.33655 (17)0.15714 (6)0.0427 (5)
H18A0.21640.37420.14390.064*
H18B0.33190.31060.13160.064*
H18C0.34090.39590.17700.064*
C190.02681 (17)0.14257 (15)0.28116 (6)0.0328 (4)
H190.01440.14010.24980.039*
C200.03572 (15)0.14312 (15)0.31745 (6)0.0289 (4)
H200.11920.14150.31100.035*
C210.02329 (14)0.14598 (14)0.36379 (5)0.0242 (3)
C220.50833 (15)0.34330 (15)0.36265 (6)0.0270 (4)
C230.44928 (17)0.35394 (16)0.31657 (6)0.0333 (4)
H230.36640.36450.31040.040*
C240.51062 (19)0.34919 (16)0.27986 (6)0.0387 (5)
H240.46930.35710.24860.046*
C250.63154 (19)0.33299 (16)0.28764 (6)0.0363 (4)
C260.6987 (2)0.33876 (17)0.24756 (7)0.0483 (6)
H26A0.65620.39380.22330.058*
H26B0.77650.37580.25920.058*
C270.71734 (15)0.21890 (15)0.22503 (6)0.0284 (4)
C280.79035 (17)0.13024 (17)0.16143 (6)0.0359 (4)
H28A0.85190.08390.18160.054*
H28B0.81820.15450.13270.054*
H28C0.72000.07930.15330.054*
C290.68939 (17)0.31939 (16)0.33344 (6)0.0346 (4)
H290.77190.30590.33920.042*
C300.62957 (16)0.32496 (15)0.37123 (6)0.0292 (4)
C310.69570 (16)0.31802 (18)0.42110 (6)0.0347 (4)
H31A0.71640.23200.42910.042*
H31B0.76970.36510.42370.042*
C320.50945 (16)0.30973 (17)0.44408 (6)0.0327 (4)
H32A0.51900.22010.44250.039*
H32B0.46570.32780.46980.039*
C330.40789 (15)0.47987 (17)0.40761 (6)0.0321 (4)
H33A0.34660.48030.42760.039*
H33B0.37410.51740.37710.039*
C340.51138 (14)0.55484 (16)0.43082 (5)0.0259 (3)
C350.50775 (16)0.68228 (16)0.43139 (6)0.0310 (4)
H350.43710.72270.41800.037*
C360.60485 (17)0.75178 (16)0.45100 (6)0.0331 (4)
C370.59910 (19)0.88985 (18)0.45326 (7)0.0423 (5)
H37A0.55080.91300.47690.051*
H37B0.67940.92170.46400.051*
C380.54884 (16)0.95020 (16)0.40758 (7)0.0339 (4)
C390.57179 (19)0.9885 (2)0.32980 (7)0.0463 (5)
H39A0.49900.94800.31510.069*
H39B0.63140.97890.30980.069*
H39C0.55661.07550.33380.069*
C400.70736 (16)0.69204 (18)0.47061 (6)0.0347 (4)
H400.77500.73810.48350.042*
C410.71187 (15)0.56696 (17)0.47161 (6)0.0317 (4)
H410.78220.52740.48590.038*
C420.61535 (14)0.49713 (16)0.45202 (5)0.0265 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (8)0.0433 (8)0.0660 (10)0.0107 (7)0.0002 (7)0.0019 (7)
O20.0525 (8)0.0448 (8)0.0361 (7)0.0137 (7)0.0128 (6)0.0003 (6)
O30.0568 (8)0.0253 (7)0.0353 (7)0.0063 (6)0.0175 (6)0.0015 (5)
O40.0702 (9)0.0274 (7)0.0252 (6)0.0035 (6)0.0228 (6)0.0034 (5)
O50.0562 (8)0.0262 (7)0.0315 (7)0.0006 (6)0.0134 (6)0.0014 (5)
O60.0555 (8)0.0303 (7)0.0248 (6)0.0020 (6)0.0164 (6)0.0003 (5)
O70.0632 (11)0.0919 (14)0.0805 (13)0.0386 (10)0.0294 (10)0.0105 (10)
O80.0411 (8)0.0682 (10)0.0379 (8)0.0125 (7)0.0123 (6)0.0044 (7)
N10.0246 (7)0.0294 (8)0.0263 (7)0.0031 (6)0.0070 (6)0.0007 (6)
N20.0263 (7)0.0296 (7)0.0208 (7)0.0020 (6)0.0052 (5)0.0040 (6)
N30.0322 (8)0.0376 (8)0.0231 (7)0.0030 (6)0.0042 (6)0.0037 (6)
N40.0303 (8)0.0352 (8)0.0256 (7)0.0058 (6)0.0068 (6)0.0003 (6)
C10.0266 (8)0.0306 (9)0.0143 (7)0.0008 (7)0.0064 (6)0.0020 (6)
C20.0259 (8)0.0364 (10)0.0196 (8)0.0013 (7)0.0038 (6)0.0010 (7)
C30.0338 (9)0.0348 (10)0.0208 (8)0.0069 (7)0.0077 (7)0.0030 (7)
C40.0338 (9)0.0309 (9)0.0202 (8)0.0008 (7)0.0106 (7)0.0009 (7)
C50.0374 (10)0.0328 (10)0.0327 (10)0.0009 (8)0.0103 (8)0.0065 (8)
C60.0269 (9)0.0229 (8)0.0408 (10)0.0041 (7)0.0052 (7)0.0024 (7)
C70.0577 (13)0.0399 (11)0.0460 (12)0.0026 (10)0.0218 (10)0.0110 (9)
C80.0253 (8)0.0343 (9)0.0222 (8)0.0036 (7)0.0073 (6)0.0002 (7)
C90.0240 (8)0.0315 (9)0.0190 (8)0.0003 (7)0.0074 (6)0.0007 (6)
C100.0236 (8)0.0335 (9)0.0322 (9)0.0004 (7)0.0071 (7)0.0010 (7)
C110.0311 (9)0.0292 (9)0.0222 (8)0.0024 (7)0.0089 (7)0.0040 (7)
C120.0234 (8)0.0325 (9)0.0241 (8)0.0027 (7)0.0053 (6)0.0036 (7)
C130.0290 (8)0.0199 (8)0.0230 (8)0.0013 (6)0.0061 (6)0.0026 (6)
C140.0320 (9)0.0228 (8)0.0284 (9)0.0001 (7)0.0103 (7)0.0014 (7)
C150.0468 (11)0.0186 (8)0.0246 (8)0.0023 (7)0.0143 (7)0.0008 (6)
C160.0654 (13)0.0253 (9)0.0279 (9)0.0061 (9)0.0221 (9)0.0025 (7)
C170.0374 (9)0.0254 (9)0.0201 (8)0.0000 (7)0.0048 (7)0.0002 (6)
C180.0682 (14)0.0347 (10)0.0287 (10)0.0001 (9)0.0181 (9)0.0093 (8)
C190.0506 (11)0.0250 (9)0.0210 (8)0.0037 (8)0.0014 (8)0.0005 (7)
C200.0314 (9)0.0272 (9)0.0266 (9)0.0030 (7)0.0008 (7)0.0001 (7)
C210.0281 (9)0.0212 (8)0.0238 (8)0.0010 (6)0.0055 (6)0.0008 (6)
C220.0358 (9)0.0226 (8)0.0230 (8)0.0041 (7)0.0066 (7)0.0005 (6)
C230.0416 (10)0.0288 (9)0.0279 (9)0.0054 (8)0.0016 (8)0.0009 (7)
C240.0649 (14)0.0283 (9)0.0218 (9)0.0065 (9)0.0042 (9)0.0004 (7)
C250.0625 (13)0.0212 (9)0.0299 (9)0.0019 (8)0.0210 (9)0.0011 (7)
C260.0887 (17)0.0268 (10)0.0377 (11)0.0040 (10)0.0344 (11)0.0031 (8)
C270.0359 (9)0.0290 (9)0.0193 (8)0.0002 (7)0.0022 (7)0.0003 (7)
C280.0433 (11)0.0372 (10)0.0274 (9)0.0059 (8)0.0071 (8)0.0058 (8)
C290.0457 (11)0.0251 (9)0.0363 (10)0.0038 (8)0.0160 (8)0.0013 (7)
C300.0373 (10)0.0237 (8)0.0276 (9)0.0025 (7)0.0085 (7)0.0009 (7)
C310.0361 (10)0.0388 (10)0.0298 (9)0.0101 (8)0.0073 (8)0.0021 (8)
C320.0405 (10)0.0338 (10)0.0253 (9)0.0031 (8)0.0099 (7)0.0047 (7)
C330.0231 (8)0.0404 (10)0.0330 (9)0.0012 (7)0.0055 (7)0.0034 (8)
C340.0253 (8)0.0346 (9)0.0196 (8)0.0003 (7)0.0086 (6)0.0007 (7)
C350.0328 (9)0.0374 (10)0.0243 (9)0.0045 (8)0.0087 (7)0.0004 (7)
C360.0448 (11)0.0359 (10)0.0220 (8)0.0089 (8)0.0150 (8)0.0067 (7)
C370.0552 (13)0.0394 (11)0.0344 (10)0.0064 (9)0.0141 (9)0.0103 (8)
C380.0306 (9)0.0269 (9)0.0467 (11)0.0036 (7)0.0136 (8)0.0095 (8)
C390.0546 (13)0.0454 (12)0.0392 (11)0.0006 (10)0.0091 (10)0.0066 (9)
C400.0333 (10)0.0501 (12)0.0217 (8)0.0113 (8)0.0075 (7)0.0067 (8)
C410.0269 (9)0.0479 (11)0.0206 (8)0.0020 (8)0.0050 (7)0.0015 (7)
C420.0261 (8)0.0372 (10)0.0175 (8)0.0018 (7)0.0078 (6)0.0005 (7)
Geometric parameters (Å, º) top
O1—C61.197 (2)C15—C191.389 (3)
O2—C61.328 (2)C15—C161.504 (2)
O2—C71.449 (2)C16—C171.501 (2)
O3—C171.196 (2)C16—H16A0.9900
O4—C171.340 (2)C16—H16B0.9900
O4—C181.445 (2)C18—H18A0.9800
O5—C271.195 (2)C18—H18B0.9800
O6—C271.341 (2)C18—H18C0.9800
O6—C281.443 (2)C19—C201.377 (2)
O7—C381.189 (2)C19—H190.9500
O8—C381.311 (2)C20—C211.396 (2)
O8—C391.452 (2)C20—H200.9500
N1—C211.438 (2)C22—C231.394 (2)
N1—C111.466 (2)C22—C301.394 (2)
N1—C101.469 (2)C23—C241.379 (3)
N2—C11.436 (2)C23—H230.9500
N2—C111.470 (2)C24—C251.388 (3)
N2—C121.477 (2)C24—H240.9500
N3—C421.434 (2)C25—C291.385 (3)
N3—C321.461 (2)C25—C261.507 (2)
N3—C311.471 (2)C26—C271.499 (2)
N4—C221.434 (2)C26—H26A0.9900
N4—C321.460 (2)C26—H26B0.9900
N4—C331.472 (2)C28—H28A0.9800
C1—C21.394 (2)C28—H28B0.9800
C1—C91.401 (2)C28—H28C0.9800
C2—C31.380 (2)C29—C301.395 (2)
C2—H20.9500C29—H290.9500
C3—C41.395 (2)C30—C311.514 (2)
C3—H30.9500C31—H31A0.9900
C4—C81.385 (2)C31—H31B0.9900
C4—C51.515 (2)C32—H32A0.9900
C5—C61.499 (2)C32—H32B0.9900
C5—H5A0.9900C33—C341.509 (2)
C5—H5B0.9900C33—H33A0.9900
C7—H7A0.9800C33—H33B0.9900
C7—H7B0.9800C34—C351.397 (2)
C7—H7C0.9800C34—C421.401 (2)
C8—C91.392 (2)C35—C361.392 (2)
C8—H80.9500C35—H350.9500
C9—C101.509 (2)C36—C401.386 (3)
C10—H10A0.9900C36—C371.516 (3)
C10—H10B0.9900C37—C381.502 (3)
C11—H11A0.9900C37—H37A0.9900
C11—H11B0.9900C37—H37B0.9900
C12—C131.511 (2)C39—H39A0.9800
C12—H12A0.9900C39—H39B0.9800
C12—H12B0.9900C39—H39C0.9800
C13—C211.396 (2)C40—C411.372 (3)
C13—C141.399 (2)C40—H400.9500
C14—C151.384 (2)C41—C421.389 (2)
C14—H140.9500C41—H410.9500
C6—O2—C7116.17 (15)C20—C19—H19119.2
C17—O4—C18116.37 (14)C15—C19—H19119.2
C27—O6—C28116.34 (14)C19—C20—C21120.10 (16)
C38—O8—C39116.64 (16)C19—C20—H20120.0
C21—N1—C11111.19 (13)C21—C20—H20120.0
C21—N1—C10111.82 (13)C13—C21—C20119.59 (15)
C11—N1—C10106.56 (13)C13—C21—N1121.58 (14)
C1—N2—C11110.73 (13)C20—C21—N1118.83 (14)
C1—N2—C12112.88 (12)C23—C22—C30119.43 (16)
C11—N2—C12106.74 (13)C23—C22—N4118.41 (16)
C42—N3—C32110.67 (14)C30—C22—N4122.15 (15)
C42—N3—C31112.10 (14)C24—C23—C22120.27 (18)
C32—N3—C31107.46 (14)C24—C23—H23119.9
C22—N4—C32111.06 (14)C22—C23—H23119.9
C22—N4—C33112.11 (13)C23—C24—C25121.25 (17)
C32—N4—C33106.73 (14)C23—C24—H24119.4
C2—C1—C9118.82 (15)C25—C24—H24119.4
C2—C1—N2119.64 (14)C29—C25—C24118.23 (16)
C9—C1—N2121.54 (14)C29—C25—C26121.02 (19)
C3—C2—C1121.23 (16)C24—C25—C26120.63 (18)
C3—C2—H2119.4C27—C26—C25115.57 (15)
C1—C2—H2119.4C27—C26—H26A108.4
C2—C3—C4120.42 (16)C25—C26—H26A108.4
C2—C3—H3119.8C27—C26—H26B108.4
C4—C3—H3119.8C25—C26—H26B108.4
C8—C4—C3118.31 (16)H26A—C26—H26B107.4
C8—C4—C5120.37 (15)O5—C27—O6123.78 (16)
C3—C4—C5121.32 (16)O5—C27—C26126.39 (16)
C6—C5—C4113.41 (14)O6—C27—C26109.79 (14)
C6—C5—H5A108.9O6—C28—H28A109.5
C4—C5—H5A108.9O6—C28—H28B109.5
C6—C5—H5B108.9H28A—C28—H28B109.5
C4—C5—H5B108.9O6—C28—H28C109.5
H5A—C5—H5B107.7H28A—C28—H28C109.5
O1—C6—O2123.48 (17)H28B—C28—H28C109.5
O1—C6—C5124.39 (17)C25—C29—C30121.65 (18)
O2—C6—C5112.12 (15)C25—C29—H29119.2
O2—C7—H7A109.5C30—C29—H29119.2
O2—C7—H7B109.5C22—C30—C29119.14 (16)
H7A—C7—H7B109.5C22—C30—C31120.10 (15)
O2—C7—H7C109.5C29—C30—C31120.69 (16)
H7A—C7—H7C109.5N3—C31—C30111.47 (14)
H7B—C7—H7C109.5N3—C31—H31A109.3
C4—C8—C9122.04 (16)C30—C31—H31A109.3
C4—C8—H8119.0N3—C31—H31B109.3
C9—C8—H8119.0C30—C31—H31B109.3
C8—C9—C1119.15 (15)H31A—C31—H31B108.0
C8—C9—C10120.20 (15)N4—C32—N3112.08 (13)
C1—C9—C10120.62 (15)N4—C32—H32A109.2
N1—C10—C9111.41 (13)N3—C32—H32A109.2
N1—C10—H10A109.3N4—C32—H32B109.2
C9—C10—H10A109.3N3—C32—H32B109.2
N1—C10—H10B109.3H32A—C32—H32B107.9
C9—C10—H10B109.3N4—C33—C34111.82 (14)
H10A—C10—H10B108.0N4—C33—H33A109.3
N1—C11—N2111.73 (12)C34—C33—H33A109.3
N1—C11—H11A109.3N4—C33—H33B109.3
N2—C11—H11A109.3C34—C33—H33B109.3
N1—C11—H11B109.3H33A—C33—H33B107.9
N2—C11—H11B109.3C35—C34—C42118.10 (16)
H11A—C11—H11B107.9C35—C34—C33121.76 (15)
N2—C12—C13111.02 (13)C42—C34—C33120.14 (15)
N2—C12—H12A109.4C36—C35—C34121.85 (17)
C13—C12—H12A109.4C36—C35—H35119.1
N2—C12—H12B109.4C34—C35—H35119.1
C13—C12—H12B109.4C40—C36—C35118.64 (17)
H12A—C12—H12B108.0C40—C36—C37119.64 (17)
C21—C13—C14118.89 (15)C35—C36—C37121.66 (18)
C21—C13—C12120.84 (14)C38—C37—C36114.47 (15)
C14—C13—C12120.10 (14)C38—C37—H37A108.6
C15—C14—C13121.73 (16)C36—C37—H37A108.6
C15—C14—H14119.1C38—C37—H37B108.6
C13—C14—H14119.1C36—C37—H37B108.6
C14—C15—C19118.13 (15)H37A—C37—H37B107.6
C14—C15—C16120.66 (17)O7—C38—O8123.1 (2)
C19—C15—C16121.08 (16)O7—C38—C37124.11 (18)
C17—C16—C15115.23 (14)O8—C38—C37112.75 (16)
C17—C16—H16A108.5O8—C39—H39A109.5
C15—C16—H16A108.5O8—C39—H39B109.5
C17—C16—H16B108.5H39A—C39—H39B109.5
C15—C16—H16B108.5O8—C39—H39C109.5
H16A—C16—H16B107.5H39A—C39—H39C109.5
O3—C17—O4123.79 (15)H39B—C39—H39C109.5
O3—C17—C16126.69 (16)C41—C40—C36120.49 (17)
O4—C17—C16109.48 (14)C41—C40—H40119.8
O4—C18—H18A109.5C36—C40—H40119.8
O4—C18—H18B109.5C40—C41—C42121.11 (17)
H18A—C18—H18B109.5C40—C41—H41119.4
O4—C18—H18C109.5C42—C41—H41119.4
H18A—C18—H18C109.5C41—C42—C34119.77 (16)
H18B—C18—H18C109.5C41—C42—N3118.42 (15)
C20—C19—C15121.52 (16)C34—C42—N3121.82 (15)
C11—N2—C1—C2166.37 (14)C32—N4—C22—C23165.62 (15)
C12—N2—C1—C274.03 (18)C33—N4—C22—C2375.07 (19)
C11—N2—C1—C913.35 (19)C32—N4—C22—C3015.0 (2)
C12—N2—C1—C9106.24 (16)C33—N4—C22—C30104.28 (18)
C9—C1—C2—C31.9 (2)C30—C22—C23—C241.5 (3)
N2—C1—C2—C3177.80 (14)N4—C22—C23—C24177.88 (15)
C1—C2—C3—C40.7 (2)C22—C23—C24—C250.4 (3)
C2—C3—C4—C80.8 (2)C23—C24—C25—C291.2 (3)
C2—C3—C4—C5178.71 (15)C23—C24—C25—C26174.72 (16)
C8—C4—C5—C6109.90 (18)C29—C25—C26—C2791.4 (2)
C3—C4—C5—C670.6 (2)C24—C25—C26—C2792.9 (2)
C7—O2—C6—O10.5 (3)C28—O6—C27—O50.5 (3)
C7—O2—C6—C5179.95 (15)C28—O6—C27—C26177.14 (16)
C4—C5—C6—O1106.9 (2)C25—C26—C27—O511.5 (3)
C4—C5—C6—O273.57 (19)C25—C26—C27—O6170.94 (17)
C3—C4—C8—C90.9 (2)C24—C25—C29—C301.8 (3)
C5—C4—C8—C9178.58 (15)C26—C25—C29—C30174.11 (16)
C4—C8—C9—C10.4 (2)C23—C22—C30—C290.9 (2)
C4—C8—C9—C10177.43 (15)N4—C22—C30—C29178.45 (15)
C2—C1—C9—C81.8 (2)C23—C22—C30—C31177.67 (16)
N2—C1—C9—C8177.96 (14)N4—C22—C30—C311.7 (2)
C2—C1—C9—C10176.02 (14)C25—C29—C30—C220.7 (3)
N2—C1—C9—C104.2 (2)C25—C29—C30—C31176.02 (16)
C21—N1—C10—C971.68 (17)C42—N3—C31—C3072.47 (19)
C11—N1—C10—C950.01 (17)C32—N3—C31—C3049.33 (19)
C8—C9—C10—N1162.57 (14)C22—C30—C31—N316.3 (2)
C1—C9—C10—N115.2 (2)C29—C30—C31—N3160.41 (16)
C21—N1—C11—N250.30 (18)C22—N4—C32—N351.30 (19)
C10—N1—C11—N271.78 (16)C33—N4—C32—N371.18 (17)
C1—N2—C11—N151.81 (17)C42—N3—C32—N452.55 (18)
C12—N2—C11—N171.41 (16)C31—N3—C32—N470.14 (18)
C1—N2—C12—C1372.00 (17)C22—N4—C33—C3472.87 (18)
C11—N2—C12—C1349.88 (16)C32—N4—C33—C3448.95 (17)
N2—C12—C13—C2114.0 (2)N4—C33—C34—C35164.18 (15)
N2—C12—C13—C14161.30 (14)N4—C33—C34—C4214.9 (2)
C21—C13—C14—C152.0 (2)C42—C34—C35—C362.0 (2)
C12—C13—C14—C15173.41 (15)C33—C34—C35—C36177.16 (15)
C13—C14—C15—C190.5 (2)C34—C35—C36—C400.3 (2)
C13—C14—C15—C16175.30 (15)C34—C35—C36—C37177.57 (16)
C14—C15—C16—C17105.8 (2)C40—C36—C37—C38132.60 (18)
C19—C15—C16—C1778.5 (2)C35—C36—C37—C3850.2 (2)
C18—O4—C17—O32.3 (3)C39—O8—C38—O70.7 (3)
C18—O4—C17—C16175.43 (16)C39—O8—C38—C37179.70 (16)
C15—C16—C17—O39.8 (3)C36—C37—C38—O7114.6 (2)
C15—C16—C17—O4172.60 (16)C36—C37—C38—O864.4 (2)
C14—C15—C19—C200.7 (2)C35—C36—C40—C411.5 (2)
C16—C15—C19—C20176.50 (15)C37—C36—C40—C41175.78 (16)
C15—C19—C20—C210.4 (3)C36—C40—C41—C421.7 (3)
C14—C13—C21—C202.4 (2)C40—C41—C42—C340.0 (2)
C12—C13—C21—C20173.05 (15)C40—C41—C42—N3179.44 (15)
C14—C13—C21—N1177.90 (14)C35—C34—C42—C411.8 (2)
C12—C13—C21—N16.7 (2)C33—C34—C42—C41177.34 (15)
C19—C20—C21—C131.2 (2)C35—C34—C42—N3177.64 (14)
C19—C20—C21—N1179.04 (15)C33—C34—C42—N33.2 (2)
C11—N1—C21—C1310.9 (2)C32—N3—C42—C41164.77 (14)
C10—N1—C21—C13108.06 (17)C31—N3—C42—C4175.28 (18)
C11—N1—C21—C20169.33 (14)C32—N3—C42—C3414.7 (2)
C10—N1—C21—C2071.69 (18)C31—N3—C42—C34105.26 (17)

Experimental details

Crystal data
Chemical formulaC21H22N2O4
Mr366.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.559 (1), 10.957 (1), 28.976 (3)
β (°) 100.080 (1)
V3)3613.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.39 × 0.36
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
35113, 8689, 5732
Rint0.036
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.01
No. of reflections8689
No. of parameters491
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and SHELXTL (Sheldrick, 2008), modiCIFer (Guzei, 2005).

 

Acknowledgements

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant to ACT.

References

First citationBag, B. G. & Maitra, U. (1995). Synth. Commun. 25, 1849–1856.  CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett. 48, 6548–6551.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2006). Acta Cryst. E62, o3893–o3894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2008a). Acta Cryst. E64, o39.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2008b). Acta Cryst. E64, o458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuzei, I. A. (2005). modiCIFer. Version Dec-16-2005. University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds