metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m353-m354

Di­chlorido{2-hy­droxy­imino-N′-[1-(2-pyrid­yl)ethyl­­idene]propanohydrazide-κ3N,N′,O}zinc(II) hemihydrate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
*Correspondence e-mail: ysmoroz@yahoo.com

(Received 21 November 2007; accepted 4 December 2007; online 16 January 2008)

The title compound, [ZnCl2(C10H12N4O2)]·0.5H2O, was readily prepared by the reaction between ZnCl2 and 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazide. The Zn atom has a distorted trigonal–bipyramidal geometry with two Cl atoms and one azomethine N atom in the equatorial plane and one pyridine N atom and one amide O atom in the axial positions. In the crystal structure, complex mol­ecules are connected in pairs by N—H⋯Cl hydrogen bonds, formed between the amide NH of one mol­ecule and the Cl atom of a neighboring one. Mol­ecular pairs are connected by hydrogen bonds involving the uncoordinated water mol­ecule, which lies on a twofold axis.

Related literature

For details of the structure and biological activity of zinc(II) complexes, see: Canary et al. (1998[Canary, J. W., Allen, C. S., Castagnetto, J. M., Chiu, Y. H., Toscano, P. J. & Wang, Y. H. (1998). Inorg. Chem. 37, 6255-6262.]); Comba et al. (2002[Comba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). Chem. Eur. J. 8, 5750-5760.]); Kasuga et al. (2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]); Panosyan et al. (2003[Panosyan, F. B., Lough, A. J. & Chin, J. (2003). Acta Cryst. E59, m827-m829.]); Rodriuez-Argüelles et al. (1995[Rodriuez-Argüelles, M. C., Ferrari, M. B., Fava, G. G., Pelizzi, C., Tarasconi, P., Albertini, R., Dall'Aglio, P. P., Lunghi, P. & Pinelli, S. (1995). J. Inorg. Biochem. 58, 157-175.]); Sousa et al. (2003[Sousa, G. F. de & Deflon, V. M. (2003). Transition Met. Chem. 28, 74-78.]). For the preparation of 2-(oximato)propane­hydrazide, see: Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C10H12N4O2)]·0.5H2O

  • Mr = 365.51

  • Monoclinic, C 2/c

  • a = 14.5666 (8) Å

  • b = 12.9898 (8) Å

  • c = 15.8671 (8) Å

  • β = 109.873 (5)°

  • V = 2823.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 100 (2) K

  • 0.5 × 0.1 × 0.05 mm

Data collection
  • Kuma KM-4 CCD area-detector diffractometer

  • Absorption correction: multi-scan (PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) Tmin = 0.774, Tmax = 0.891

  • 17382 measured reflections

  • 3373 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.070

  • S = 1.21

  • 3373 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.1409 (19)
Zn1—N2 2.1142 (18)
Zn1—O1 2.2348 (16)
Zn1—Cl2 2.2513 (6)
Zn1—Cl3 2.2195 (6)
N2—Zn1—N1 74.71 (7)
N2—Zn1—O1 72.57 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2⋯Cl3i 0.80 (3) 2.59 (3) 3.310 (2) 150 (3)
O1W—H1W⋯Cl2ii 0.81 (3) 2.44 (3) 3.182 (2) 153 (3)
O2—H1⋯O1Wiii 0.88 (3) 1.89 (4) 2.7015 (19) 153 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z+1.

Data collection: KM-4 CCD Software (Kuma, 1999[Kuma (1999). KM-4 CCD Software. Version 1.61. Kuma Diffraction, Wrocław, Poland.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the past few decades mononuclear zinc(II) complexes attract a lot of attention because of their biological and catalytical activity (Kasuga et al., 2003; Panosyan et al., 2003; Rodriuez-Argüelles et al., 1995; Sousa et al., 2003). On the other hand, many zinc mononuclear complexes containing additional vacant donor sets and chelate centers are taken as ligands for building of homo- and heteropolynuclear systems, which are widely used in bioinorganic modeling and catalysis. The properties of the obtained compounds are closely connected with their structure, so the best results one could obtain using well designed ligand systems. We report here the synthesis and structure of a zinc complex, [ZnCl2(C10H12N4O2)].0.5H2O, based on a novel polynucleative ligand 2-(oximato)-N'-(1-(pyridin-2-yl)ethylidene)propanehydrazide (L).

The title compound consists of neutral complex molecules and solvated water molecules (Fig. 1). The Zn atom has a distorted trigonal-bipyramidal geometry, defined by two Cl atoms and one azomethine N atom at the equatorial plane and a pyridine N atom and an amide O atom at the axial positions. The Zn—N, Zn—O and Zn—Cl bond lengths are comparable to previously reported zinc complexes with thiosemicarbasone and semicarbasone derivatives (Kasuga et al., 2003) and with pyridine complexed to the metal ion (Canary et al., 1998; Comba et al., 2002) (Table 1). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. N2—Zn1—O1 = 72.57 (6)°, N2—Zn1—N1 = 74.71 (7)°], that is a consequence of the formation of two almost flat five-membered chelate rings. In the crystal packing, the molecules are connected in pairs by N—H···Cl hydrogen bonds (Fig. 2), where the protonated amide group from one molecule acts as a donor and the Cl atom from the neighboring molecule as an acceptor (Table 2). The weak π-stacking interaction is observed between the pyridine ring and oximic group. The molecular pairs are connected to each other by hydrogen bonds involving the solvated water molecules, resulting in an extensive three-dimensional system (Fig. 3).

Related literature top

For details of the structure and biological activity of zinc(II) complexes, see: Canary et al. (1998); Comba et al. (2002); Kasuga et al. (2003); Panosyan et al. (2003); Rodriuez-Argüelles et al. (1995); Sousa et al. (2003). For thepreparation of 2-(oximato)propanehydrazide, see: Fritsky et al. (1998).

Experimental top

2-(Oximato)-N'-(1-(pyridin-2-yl)ethylidene)propanehydrazide (L) was prepared according to early reported method (Fritsky et al., 1998). 2-Acetylpyridine (1.2 ml, 0.0107 mol) was added to a stirred warm ethanol/water solution (20 ml) of 2-(oximato)propanehydrazide (1.17 g, 0.01 mol). After stirring at 333 k for 6 h, the solution was cooled and a white precipitate was formed immediately. It was filtered off, washed with water and acetone and dried under vacuum (yield 72%, 1.59 g). 1H NMR, 400.13 MHz, (DMSO-d6): 12.118 (s, 1H, N—OH), 10.242 (s, 1H, NH), 8.608 (dt, 1H, py-6, J6,5 = 4.8 Hz, J6,4 = 1.8 Hz), 8.066 (d, 1H, py-3, J3,4 = 7.8 Hz), 7.861 (td, 1H, py-4, J4,5,3 = 7.8 Hz, J4,6 = 1.8 Hz), 7.415 (ddd, 1H, py-5, J5,6 = 4.8 Hz, J5,4 = 7.8 Hz, J = 1.2 Hz), 2.376 (s, 3H, CH3(py)), 1.985(s, 3H, CH3). IR (KBr, cm-1): 1660 (COamid), 1030 (NOoxim), 3340 (NHas). Analysis calculated for C10H12N4O2: C 54.54, H 5.49, N 25.44%; found: C 54.41, H 5.62, N 25.42%.

Zinc(II) chloride (0.014 g, 0.1 mmol) in H2O (5 ml) was added to 10 ml of hot methanol solution of L (0.022 g, 0.1 mmol). The solution was left for slow evaporation at room temperature. After 5 days cubic crystals of the title compound suitable for X-ray analysis were obtained.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (CH) and 0.96Å (CH3), and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl group. H atoms on N and O atoms were located from a difference Fourier map and were refined isotropically.

Computing details top

Data collection: KM-4 CCD Software (Kuma, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level. Water molecule is not shown.
[Figure 2] Fig. 2. A view of a pair of the complex molecules. Displacement ellipsoids are shown at the 40% probability level. Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. A packing diagram of the title compound along the b-axis direction. Hydrogen bonds are indicated by dashed lines. H atoms have been omitted for clarity.
Dichlorido[2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazide- κ3N,N',O]zinc(II) monohydrate top
Crystal data top
[ZnCl2(C10H12N4O2)]·0.5H2OF(000) = 1480
Mr = 365.51Dx = 1.720 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3373 reflections
a = 14.5666 (8) Åθ = 3.1–28.5°
b = 12.9898 (8) ŵ = 2.13 mm1
c = 15.8671 (8) ÅT = 100 K
β = 109.873 (5)°Cubic, yellow
V = 2823.5 (3) Å30.5 × 0.1 × 0.05 mm
Z = 8
Data collection top
Kum KM4 CCD area-detector
diffractometer
3373 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 28.5°, θmin = 3.1°
Absorption correction: multi-scan
(PLATON; Spek, 2003)
h = 1919
Tmin = 0.774, Tmax = 0.891k = 1616
17382 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0282P)2 + 3.185P]
where P = (Fo2 + 2Fc2)/3
3373 reflections(Δ/σ)max = 0.002
191 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[ZnCl2(C10H12N4O2)]·0.5H2OV = 2823.5 (3) Å3
Mr = 365.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.5666 (8) ŵ = 2.13 mm1
b = 12.9898 (8) ÅT = 100 K
c = 15.8671 (8) Å0.5 × 0.1 × 0.05 mm
β = 109.873 (5)°
Data collection top
Kum KM4 CCD area-detector
diffractometer
3373 independent reflections
Absorption correction: multi-scan
(PLATON; Spek, 2003)
3069 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.891Rint = 0.043
17382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.45 e Å3
3373 reflectionsΔρmin = 0.37 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8446 (2)0.45584 (19)0.90460 (16)0.0300 (6)
H1A0.88490.39580.92250.045*
H1B0.85000.48270.85010.045*
H1C0.77780.43780.89490.045*
C20.87720 (17)0.53560 (17)0.97658 (14)0.0155 (4)
C30.86291 (17)0.64543 (17)0.95017 (14)0.0149 (4)
C40.89866 (16)0.89516 (17)1.03894 (14)0.0127 (4)
C50.96032 (18)0.89213 (18)1.13564 (14)0.0187 (5)
H5A0.99370.82721.14900.028*
H5B0.91970.90031.17180.028*
H5C1.00730.94691.14830.028*
C60.86661 (16)0.99579 (17)0.99301 (14)0.0124 (4)
C70.89136 (17)1.08943 (18)1.03628 (15)0.0163 (5)
H70.92931.09211.09670.020*
C80.85855 (19)1.17985 (18)0.98807 (16)0.0194 (5)
H80.87451.24371.01570.023*
C90.80194 (19)1.17314 (18)0.89857 (16)0.0203 (5)
H90.77881.23230.86500.024*
C100.78027 (17)1.07659 (18)0.85973 (15)0.0181 (5)
H100.74241.07220.79940.022*
N10.81153 (14)0.98950 (15)0.90538 (12)0.0140 (4)
N20.86837 (14)0.81687 (14)0.98712 (12)0.0127 (4)
N30.88998 (14)0.71758 (14)1.01651 (13)0.0144 (4)
N40.91703 (14)0.51964 (14)1.06044 (12)0.0161 (4)
O10.82753 (14)0.67055 (12)0.87067 (10)0.0213 (4)
O20.92836 (13)0.41557 (13)1.08008 (11)0.0211 (4)
Cl20.88241 (4)0.85938 (4)0.75864 (3)0.01726 (13)
Cl30.63307 (4)0.81753 (5)0.78506 (4)0.01874 (13)
Zn10.793127 (19)0.838156 (19)0.848619 (16)0.01239 (8)
H10.954 (3)0.413 (3)1.139 (2)0.048 (10)*
O1W0.00000.34448 (19)0.25000.0206 (5)
H1W0.045 (2)0.308 (3)0.250 (2)0.048 (11)*
H20.905 (2)0.699 (2)1.068 (2)0.024 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0471 (17)0.0123 (12)0.0180 (12)0.0014 (11)0.0052 (11)0.0005 (9)
C20.0178 (11)0.0114 (11)0.0162 (11)0.0004 (9)0.0045 (9)0.0004 (8)
C30.0163 (11)0.0135 (11)0.0150 (10)0.0008 (9)0.0054 (9)0.0011 (8)
C40.0134 (11)0.0124 (11)0.0129 (10)0.0022 (8)0.0054 (8)0.0001 (8)
C50.0235 (13)0.0145 (12)0.0138 (10)0.0020 (9)0.0005 (9)0.0002 (9)
C60.0122 (10)0.0130 (11)0.0135 (10)0.0006 (8)0.0063 (8)0.0016 (8)
C70.0181 (12)0.0163 (11)0.0141 (10)0.0019 (9)0.0050 (9)0.0016 (8)
C80.0256 (13)0.0108 (11)0.0220 (12)0.0017 (9)0.0086 (10)0.0027 (9)
C90.0243 (13)0.0140 (12)0.0211 (12)0.0019 (9)0.0058 (10)0.0033 (9)
C100.0196 (12)0.0179 (12)0.0152 (11)0.0031 (9)0.0039 (9)0.0019 (9)
N10.0153 (9)0.0132 (9)0.0130 (9)0.0003 (7)0.0042 (7)0.0008 (7)
N20.0150 (9)0.0103 (9)0.0130 (9)0.0011 (7)0.0051 (7)0.0016 (7)
N30.0202 (10)0.0115 (9)0.0097 (9)0.0001 (8)0.0028 (8)0.0021 (7)
N40.0208 (10)0.0103 (9)0.0169 (9)0.0011 (8)0.0062 (8)0.0019 (7)
O10.0333 (10)0.0136 (8)0.0122 (7)0.0026 (7)0.0015 (7)0.0002 (6)
O20.0322 (10)0.0126 (8)0.0164 (8)0.0014 (7)0.0054 (7)0.0043 (6)
Cl20.0152 (3)0.0210 (3)0.0172 (3)0.0004 (2)0.0076 (2)0.0007 (2)
Cl30.0154 (3)0.0255 (3)0.0158 (3)0.0057 (2)0.0059 (2)0.0026 (2)
Zn10.01436 (14)0.01195 (13)0.01015 (12)0.00066 (10)0.00323 (9)0.00064 (9)
O1W0.0272 (14)0.0137 (12)0.0202 (12)0.0000.0070 (11)0.000
Geometric parameters (Å, º) top
C1—C21.495 (3)C7—H70.9300
C1—H1A0.9600C8—C91.381 (3)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.386 (3)
C2—N41.275 (3)C9—H90.9300
C2—C31.482 (3)C10—N11.337 (3)
C3—O11.233 (3)C10—H100.9300
C3—N31.364 (3)Zn1—N12.1409 (19)
C4—N21.288 (3)N2—N31.371 (3)
C4—C51.492 (3)Zn1—N22.1142 (18)
C4—C61.492 (3)N3—H20.80 (3)
C5—H5A0.9600N4—O21.384 (2)
C5—H5B0.9600Zn1—O12.2348 (16)
C5—H5C0.9600O2—H10.88 (3)
C6—N11.351 (3)Zn1—Cl22.2513 (6)
C6—C71.383 (3)Zn1—Cl32.2195 (6)
C7—C81.394 (3)O1W—H1W0.81 (3)
C2—C1—H1A109.5C7—C8—H8120.5
C2—C1—H1B109.5C8—C9—C10118.7 (2)
H1A—C1—H1B109.5C8—C9—H9120.6
C2—C1—H1C109.5C10—C9—H9120.6
H1A—C1—H1C109.5N1—C10—C9122.7 (2)
H1B—C1—H1C109.5N1—C10—H10118.6
N4—C2—C3115.0 (2)C9—C10—H10118.6
N4—C2—C1126.8 (2)C10—N1—C6118.69 (19)
C3—C2—C1118.27 (19)C10—N1—Zn1125.33 (15)
O1—C3—N3121.2 (2)C6—N1—Zn1115.73 (15)
O1—C3—C2120.9 (2)C4—N2—N3122.44 (18)
N3—C3—C2117.88 (19)C4—N2—Zn1120.30 (15)
N2—C4—C5126.3 (2)N3—N2—Zn1117.03 (13)
N2—C4—C6113.42 (18)C3—N3—N2114.28 (18)
C5—C4—C6120.29 (19)C3—N3—H2119 (2)
C4—C5—H5A109.5N2—N3—H2125 (2)
C4—C5—H5B109.5C2—N4—O2111.77 (18)
H5A—C5—H5B109.5C3—O1—Zn1114.29 (14)
C4—C5—H5C109.5N4—O2—H1104 (2)
H5A—C5—H5C109.5N2—Zn1—N174.71 (7)
H5B—C5—H5C109.5N2—Zn1—Cl3123.36 (5)
N1—C6—C7121.8 (2)N1—Zn1—Cl3105.30 (5)
N1—C6—C4115.30 (19)N2—Zn1—O172.57 (6)
C7—C6—C4122.86 (19)N1—Zn1—O1147.07 (6)
C6—C7—C8119.1 (2)Cl3—Zn1—O195.66 (5)
C6—C7—H7120.5N2—Zn1—Cl2117.91 (5)
C8—C7—H7120.5N1—Zn1—Cl297.91 (5)
C9—C8—C7119.0 (2)Cl3—Zn1—Cl2118.08 (2)
C9—C8—H8120.5O1—Zn1—Cl294.10 (5)
N4—C2—C3—O1178.0 (2)Zn1—N2—N3—C32.7 (2)
C1—C2—C3—O12.0 (4)C3—C2—N4—O2179.79 (19)
N4—C2—C3—N32.1 (3)C1—C2—N4—O20.2 (4)
C1—C2—C3—N3177.9 (2)N3—C3—O1—Zn18.3 (3)
N2—C4—C6—N10.0 (3)C2—C3—O1—Zn1171.56 (16)
C5—C4—C6—N1179.6 (2)C4—N2—Zn1—N16.55 (17)
N2—C4—C6—C7179.8 (2)N3—N2—Zn1—N1178.85 (17)
C5—C4—C6—C70.1 (3)C4—N2—Zn1—Cl3105.03 (17)
N1—C6—C7—C80.0 (3)N3—N2—Zn1—Cl380.36 (16)
C4—C6—C7—C8179.7 (2)C4—N2—Zn1—O1169.73 (19)
C6—C7—C8—C90.3 (4)N3—N2—Zn1—O14.88 (15)
C7—C8—C9—C100.4 (4)C4—N2—Zn1—Cl284.41 (17)
C8—C9—C10—N10.3 (4)N3—N2—Zn1—Cl290.20 (15)
C9—C10—N1—C60.1 (3)C10—N1—Zn1—N2179.8 (2)
C9—C10—N1—Zn1173.99 (18)C6—N1—Zn1—N26.09 (15)
C7—C6—N1—C100.1 (3)C10—N1—Zn1—Cl358.74 (19)
C4—C6—N1—C10179.9 (2)C6—N1—Zn1—Cl3127.17 (14)
C7—C6—N1—Zn1174.42 (17)C10—N1—Zn1—O1173.63 (16)
C4—C6—N1—Zn15.4 (2)C6—N1—Zn1—O10.5 (2)
C5—C4—N2—N30.4 (3)C10—N1—Zn1—Cl263.31 (19)
C6—C4—N2—N3179.97 (19)C6—N1—Zn1—Cl2110.78 (15)
C5—C4—N2—Zn1173.95 (18)C3—O1—Zn1—N26.96 (17)
C6—C4—N2—Zn15.7 (3)C3—O1—Zn1—N113.6 (2)
O1—C3—N3—N24.1 (3)C3—O1—Zn1—Cl3116.27 (17)
C2—C3—N3—N2175.80 (19)C3—O1—Zn1—Cl2124.96 (17)
C4—N2—N3—C3171.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2···Cl3i0.80 (3)2.59 (3)3.310 (2)150 (3)
O1W—H1W···Cl2ii0.81 (3)2.44 (3)3.182 (2)153 (3)
O2—H1···O1Wiii0.88 (3)1.89 (4)2.7015 (19)153 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C10H12N4O2)]·0.5H2O
Mr365.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)14.5666 (8), 12.9898 (8), 15.8671 (8)
β (°) 109.873 (5)
V3)2823.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.5 × 0.1 × 0.05
Data collection
DiffractometerKum KM4 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(PLATON; Spek, 2003)
Tmin, Tmax0.774, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
17382, 3373, 3069
Rint0.043
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.070, 1.21
No. of reflections3373
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.37

Computer programs: KM-4 CCD Software (Kuma, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N12.1409 (19)Zn1—Cl22.2513 (6)
Zn1—N22.1142 (18)Zn1—Cl32.2195 (6)
Zn1—O12.2348 (16)
N2—Zn1—N174.71 (7)N2—Zn1—O172.57 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2···Cl3i0.80 (3)2.59 (3)3.310 (2)150 (3)
O1W—H1W···Cl2ii0.81 (3)2.44 (3)3.182 (2)153 (3)
O2—H1···O1Wiii0.88 (3)1.89 (4)2.7015 (19)153 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to NATO for financial support (grant CBP. NUKR. CLG 982019).

References

First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanary, J. W., Allen, C. S., Castagnetto, J. M., Chiu, Y. H., Toscano, P. J. & Wang, Y. H. (1998). Inorg. Chem. 37, 6255–6262.  Web of Science CSD CrossRef CAS Google Scholar
First citationComba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). Chem. Eur. J. 8, 5750–5760.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationKasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKuma (1999). KM-4 CCD Software. Version 1.61. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationPanosyan, F. B., Lough, A. J. & Chin, J. (2003). Acta Cryst. E59, m827–m829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodriuez-Argüelles, M. C., Ferrari, M. B., Fava, G. G., Pelizzi, C., Tarasconi, P., Albertini, R., Dall'Aglio, P. P., Lunghi, P. & Pinelli, S. (1995). J. Inorg. Biochem. 58, 157–175.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSousa, G. F. de & Deflon, V. M. (2003). Transition Met. Chem. 28, 74–78.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m353-m354
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds