metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­aqua­bis­[3-(3-pyrid­yl)acrylato-κN]cobalt(II)

aDepartment of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, SK-91701 Trnava, Slovakia, and bDepartment of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia
*Correspondence e-mail: jan.moncol@stuba.sk

(Received 22 January 2008; accepted 23 January 2008; online 30 January 2008)

The asymmetric unit of the title compound, [Co(C8H6NO2)2(H2O)4], contains one half-mol­ecule. The CoII atom lies on an inversion centre and is coordinated by two N atoms of the pyridine rings of 3-(3-pyrid­yl)acrylate anions and four O atoms of water mol­ecules in a distorted octa­hedral coordination geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For related literature, see: Ayyappan et al. (2001[Ayyappan, P., Evans, O. R. & Lin, W. (2001). Inorg. Chem. 40, 4627-4632.]); Kurmoo et al. (2005[Kurmoo, M., Rstournes, C., Oka, Y., Kumagai, H. & Inoue, K. (2005). Inorg. Chem. 44, 217-224.]); Tong et al. (2003[Tong, M.-L., Chen, X.-M. & Batten, S. R. (2003). J. Am. Chem. Soc. 125, 16170-16171.]); Zhou et al. (2006[Zhou, Q.-X., Bai, X.-J. & Chen, L.-P. (2006). Chin. J. Struct. Chem. 25, 49-52.]); For related structures, see: Huang et al. (2005[Huang, Y.-G., Zhou, Y.-F., Wu, B.-L., Han, L., Yuan, D.-Q., Lou, B.-Q. & Hong, M.-C. (2005). Chin. J. Struct. Chem. 24, 1123-1128.]); Tang et al. (2006[Tang, L., Li, D.-S., Fu, F., Li, J., Zhao, X.-Z. & Wang, J.-W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 441-442.]); Yang et al. (2006[Yang, E., Chen, Q.-Y. & Chen, G.-Y. (2006). Acta Cryst. E62, m1043-m1044.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H6NO2)2(H2O)4]

  • Mr = 427.27

  • Monoclinic, P 21 /n

  • a = 11.235 (1) Å

  • b = 7.020 (1) Å

  • c = 12.012 (1) Å

  • β = 112.81 (1)°

  • V = 873.29 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 294 (2) K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XEMP; Siemens, 1994[Siemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.808

  • 3307 measured reflections

  • 2533 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 97 reflections intensity decay: 2.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.156

  • S = 1.10

  • 2533 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co—O1W 2.0895 (16)
Co—O2W 2.1061 (16)
Co—N1 2.1765 (18)
O1W—Co—O2W 89.02 (6)
O1W—Co—N1 90.78 (7)
O2W—Co—N1 87.20 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H3W⋯O2i 0.82 1.95 2.764 (3) 175
O2W—H4W⋯O2ii 0.82 1.95 2.741 (2) 161
O1W—H2W⋯O1i 0.82 1.86 2.678 (2) 175
O1W—H1W⋯O2iii 0.82 2.00 2.798 (2) 163
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Several CoII coordination polymers that contain a bridging 3-(3-pyridyl) -acrylate ligands have been reported recently (Ayyappan et al., 2001; Kurmoo et al., 2005; Tong et al., 2003; Zhou et al., 2006). However, if the 3-(3-pyridyl)-acrylate anions are coordinated only as terminal ligands, the possibility of participating in a hydrogen-bonding network originates. As part of our efforts to investigate metal(II) complexes based on pyridyl- carboxylic acids, we report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) CoII atom lies on an inversion centre and adopts a distorted octahedral coordination geometry with two N atoms of the pyridine rings of 3-(3-pyridyl)-acrylate anions and four O atoms of water molecules (Table 1), where the two symmetry related 3-(3-pyridyl)-acrylate ligands are in trans positions.

The bond lengths and angles may be compared with the corresponding values in [Co(C8H6NO2)2(H2O)4].2H2O [(II); Huang et al., 2005]. In (II), CoII atom displays a similar distorted octahedral coordination geometry, but the existence of two more water molecules result in the formation of a different hydrogen-bonding network. On the other hand, complex (I) is isostructural with [Zn(C8H6NO2)2(H2O)4] [(III); Tang et al., 2006; Yang et al., 2006] and [Mn(C8H6NO2)2(H2O)4] [(IV); Huang et al., 2005].

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the molecules to form a three-dimensional network.

Related literature top

For related literature, see: Ayyappan et al. (2001); Kurmoo et al. (2005); Tong et al. (2003); Zhou et al. (2006); For related structures, see: Huang et al. (2005); Tang et al. (2006); Yang et al. (2006).

Experimental top

Well shaped crystals of (I) suitable for X-ray analysis were prepared in an H-tube. In the first part of the H-tube, there was aqueous solutions of sodium salt of 3-(3-pyridyl)-acrylic acid and in the second part, there was aquous solution of Co(II) sulfate. The crystals formed after one month, they were separated and dried at room temperature (yield; 75%). The Anal. Calc.: C, 44.98; H, 6.61; N, 6.56; Co, 13.79; Found: C, 44.72; H, 6.31; N, 6.40; Co, 13.45. IR data (KBr) cm-1: 1646m ν(C?C); 1547vs νas(COO-); 1371vs,br νs(COO-); 649m δ(py); 415m χ(py). Electronic data (cm-1): 20200; 21200s h; 9100br.

Refinement top

H atoms were positioned geometrically with O—H = 0.82 Å (for OH2 and their displacement parameters were kept fixed as Uiso = 0.032 Å2) and C—H = 0.93 Å, for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines [symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1/2, -y + 3/2, z - 1/2; (iii) x + 1/2, -y + 1/2, z - 1/2].
trans-Tetraaquabis[3-(3-pyridyl)acrylato-κN]cobalt(II) top
Crystal data top
[Co(C8H6NO2)2(H2O)4]F(000) = 442
Mr = 427.27Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.235 (1) Åθ = 2.5–8.7°
b = 7.020 (1) ŵ = 1.03 mm1
c = 12.012 (1) ÅT = 294 K
β = 112.81 (1)°Block, pink
V = 873.29 (18) Å30.40 × 0.25 × 0.20 mm
Z = 2
Data collection top
Siemens P4
diffractometer
2255 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 30.0°, θmin = 2.1°
2θ/ω scansh = 115
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
k = 19
Tmin = 0.672, Tmax = 0.808l = 1615
3307 measured reflections3 standard reflections every 97 reflections
2533 independent reflections intensity decay: 2.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1034P)2 + 0.5011P]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Co(C8H6NO2)2(H2O)4]V = 873.29 (18) Å3
Mr = 427.27Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.235 (1) ŵ = 1.03 mm1
b = 7.020 (1) ÅT = 294 K
c = 12.012 (1) Å0.40 × 0.25 × 0.20 mm
β = 112.81 (1)°
Data collection top
Siemens P4
diffractometer
2255 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
Rint = 0.030
Tmin = 0.672, Tmax = 0.8083 standard reflections every 97 reflections
3307 measured reflections intensity decay: 2.5%
2533 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.10Δρmax = 0.65 e Å3
2533 reflectionsΔρmin = 0.84 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.50000.50000.01873 (16)
N10.44388 (17)0.5543 (3)0.65137 (17)0.0228 (4)
O10.13338 (15)0.6559 (3)0.61120 (16)0.0328 (4)
O20.12936 (18)0.5143 (2)0.77834 (18)0.0264 (4)
O1W0.38329 (15)0.2573 (2)0.45303 (14)0.0257 (3)
H1W0.39590.17390.41110.032*
H2W0.30720.28840.43060.032*
O2W0.33927 (15)0.6646 (2)0.39394 (15)0.0270 (3)
H3W0.28000.60920.34070.032*
H4W0.35670.77010.37510.032*
C10.3185 (2)0.5672 (3)0.63318 (19)0.0236 (4)
H10.25780.55450.55460.028*
C20.27363 (19)0.5986 (3)0.72477 (19)0.0217 (4)
C30.3653 (2)0.6228 (3)0.84170 (19)0.0248 (4)
H30.34000.64630.90550.030*
C40.4946 (2)0.6114 (4)0.86108 (19)0.0273 (4)
H40.55740.62710.93840.033*
C50.5303 (2)0.5765 (3)0.7649 (2)0.0243 (4)
H50.61770.56810.77950.029*
C60.1337 (2)0.6061 (3)0.69088 (19)0.0238 (4)
H60.08380.63010.61000.029*
C70.0699 (2)0.5824 (3)0.7628 (2)0.0249 (4)
H70.11530.56350.84520.030*
C80.07372 (19)0.5859 (3)0.71227 (19)0.0216 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0127 (2)0.0260 (2)0.0190 (2)0.00015 (12)0.00773 (16)0.00068 (12)
N10.0157 (8)0.0320 (9)0.0231 (8)0.0009 (7)0.0103 (6)0.0001 (7)
O10.0190 (7)0.0495 (10)0.0296 (8)0.0006 (7)0.0091 (6)0.0048 (7)
O20.0215 (8)0.0310 (9)0.0317 (9)0.0023 (6)0.0158 (7)0.0007 (6)
O1W0.0187 (7)0.0311 (8)0.0281 (8)0.0023 (6)0.0098 (6)0.0046 (6)
O2W0.0178 (7)0.0323 (8)0.0292 (8)0.0012 (6)0.0072 (6)0.0063 (6)
C10.0155 (8)0.0353 (11)0.0219 (9)0.0015 (8)0.0092 (7)0.0026 (8)
C20.0167 (8)0.0272 (9)0.0240 (9)0.0002 (7)0.0108 (7)0.0010 (7)
C30.0220 (9)0.0341 (11)0.0209 (9)0.0016 (8)0.0111 (8)0.0010 (8)
C40.0205 (9)0.0390 (11)0.0204 (9)0.0006 (8)0.0058 (7)0.0017 (8)
C50.0166 (9)0.0301 (11)0.0265 (10)0.0004 (8)0.0086 (8)0.0012 (8)
C60.0168 (8)0.0306 (10)0.0252 (9)0.0005 (7)0.0097 (7)0.0011 (8)
C70.0169 (9)0.0337 (11)0.0256 (9)0.0012 (8)0.0098 (7)0.0030 (8)
C80.0179 (8)0.0248 (9)0.0252 (9)0.0014 (7)0.0117 (7)0.0046 (7)
Geometric parameters (Å, º) top
Co—O1Wi2.0895 (16)C1—C21.394 (3)
Co—O1W2.0895 (16)C1—H10.9300
Co—O2Wi2.1061 (16)C2—C31.393 (3)
Co—O2W2.1061 (16)C2—C61.465 (3)
Co—N1i2.1765 (18)C3—C41.382 (3)
Co—N12.1765 (18)C3—H30.9300
N1—C51.342 (3)C4—C51.384 (3)
N1—C11.343 (3)C4—H40.9300
O1—C81.238 (3)C5—H50.9300
O2—C81.288 (3)C6—C71.329 (3)
O1W—H1W0.82C6—H60.9300
O1W—H2W0.82C7—C81.488 (3)
O2W—H3W0.82C7—H70.9300
O2W—H4W0.82
O1Wi—Co—O1W180.0N1—C1—C2124.1 (2)
O1Wi—Co—O2Wi89.02 (6)N1—C1—H1118.0
O1W—Co—O2Wi90.98 (6)C2—C1—H1118.0
O1Wi—Co—O2W90.98 (6)C3—C2—C1117.57 (19)
O1W—Co—O2W89.02 (6)C3—C2—C6124.77 (18)
O2Wi—Co—O2W180.0C1—C2—C6117.65 (19)
O1Wi—Co—N1i90.78 (7)C4—C3—C2118.75 (19)
O1W—Co—N1i89.22 (7)C4—C3—H3120.6
O2Wi—Co—N1i87.20 (7)C2—C3—H3120.6
O2W—Co—N1i92.80 (7)C3—C4—C5119.7 (2)
O1Wi—Co—N189.22 (7)C3—C4—H4120.1
O1W—Co—N190.78 (7)C5—C4—H4120.1
O2Wi—Co—N192.80 (7)N1—C5—C4122.64 (19)
O2W—Co—N187.20 (7)N1—C5—H5118.7
N1i—Co—N1180.0C4—C5—H5118.7
C5—N1—C1117.26 (18)C7—C6—C2127.3 (2)
C5—N1—Co122.64 (14)C7—C6—H6116.4
C1—N1—Co120.10 (14)C2—C6—H6116.4
Co—O1W—H1W120.6C6—C7—C8120.3 (2)
Co—O1W—H2W109.7C6—C7—H7119.8
H1W—O1W—H2W113.2C8—C7—H7119.8
Co—O2W—H3W117.2O1—C8—O2123.5 (2)
Co—O2W—H4W114.9O1—C8—C7119.73 (19)
H3W—O2W—H4W115.0O2—C8—C7116.8 (2)
O1Wi—Co—N1—C554.14 (19)C1—C2—C3—C41.1 (3)
O1W—Co—N1—C5125.86 (19)C6—C2—C3—C4179.7 (2)
O2Wi—Co—N1—C534.84 (19)C2—C3—C4—C50.0 (4)
O2W—Co—N1—C5145.16 (19)C1—N1—C5—C40.0 (4)
O1Wi—Co—N1—C1125.68 (19)Co—N1—C5—C4179.86 (18)
O1W—Co—N1—C154.32 (19)C3—C4—C5—N10.5 (4)
O2Wi—Co—N1—C1145.34 (19)C3—C2—C6—C720.7 (4)
O2W—Co—N1—C134.66 (19)C1—C2—C6—C7160.2 (2)
C5—N1—C1—C21.2 (4)C2—C6—C7—C8177.2 (2)
Co—N1—C1—C2178.93 (18)C6—C7—C8—O117.7 (3)
N1—C1—C2—C31.8 (4)C6—C7—C8—O2162.4 (2)
N1—C1—C2—C6179.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H3W···O2ii0.821.952.764 (3)175
O2W—H4W···O2iii0.821.952.741 (2)161
O1W—H2W···O1ii0.821.862.678 (2)175
O1W—H1W···O2iv0.822.002.798 (2)163
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1/2, y+3/2, z1/2; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C8H6NO2)2(H2O)4]
Mr427.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)11.235 (1), 7.020 (1), 12.012 (1)
β (°) 112.81 (1)
V3)873.29 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1994)
Tmin, Tmax0.672, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
3307, 2533, 2255
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.156, 1.10
No. of reflections2533
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.84

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Co—O1W2.0895 (16)Co—N12.1765 (18)
Co—O2W2.1061 (16)
O1W—Co—O2W89.02 (6)O2W—Co—N187.20 (7)
O1W—Co—N190.78 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H3W···O2i0.821.952.764 (3)174.8
O2W—H4W···O2ii0.821.952.741 (2)161.4
O1W—H2W···O1i0.821.862.678 (2)175.2
O1W—H1W···O2iii0.822.002.798 (2)162.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAyyappan, P., Evans, O. R. & Lin, W. (2001). Inorg. Chem. 40, 4627–4632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, Y.-G., Zhou, Y.-F., Wu, B.-L., Han, L., Yuan, D.-Q., Lou, B.-Q. & Hong, M.-C. (2005). Chin. J. Struct. Chem. 24, 1123–1128.  CAS Google Scholar
First citationKurmoo, M., Rstournes, C., Oka, Y., Kumagai, H. & Inoue, K. (2005). Inorg. Chem. 44, 217–224.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTang, L., Li, D.-S., Fu, F., Li, J., Zhao, X.-Z. & Wang, J.-W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 441–442.  CAS Google Scholar
First citationTong, M.-L., Chen, X.-M. & Batten, S. R. (2003). J. Am. Chem. Soc. 125, 16170–16171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, E., Chen, Q.-Y. & Chen, G.-Y. (2006). Acta Cryst. E62, m1043–m1044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Q.-X., Bai, X.-J. & Chen, L.-P. (2006). Chin. J. Struct. Chem. 25, 49–52.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds