organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[2-(1,3-benzo­thia­zol-2-yl)phen­­oxy]butane

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bDepartment of Physics, Dokuz Eylül University, İzmir, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 23 January 2008; accepted 24 January 2008; online 30 January 2008)

The mol­ecule of the title compound, C30H24N2O2S2, adopts a transoid conformation consistent with the inversion centre located at the mid-point of the central C—C single bond, resulting in one half mol­ecule in the asymmetric unit. The dihedral angle between the coplanar benzothia­zole ring system and the benzene ring is 11.06 (7)°. In the crystal structure, mol­ecules are linked by weak inter­molecular ππ inter­actions between thia­zole and benzene rings to form a three-dimensional network.

Related literature

For general background, see: Delmas et al. (2002[Delmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J. P. (2002). Antimicrob. Agents Chemother. 46, 2588-2594.]); Karalı et al. (2004[Karalı, N., Cesur, N., Gürsoy, A., Ateş, O., Özden, S., Otuk, G. & Birteksöz, S. (2004). Indian J. Chem. B43, 212-216.]); Weinstock et al. (1987[Weinstock, J., Gaitanopoulos, D. E., Stringer, O. D., Franz, R. G., Hieble, J. P., Kinter, L. B., Mann, W. A., Flaim, K. E. & Gessner, G. (1987). J. Med. Chem. 30, 1166-1176.]); Chopade et al. (2002[Chopade, R. S., Bahekar, R. H., Khedekar, P. B., Bhusari, K. P. & Rao, A. R. R. (2002). Arch. Pharm. 335, 381-388.]); Di Nunno et al. (2000[Di Nunno, L., Franchini, C., Scilimati, A., Sinicropi, M. S. & Tortorella, P. (2000). Tetrahedron Asymmetry, 11, 1571-1583.]); Gökhan et al. (2004[Gökhan, N., Aktay, G. & Erdoğan, H. (2004). Turk. J. Chem. 28, 123-132.]). For related structures, see: Sieroń et al. (1999[Sieroń, L. & Bukowska-Strżyzewska, M. (1999). Acta Cryst. C55, 167-169.]); Usman et al. (2003[Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41-m43.]). For related literature, see: Temel et al. (2008[Temel, H., Alp, H., İlhan, S. & Ziyadanoğulları, B. (2008). J. Coord. Chem. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N2O2S2

  • Mr = 508.63

  • Monoclinic, P 21 /c

  • a = 14.3251 (13) Å

  • b = 4.8992 (3) Å

  • c = 17.4954 (17) Å

  • β = 102.522 (7)°

  • V = 1198.65 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.80 × 0.36 × 0.08 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.442, Tmax = 0.936

  • 14397 measured reflections

  • 2339 independent reflections

  • 1456 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.069

  • S = 0.84

  • 2339 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
The observed ππ interaction distances (Å) for the title compound.

CgCgi dcentroids dperpendicular
Cg1—Cg2i 3.775 (11) 3.515
Cg1—Cg3i 3.7934 (12) 3.59
Cg1, Cg2 and Cg3 are the centroids of atoms S1/N1/C1/C6/C7, (C1–C6) and (C8–C13) rings, respectively. Symmetry code: (i) x, 1+y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzothiazole derivatives possess a broad spectrum of pharmacological activity, including antibacterial, antifungal (Delmas et al., 2002; Karalı et al., 2004), dopaminergic (Weinstock et al., 1987), anticonvulsant (Chopade et al., 2002), antiadrenergic (Di Nunno et al., 2000) and analgesic anti-inflammatory activities (Gökhan et al., 2004). We report herein the synthesis and structure of the title compound, (I), which is a new benzothiazole derivative.

The molecule of the title compound, (I), (Fig. 1) displays an inversion centre with a half molecule in the asymmetric unit. The benzene ring and its fused thiazole ring are nearly coplanar, with the maximum deviation from the least-squares plane through S1/N1/C1—C7 occurring at S1 [0.033 (9) Å]. However, the molecule itself is nonplanar; the dihedral angle between the coplanar benzothiazole ring system and benzene ring is 11.06 (7)°. The N1—C7 [1.299 (2) Å] bond indicates double-bond character, whereas the S—C bond lengths are indicative of significant single-bond character. The S1—C1 [1.7231 (19) Å] bond is shorter than S1—C7 [1.7552 (18) Å], due to the fact that C7 is sp2 hybridized, whereas C1 is part of the aromatic ring. A similar effect was observed for cis-bis(2-amino-1,3-benzothiazole-N3)bis- (formato-O,O')copper(II) [(II); Sieroń et al., 1999] and diacetatobis- (2-aminobenzothiazole)zinc(II) [(III); Usman et al., 2003]. The corresponding N—C and S—C values are [N1—C2 = 1.321 (3) Å, S1—C2 = 1.742 (3) Å and S1—C8 = 1.741 (3) Å, in (II)] and [N1—C1 = 1.311 (3) Å, N3—C8 = 1.317 (3) Å, S1—C1 = 1.747 (2) Å, S1—C2 = 1.733 (3) Å, S2—C8 = 1.751 (2) Å and S2—C9 = 1.749 (3) Å, in (III)].

In the crystal structure, the molecules are linked by weak intermolecular π···π interactions (Table 1) between thiazole and benzene rings to form a three-dimensional network (Fig. 2).

Related literature top

For general background, see: Delmas et al. (2002); Karalı et al. (2004); Weinstock et al. (1987); Chopade et al. (2002); Di Nunno et al. (2000); Gökhan et al. (2004). For related structures, see: Sieroń et al. (1999); Usman et al. (2003). For related literature, see: Temel et al. (2008).

Experimental top

The title compound, (I), was prepared by the literature method (Temel et al., 2008). It was obtained from the photochemical reaction of M(CO)5 THF (M= Cr) (132 mg, 0.5 mmol) with N,N'-bis(2-aminothiophenol)-1,4-bis(2-carboxaldehyde- phenoxy) butane (153 mg, 0.3 mmol) in THF for 2 h at room temperature. UV irradiation was performed with a medium-pressure (125 W) mercury lamp through a quartz-walled immersion well reactor, which was cooled by circulating water. After the photochemical reaction, the solvent was removed under vacuum afford a solid residue which was dissolved in CH2Cl2 and then petroleum ether was added for the purification process. The solution was allowed to cool in a deep-freezer. Small colorless crystals grown in the CH2Cl2 /petroleum ether solution were filtered off and finally dried.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) -x, -y, -z].
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the π···π bonds (drawn as dashed lines) [symmetry code: (i) x, 1 + y, z].
1,4-Bis[2-(1,3-benzothiazol-2-yl)phenoxy]butane top
Crystal data top
C30H24N2O2S2F(000) = 532
Mr = 508.63Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14397 reflections
a = 14.3251 (13) Åθ = 1.7–28.0°
b = 4.8992 (3) ŵ = 0.26 mm1
c = 17.4954 (17) ÅT = 296 K
β = 102.522 (7)°Thin long plate, colorless
V = 1198.65 (18) Å30.80 × 0.36 × 0.08 mm
Z = 2
Data collection top
Stoe IPDSII
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube1456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 1617
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 66
Tmin = 0.442, Tmax = 0.936l = 2121
14397 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
2339 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C30H24N2O2S2V = 1198.65 (18) Å3
Mr = 508.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.3251 (13) ŵ = 0.26 mm1
b = 4.8992 (3) ÅT = 296 K
c = 17.4954 (17) Å0.80 × 0.36 × 0.08 mm
β = 102.522 (7)°
Data collection top
Stoe IPDSII
diffractometer
2339 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1456 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.936Rint = 0.075
14397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.84Δρmax = 0.14 e Å3
2339 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Experimental. 322 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15719 (4)0.95193 (10)0.66141 (3)0.05013 (15)
O10.18060 (9)0.6078 (3)0.54404 (7)0.0548 (4)
N10.33188 (11)1.0657 (3)0.72790 (8)0.0474 (4)
C10.17643 (14)1.1896 (4)0.73578 (10)0.0449 (5)
C20.11011 (15)1.3333 (4)0.76826 (11)0.0558 (5)
H20.04481.30570.75060.067*
C30.14437 (17)1.5159 (4)0.82685 (12)0.0610 (6)
H30.10151.61240.84950.073*
C40.24200 (17)1.5602 (4)0.85322 (11)0.0593 (5)
H40.26341.68830.89230.071*
C50.30670 (15)1.4168 (4)0.82207 (11)0.0546 (5)
H50.37191.44530.84020.066*
C60.27417 (14)1.2284 (4)0.76311 (10)0.0454 (5)
C70.28134 (13)0.9108 (4)0.67424 (10)0.0420 (4)
C80.32640 (13)0.7109 (4)0.63100 (10)0.0421 (4)
C90.42400 (14)0.6654 (4)0.65603 (11)0.0524 (5)
H90.45820.76340.69850.063*
C100.47127 (14)0.4785 (4)0.61944 (12)0.0596 (6)
H100.53650.44960.63750.071*
C110.42174 (16)0.3352 (4)0.55621 (12)0.0599 (6)
H110.45370.21110.53080.072*
C120.32498 (16)0.3741 (4)0.53009 (11)0.0545 (5)
H120.29170.27540.48740.065*
C130.27700 (13)0.5594 (4)0.56711 (10)0.0453 (4)
C140.12712 (14)0.4466 (4)0.48140 (10)0.0518 (5)
H14A0.13210.25460.49530.062*
H14B0.15170.47220.43440.062*
C150.02453 (14)0.5376 (4)0.46736 (11)0.0556 (5)
H15A0.01040.45650.41900.067*
H15B0.02210.73420.46070.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0431 (3)0.0516 (3)0.0532 (3)0.0016 (3)0.0050 (2)0.0062 (2)
O10.0427 (8)0.0624 (9)0.0539 (8)0.0000 (6)0.0010 (6)0.0175 (7)
N10.0471 (10)0.0445 (9)0.0480 (9)0.0022 (8)0.0044 (7)0.0040 (8)
C10.0494 (13)0.0390 (11)0.0462 (11)0.0003 (9)0.0103 (9)0.0044 (8)
C20.0520 (13)0.0539 (13)0.0614 (13)0.0044 (10)0.0122 (10)0.0004 (10)
C30.0730 (16)0.0560 (14)0.0575 (12)0.0126 (11)0.0215 (10)0.0008 (10)
C40.0809 (17)0.0459 (11)0.0496 (11)0.0013 (12)0.0104 (11)0.0067 (10)
C50.0599 (14)0.0488 (12)0.0516 (11)0.0042 (10)0.0041 (9)0.0043 (10)
C60.0525 (13)0.0387 (11)0.0426 (10)0.0012 (9)0.0053 (9)0.0018 (8)
C70.0425 (11)0.0426 (11)0.0392 (9)0.0024 (9)0.0053 (8)0.0031 (8)
C80.0421 (12)0.0410 (11)0.0421 (10)0.0013 (9)0.0065 (8)0.0019 (8)
C90.0444 (12)0.0537 (12)0.0557 (12)0.0011 (10)0.0034 (9)0.0036 (9)
C100.0443 (12)0.0659 (15)0.0670 (13)0.0061 (11)0.0087 (10)0.0047 (11)
C110.0583 (15)0.0610 (14)0.0635 (13)0.0095 (11)0.0197 (11)0.0063 (11)
C120.0565 (14)0.0574 (13)0.0483 (11)0.0001 (10)0.0087 (9)0.0087 (9)
C130.0425 (12)0.0474 (11)0.0446 (10)0.0007 (9)0.0060 (8)0.0021 (9)
C140.0518 (12)0.0559 (12)0.0440 (10)0.0085 (10)0.0024 (8)0.0065 (9)
C150.0510 (13)0.0652 (13)0.0452 (11)0.0105 (10)0.0012 (8)0.0023 (10)
Geometric parameters (Å, º) top
C1—S11.7231 (19)C9—C101.376 (3)
C1—C21.398 (3)C9—H90.9300
C1—C61.391 (3)C10—C111.371 (3)
C2—C31.369 (3)C10—H100.9300
C2—H20.9300C11—C121.375 (3)
C3—C41.391 (3)C11—H110.9300
C3—H30.9300C12—C131.382 (3)
C4—C51.367 (3)C12—H120.9300
C4—H40.9300C13—O11.373 (2)
C5—C61.387 (3)C14—O11.431 (2)
C5—H50.9300C14—C151.504 (3)
C6—N11.385 (2)C14—H14A0.9700
C7—S11.7552 (18)C14—H14B0.9700
C7—N11.299 (2)C15—C15i1.511 (4)
C7—C81.469 (2)C15—H15A0.9700
C8—C91.390 (3)C15—H15B0.9700
C8—C131.399 (2)
C6—C1—C2120.89 (18)C11—C10—C9119.68 (19)
C6—C1—S1109.65 (14)C11—C10—H10120.2
C2—C1—S1129.46 (16)C9—C10—H10120.2
C3—C2—C1117.9 (2)C10—C11—C12120.33 (19)
C3—C2—H2121.0C10—C11—H11119.8
C1—C2—H2121.0C12—C11—H11119.8
C2—C3—C4121.45 (19)C11—C12—C13120.22 (19)
C2—C3—H3119.3C11—C12—H12119.9
C4—C3—H3119.3C13—C12—H12119.9
C5—C4—C3120.5 (2)O1—C13—C12123.13 (17)
C5—C4—H4119.8O1—C13—C8116.46 (16)
C3—C4—H4119.8C12—C13—C8120.41 (18)
C4—C5—C6119.4 (2)O1—C14—C15107.66 (15)
C4—C5—H5120.3O1—C14—H14A110.2
C6—C5—H5120.3C15—C14—H14A110.2
N1—C6—C5125.23 (18)O1—C14—H14B110.2
N1—C6—C1114.94 (16)C15—C14—H14B110.2
C5—C6—C1119.82 (18)H14A—C14—H14B108.5
N1—C7—C8121.55 (17)C14—C15—C15i113.7 (2)
N1—C7—S1114.57 (13)C14—C15—H15A108.8
C8—C7—S1123.83 (13)C15i—C15—H15A108.8
C9—C8—C13117.81 (17)C14—C15—H15B108.8
C9—C8—C7117.97 (16)C15i—C15—H15B108.8
C13—C8—C7124.20 (17)H15A—C15—H15B107.7
C10—C9—C8121.54 (18)C7—N1—C6111.40 (16)
C10—C9—H9119.2C13—O1—C14117.86 (14)
C8—C9—H9119.2C1—S1—C789.39 (9)
C6—C1—C2—C30.9 (3)C10—C11—C12—C130.4 (3)
S1—C1—C2—C3179.08 (15)C11—C12—C13—O1179.97 (18)
C1—C2—C3—C40.5 (3)C11—C12—C13—C80.6 (3)
C2—C3—C4—C51.4 (3)C9—C8—C13—O1179.64 (16)
C3—C4—C5—C60.8 (3)C7—C8—C13—O10.9 (3)
C4—C5—C6—N1178.41 (18)C9—C8—C13—C120.9 (3)
C4—C5—C6—C10.7 (3)C7—C8—C13—C12179.58 (17)
C2—C1—C6—N1177.62 (16)O1—C14—C15—C15i69.4 (3)
S1—C1—C6—N12.4 (2)C8—C7—N1—C6177.23 (15)
C2—C1—C6—C51.6 (3)S1—C7—N1—C60.4 (2)
S1—C1—C6—C5178.43 (14)C5—C6—N1—C7179.52 (17)
N1—C7—C8—C98.4 (3)C1—C6—N1—C71.3 (2)
S1—C7—C8—C9168.92 (14)C12—C13—O1—C143.6 (3)
N1—C7—C8—C13172.87 (18)C8—C13—O1—C14176.95 (16)
S1—C7—C8—C139.8 (2)C15—C14—O1—C13179.99 (15)
C13—C8—C9—C100.2 (3)C6—C1—S1—C72.04 (14)
C7—C8—C9—C10179.00 (18)C2—C1—S1—C7177.94 (18)
C8—C9—C10—C110.8 (3)N1—C7—S1—C11.44 (14)
C9—C10—C11—C121.1 (3)C8—C7—S1—C1176.08 (15)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H24N2O2S2
Mr508.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.3251 (13), 4.8992 (3), 17.4954 (17)
β (°) 102.522 (7)
V3)1198.65 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.80 × 0.36 × 0.08
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.442, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
14397, 2339, 1456
Rint0.075
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.069, 0.84
No. of reflections2339
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

The observed 'π···π' interaction distances (Å) for the title compound. top
Cg-Cgidcentroidsdperpendicular
Cg1-Cg2i3.775 (11)3.515
Cg1-Cg3i3.7934 (12)3.59
Cg1, Cg2 and Cg3 are the centroids of atoms S1/N1/C1/C6/C7, (C1–C6) and (C8–C13) rings, respectively. Symmetry code: (i) x, 1+y, z
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDSII diffractometer (purchased under grant No. F.279 of the University Research Fund).

References

First citationChopade, R. S., Bahekar, R. H., Khedekar, P. B., Bhusari, K. P. & Rao, A. R. R. (2002). Arch. Pharm. 335, 381–388.  Web of Science CrossRef CAS Google Scholar
First citationDelmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J. P. (2002). Antimicrob. Agents Chemother. 46, 2588–2594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDi Nunno, L., Franchini, C., Scilimati, A., Sinicropi, M. S. & Tortorella, P. (2000). Tetrahedron Asymmetry, 11, 1571–1583.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGökhan, N., Aktay, G. & Erdoğan, H. (2004). Turk. J. Chem. 28, 123–132.  Google Scholar
First citationKaralı, N., Cesur, N., Gürsoy, A., Ateş, O., Özden, S., Otuk, G. & Birteksöz, S. (2004). Indian J. Chem. B43, 212–216.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. & Bukowska-Strżyzewska, M. (1999). Acta Cryst. C55, 167–169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, H., Alp, H., İlhan, S. & Ziyadanoğulları, B. (2008). J. Coord. Chem. In the press.  Google Scholar
First citationUsman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeinstock, J., Gaitanopoulos, D. E., Stringer, O. D., Franz, R. G., Hieble, J. P., Kinter, L. B., Mann, W. A., Flaim, K. E. & Gessner, G. (1987). J. Med. Chem. 30, 1166–1176.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds