metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(5-chloro­pyrimidin-2-yl-κN)pyri­dine-κN](2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)ruthenium(II) bis­­(hexa­fluoridophosphate) aceto­nitrile disolvate

aDépartement de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: garry.hanan@umontreal.ca

(Received 22 November 2007; accepted 28 December 2007; online 9 January 2008)

In the title compound, [Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2CH3CN, the RuII atom is coordinated in a distorted octa­hedral geometry by a tridentate 2,2′:6′,2′′-terpyridine ligand and a tridentate 2,6-bis­(5-chloro­pyrimidin-2-yl)pyridine ligand. Least-squares mean-plane distortions of only 1.72 (2) and 2.91 (2)° of the pyrimidyl rings with respect to the central pyridine are observed for the bis­(pyrimid­yl)pyridine-based tridentate ligand, while the distal pyridyl rings of terpyridine twist by 13.43 (7) and 4.68 (9)° away from the central pyridine ring.

Related literature

For related literature, see: Fang et al. (2002[Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R. & Campagna, S. (2002). J. Am. Chem. Soc. 124, 7912-7913.]); Groen et al. (1998[Groen, J. H., van Leeuwen, P. W. N. M. & Vrieze, K. (1998). Dalton Trans. pp. 113-117.]); Medlycott & Hanan (2005[Medlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev. 34, 133-142.]); Polson et al. (2004[Polson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). Chem. Eur. J. 10, 3640-3648.]); Pyo et al. (1999[Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem. 38, 3337-3343.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3N

  • Mr = 1010.52

  • Orthorhombic, F d d 2

  • a = 16.3846 (2) Å

  • b = 62.8985 (8) Å

  • c = 14.5581 (2) Å

  • V = 15003.1 (3) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 6.43 mm−1

  • T = 100 (2) K

  • 0.48 × 0.25 × 0.07 mm

Data collection
  • Bruker SMART 2K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.190, Tmax = 0.640

  • 45518 measured reflections

  • 7327 independent reflections

  • 7121 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.072

  • S = 1.08

  • 7327 reflections

  • 534 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3439 Friedel pairs

  • Flack parameter: 0.052 (5)

Table 1
Selected geometric parameters (Å, °)

Ru1—N1 2.088 (2)
Ru1—N3 1.980 (2)
Ru1—N4 2.069 (2)
Ru1—N6 2.083 (3)
Ru1—N7 2.000 (2)
Ru1—N8 2.068 (3)
N3—Ru1—N7 175.35 (9)
N3—Ru1—N8 100.81 (12)
N7—Ru1—N8 78.90 (12)
N3—Ru1—N4 79.37 (9)
N7—Ru1—N4 96.00 (9)
N8—Ru1—N4 92.69 (10)
N3—Ru1—N6 101.62 (11)
N7—Ru1—N6 78.75 (11)
N8—Ru1—N6 157.58 (9)
N4—Ru1—N6 91.4 (1)
N3—Ru1—N1 79.51 (9)
N7—Ru1—N1 105.12 (9)
N8—Ru1—N1 90.79 (10)
N4—Ru1—N1 158.87 (9)
N6—Ru1—N1 93.3 (1)

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.06). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.06). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: UdMX (local program) and Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Ruthenium(II) complexes of tridentate polypyridine ligands have gained much attention in the last few decades due to their interesting photophysical properties. There have been many attempts to try and improve the photophysical properties of these complexes both in the ground state and excited states (Medlycott & Hanan, 2005). Manipulation of the electronic properties of the coordinated ligands can result in an improvement of the photophysical properties of the complex. We have previously employed this strategy by using electron-deficient trazine-based tridenate ligands (Polson et al., 2004) to lower the energy of the 3MLCT emitting state. Herein, we employ a functionalized bis(pyrimidin-2-yl)pyridine tridentate ligand for the synthesis of a ruthenium(II) complex in order to manipulate the energy of the 3MLCT emitting state. A structurally similar ligand, namely bis(pyrimidin-2-yl)pyridine, has previously been employed for the synthesis of palladium(II) complexes in order to study the dynamic behviour of such complexes in solution (Groen et al., 1998). However, the electronic behaviour and solid state structures of these systems were not reported.

The title compound crystalizes in the orthorhombic space group Fdd2 with one complex cation, two PF6- anions and two acetonitrile molecules in the asymmetric unit. The complex possesses octahedral geometry with significant distortions due to the tridentate nature of the coordinating ligands as previously observed in the parent complex [Ru(tpy)2]2+ (tpy = 2,2':6',2"-terpyridine) (Pyo et al., 1999). Small variations in the Ru—N bond distances are observed between the two coordinated ligands indicating minimal changes in the electronic (solid state) ground-state properties of the complex compared to [Ru(tpy)2]2+ (Pyo et al., 1999). Similarly, small changes are observed in the N,N,N-tridentate bite angles on the pyrimidyl-substituted ligand 158.87 (9)° compared to the coordinated tpy, 157.58 (9)°, indicating that introducing a pyrimidyl ring has minimal steric effects on the ligand field of the complex.

Comparison of the planarity of the two coordinated ligands in the title compound shows us that the bis(pyrimidin-2-yl)pyridine-based ligand lies planar. Least-square mean plane distortions of only 1.72 (2)° and 2.91 (2)° of the pyrimidyl rings with respect to the central pyridine are observed. However, the distal pyridyl-rings of terpyridine twist by 13.43 (7)° and 4.68 (9)° away from the central pyridine ring. This difference may be explained on considering the uncoordinated pyrimidyl-N atoms forming favourable intramolecular C–H···N interactions with the central pyridine ring. This coplanar effect has previously been shown to dramatically enhance the photophysical properties of such complexes (Fang et al., 2002).

We are currently investigating the consequences of pyrimidyl substitution of tridentate-tpy based ligands on the photophysical properties of their ruthenium(II) complexes.

Related literature top

For related literature, see: Fang et al. (2002); Groen et al. (1998); Medlycott & Hanan (2005); Polson et al. (2004); Pyo et al. (1999); Spek (2003).

Experimental top

The title compound was synthesized following previously established procedures (Polson et al.,2004).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for the ligands and with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for the methyl group of acetonitrile. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: UdMX (local program).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The PF6- counter anions, H atoms and acetonitrile solvent molecules have been omitted for clarity.
[2,6-Bis(5-chloropyrimidin-2-yl)pyridine-κ3N1,N2,N6](2,2':6',2''- terpyridine-κ3N,N',N'')ruthenium(II) bis(hexafluoridophosphate) acetonitrile disolvate top
Crystal data top
[Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3NF(000) = 8032
Mr = 1010.52Dx = 1.789 Mg m3
Orthorhombic, Fdd2Cu Kα radiation, λ = 1.54178 Å
Hall symbol: F 2 -2dCell parameters from 7885 reflections
a = 16.3846 (2) Åθ = 2.8–72.9°
b = 62.8985 (8) ŵ = 6.44 mm1
c = 14.5581 (2) ÅT = 100 K
V = 15003.1 (3) Å3Block, red
Z = 160.48 × 0.25 × 0.07 mm
Data collection top
Bruker SMART 2K
diffractometer
7327 independent reflections
Radiation source: X-ray Sealed Tube7121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 73.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1918
Tmin = 0.190, Tmax = 0.640k = 7777
45518 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0495P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
7327 reflectionsΔρmax = 0.71 e Å3
534 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 3439 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.052 (5)
Crystal data top
[Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3NV = 15003.1 (3) Å3
Mr = 1010.52Z = 16
Orthorhombic, Fdd2Cu Kα radiation
a = 16.3846 (2) ŵ = 6.44 mm1
b = 62.8985 (8) ÅT = 100 K
c = 14.5581 (2) Å0.48 × 0.25 × 0.07 mm
Data collection top
Bruker SMART 2K
diffractometer
7327 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7121 reflections with I > 2σ(I)
Tmin = 0.190, Tmax = 0.640Rint = 0.053
45518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.71 e Å3
S = 1.08Δρmin = 0.38 e Å3
7327 reflectionsAbsolute structure: Flack (1983), 3439 Friedel pairs
534 parametersAbsolute structure parameter: 0.052 (5)
1 restraint
Special details top

Experimental. X-ray crystallographic data for the title compound were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.290100 (12)0.172144 (3)0.184589 (14)0.01338 (6)
N10.16426 (13)0.16743 (3)0.17514 (17)0.0127 (5)
N20.06878 (15)0.13822 (4)0.16488 (17)0.0192 (5)
N30.28547 (14)0.14071 (3)0.1797 (2)0.0158 (4)
N40.41289 (14)0.16477 (4)0.19327 (18)0.0162 (5)
N50.50172 (15)0.13428 (4)0.19511 (18)0.0185 (5)
N60.30146 (14)0.17985 (4)0.04606 (19)0.0161 (5)
N70.30453 (13)0.20369 (3)0.1912 (2)0.0171 (5)
N80.28073 (15)0.17725 (4)0.32451 (18)0.0164 (5)
Cl10.05599 (5)0.191627 (12)0.18178 (7)0.03047 (17)
Cl20.63956 (5)0.185785 (12)0.20297 (6)0.02663 (17)
C10.10321 (18)0.18085 (4)0.1752 (2)0.0187 (6)
H10.11390.19570.17640.022*
C20.02315 (19)0.17372 (5)0.1736 (2)0.0216 (6)
C30.00786 (18)0.15218 (5)0.1673 (2)0.0205 (6)
H30.04690.14730.16480.025*
C40.14379 (17)0.14580 (4)0.1707 (2)0.0161 (6)
C50.21284 (17)0.13084 (4)0.1747 (2)0.0166 (6)
C60.20777 (17)0.10876 (4)0.1748 (2)0.0179 (6)
H60.15630.10180.17230.021*
C70.27997 (18)0.09704 (4)0.1786 (2)0.0195 (6)
H70.27820.08190.17920.023*
C80.35412 (17)0.10751 (4)0.1814 (2)0.0184 (5)
H80.40360.09960.18160.022*
C90.35616 (16)0.12949 (4)0.1840 (2)0.0157 (5)
C100.42780 (17)0.14324 (4)0.1912 (2)0.0155 (5)
C110.56623 (19)0.14731 (5)0.1980 (2)0.0194 (6)
H110.61970.14150.19910.023*
C120.55631 (19)0.16922 (5)0.1993 (2)0.0195 (6)
C130.47850 (17)0.17753 (5)0.1987 (2)0.0175 (6)
H130.47110.19250.20220.021*
C210.30071 (18)0.16651 (5)0.0258 (2)0.0195 (6)
H210.29850.15160.01470.023*
C220.3031 (2)0.17365 (5)0.1157 (2)0.0246 (7)
H220.30320.16380.16510.029*
C230.3053 (2)0.19512 (6)0.1327 (2)0.0264 (7)
H230.30350.20030.19390.032*
C240.31023 (19)0.20912 (5)0.0588 (3)0.0236 (6)
H240.31440.22400.06900.028*
C250.30901 (18)0.20109 (5)0.0297 (2)0.0176 (6)
C260.31643 (18)0.21439 (5)0.1127 (2)0.0181 (6)
C270.3406 (2)0.23558 (5)0.1156 (2)0.0229 (7)
H270.34900.24340.06060.028*
C280.3523 (2)0.24505 (5)0.2008 (2)0.0283 (7)
H280.36900.25950.20400.034*
C290.3398 (2)0.23369 (5)0.2810 (2)0.0246 (7)
H290.34810.24020.33920.030*
C300.31470 (19)0.21252 (5)0.2749 (2)0.0193 (6)
C310.29853 (18)0.19766 (5)0.3507 (2)0.0191 (6)
C320.3001 (2)0.20342 (5)0.4418 (3)0.0257 (7)
H320.31490.21750.45910.031*
C330.2797 (2)0.18839 (6)0.5089 (2)0.0262 (7)
H330.28060.19220.57210.031*
C340.25841 (19)0.16815 (6)0.4826 (2)0.0241 (7)
H340.24300.15780.52700.029*
C350.25996 (19)0.16315 (5)0.3895 (2)0.0202 (6)
H350.24570.14910.37120.024*
P10.53369 (4)0.138455 (11)0.06986 (7)0.01995 (15)
F110.55805 (15)0.15979 (3)0.12300 (15)0.0394 (5)
F120.47251 (14)0.15156 (4)0.00468 (16)0.0489 (6)
F130.60507 (12)0.14221 (4)0.00174 (15)0.0395 (5)
F140.59497 (16)0.12565 (4)0.13491 (16)0.0478 (6)
F150.46190 (13)0.13468 (4)0.14174 (17)0.0456 (6)
F160.50911 (17)0.11725 (4)0.01669 (18)0.0514 (7)
P20.55212 (6)0.220273 (12)0.44248 (8)0.02989 (19)
F210.62202 (18)0.23668 (4)0.41314 (18)0.0620 (8)
F220.61423 (13)0.20103 (4)0.4277 (2)0.0494 (6)
F230.52253 (16)0.21836 (4)0.33806 (17)0.0481 (6)
F240.4896 (2)0.23943 (4)0.45789 (19)0.0691 (9)
F250.57961 (18)0.22231 (4)0.54775 (16)0.0499 (6)
F260.48287 (14)0.20363 (4)0.47239 (17)0.0412 (5)
C410.5921 (3)0.24842 (7)0.1749 (4)0.0671 (15)
H41A0.56720.24850.23620.101*
H41B0.61250.23410.16130.101*
H41C0.55110.25240.12910.101*
C420.6591 (3)0.26342 (6)0.1723 (3)0.0385 (9)
N430.7112 (2)0.27540 (5)0.1708 (3)0.0412 (9)
C510.5307 (3)0.20455 (7)0.0195 (3)0.0445 (10)
H51A0.56800.20050.03020.067*
H51B0.49510.19250.03410.067*
H51C0.49740.21670.00000.067*
C520.5776 (2)0.21037 (5)0.1004 (3)0.0301 (8)
N530.6152 (2)0.21498 (5)0.1637 (2)0.0403 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01374 (10)0.00810 (9)0.01831 (10)0.00004 (7)0.00117 (8)0.00034 (9)
N10.0076 (10)0.0176 (11)0.0129 (12)0.0043 (8)0.0006 (9)0.0052 (10)
N20.0179 (13)0.0198 (12)0.0198 (14)0.0043 (10)0.0001 (10)0.0000 (10)
N30.0191 (11)0.0120 (10)0.0164 (11)0.0004 (8)0.0004 (10)0.0014 (12)
N40.0171 (12)0.0150 (11)0.0167 (12)0.0012 (8)0.0020 (11)0.0005 (11)
N50.0189 (12)0.0146 (11)0.0220 (13)0.0035 (8)0.0033 (11)0.0011 (10)
N60.0139 (12)0.0110 (12)0.0233 (14)0.0003 (9)0.0007 (10)0.0012 (10)
N70.0165 (12)0.0104 (10)0.0243 (13)0.0007 (8)0.0028 (12)0.0009 (11)
N80.0151 (12)0.0151 (12)0.0191 (13)0.0002 (9)0.0001 (9)0.0003 (10)
Cl10.0194 (3)0.0265 (4)0.0456 (5)0.0084 (3)0.0040 (4)0.0037 (4)
Cl20.0186 (4)0.0253 (4)0.0360 (5)0.0046 (3)0.0018 (3)0.0041 (3)
C10.0202 (14)0.0153 (12)0.0205 (15)0.0006 (10)0.0014 (13)0.0026 (11)
C20.0188 (13)0.0230 (14)0.0230 (18)0.0043 (11)0.0024 (13)0.0019 (13)
C30.0134 (14)0.0280 (15)0.0200 (16)0.0011 (11)0.0002 (11)0.0008 (12)
C40.0182 (14)0.0148 (12)0.0153 (15)0.0016 (10)0.0032 (11)0.0023 (11)
C50.0199 (13)0.0148 (12)0.0150 (15)0.0041 (10)0.0014 (11)0.0004 (12)
C60.0207 (13)0.0128 (12)0.0202 (16)0.0050 (10)0.0020 (12)0.0008 (12)
C70.0275 (15)0.0089 (11)0.0220 (15)0.0012 (10)0.0001 (13)0.0009 (13)
C80.0240 (14)0.0129 (12)0.0183 (13)0.0039 (10)0.0012 (14)0.0025 (12)
C90.0181 (13)0.0120 (12)0.0171 (13)0.0008 (9)0.0015 (13)0.0015 (12)
C100.0179 (13)0.0139 (12)0.0146 (13)0.0043 (9)0.0001 (12)0.0011 (12)
C110.0167 (14)0.0236 (14)0.0178 (15)0.0030 (11)0.0007 (12)0.0019 (12)
C120.0185 (14)0.0202 (14)0.0197 (18)0.0038 (11)0.0021 (12)0.0029 (12)
C130.0176 (14)0.0164 (13)0.0184 (15)0.0020 (10)0.0035 (12)0.0011 (11)
C210.0166 (15)0.0147 (14)0.0272 (16)0.0008 (11)0.0005 (12)0.0031 (12)
C220.0254 (17)0.0258 (17)0.0225 (17)0.0011 (13)0.0016 (13)0.0064 (13)
C230.0259 (17)0.0316 (19)0.0218 (16)0.0009 (14)0.0022 (13)0.0042 (14)
C240.0235 (15)0.0196 (14)0.0277 (17)0.0016 (11)0.0048 (15)0.0047 (14)
C250.0160 (14)0.0130 (14)0.0237 (15)0.0031 (11)0.0010 (12)0.0025 (12)
C260.0148 (14)0.0148 (14)0.0247 (16)0.0009 (11)0.0005 (12)0.0013 (12)
C270.0269 (16)0.0126 (14)0.0293 (17)0.0019 (12)0.0033 (13)0.0021 (12)
C280.0359 (19)0.0136 (14)0.035 (2)0.0055 (12)0.0036 (15)0.0036 (13)
C290.0305 (17)0.0147 (14)0.0287 (17)0.0020 (12)0.0007 (14)0.0057 (12)
C300.0168 (15)0.0174 (15)0.0237 (16)0.0009 (11)0.0008 (12)0.0040 (12)
C310.0157 (15)0.0159 (15)0.0258 (17)0.0005 (11)0.0024 (12)0.0006 (12)
C320.0273 (16)0.0277 (17)0.0222 (16)0.0046 (12)0.0017 (14)0.0065 (15)
C330.0233 (17)0.034 (2)0.0213 (16)0.0021 (14)0.0001 (13)0.0002 (14)
C340.0149 (16)0.0327 (18)0.0245 (16)0.0007 (13)0.0002 (13)0.0058 (14)
C350.0159 (15)0.0171 (14)0.0277 (16)0.0009 (11)0.0008 (12)0.0045 (12)
P10.0173 (3)0.0206 (3)0.0220 (4)0.0014 (3)0.0014 (3)0.0043 (4)
F110.0604 (15)0.0288 (11)0.0290 (11)0.0096 (10)0.0010 (10)0.0081 (9)
F120.0412 (13)0.0762 (18)0.0295 (12)0.0268 (12)0.0053 (10)0.0076 (12)
F130.0272 (11)0.0636 (15)0.0277 (11)0.0158 (10)0.0083 (9)0.0098 (10)
F140.0543 (15)0.0551 (15)0.0339 (12)0.0287 (12)0.0038 (11)0.0004 (11)
F150.0329 (13)0.0671 (17)0.0369 (13)0.0200 (11)0.0104 (10)0.0106 (12)
F160.0697 (17)0.0369 (13)0.0477 (15)0.0190 (12)0.0112 (13)0.0209 (11)
P20.0418 (5)0.0167 (3)0.0312 (5)0.0054 (3)0.0004 (4)0.0044 (4)
F210.093 (2)0.0467 (14)0.0464 (16)0.0465 (14)0.0020 (14)0.0039 (12)
F220.0305 (11)0.0396 (12)0.0783 (18)0.0016 (9)0.0024 (13)0.0136 (14)
F230.0615 (16)0.0487 (15)0.0342 (12)0.0094 (12)0.0039 (11)0.0094 (11)
F240.116 (3)0.0338 (13)0.0576 (19)0.0370 (15)0.0013 (16)0.0069 (12)
F250.0831 (19)0.0298 (12)0.0367 (13)0.0235 (12)0.0118 (12)0.0036 (10)
F260.0352 (12)0.0343 (12)0.0541 (14)0.0045 (9)0.0122 (10)0.0061 (10)
C410.074 (3)0.048 (3)0.080 (4)0.016 (2)0.032 (3)0.020 (3)
C420.054 (2)0.0251 (17)0.036 (2)0.0097 (16)0.0056 (19)0.0037 (16)
N430.050 (2)0.0265 (15)0.047 (2)0.0066 (14)0.0009 (16)0.0026 (15)
C510.044 (2)0.044 (2)0.045 (2)0.0034 (18)0.0125 (19)0.0020 (19)
C520.0322 (19)0.0219 (16)0.036 (2)0.0064 (13)0.0042 (15)0.0004 (14)
N530.053 (2)0.0313 (17)0.0368 (18)0.0028 (14)0.0104 (16)0.0072 (14)
Geometric parameters (Å, º) top
Ru1—N12.088 (2)C22—H220.95
Ru1—N31.980 (2)C23—C241.393 (5)
Ru1—N42.069 (2)C23—H230.95
Ru1—N62.083 (3)C24—C251.383 (5)
Ru1—N72.000 (2)C24—H240.95
Ru1—N82.068 (3)C25—C261.475 (4)
N1—C11.309 (4)C26—C271.391 (4)
N1—C41.403 (3)C27—C281.389 (5)
N2—C41.321 (4)C27—H270.95
N2—C31.330 (4)C28—C291.384 (5)
N3—C51.344 (4)C28—H280.95
N3—C91.358 (3)C29—C301.396 (4)
N4—C131.344 (4)C29—H290.95
N4—C101.376 (3)C30—C311.471 (4)
N5—C101.337 (3)C31—C321.375 (5)
N5—C111.339 (4)C32—C331.399 (5)
N6—C211.342 (4)C32—H320.95
N6—C251.363 (4)C33—C341.375 (5)
N7—C261.340 (4)C33—H330.95
N7—C301.349 (4)C34—C351.392 (4)
N8—C351.341 (4)C34—H340.95
N8—C311.370 (4)C35—H350.95
Cl1—C21.722 (3)P1—F131.584 (2)
Cl2—C121.717 (3)P1—F151.592 (2)
C1—C21.386 (4)P1—F161.594 (2)
C1—H10.95P1—F141.598 (2)
C2—C31.381 (4)P1—F111.599 (2)
C3—H30.95P1—F121.608 (2)
C4—C51.473 (4)P2—F221.596 (2)
C5—C61.391 (4)P2—F241.598 (3)
C6—C71.395 (4)P2—F211.600 (2)
C6—H60.95P2—F231.600 (3)
C7—C81.382 (4)P2—F251.602 (2)
C7—H70.95P2—F261.604 (2)
C8—C91.383 (4)C41—C421.448 (6)
C8—H80.95C41—H41a0.98
C9—C101.462 (4)C41—H41b0.98
C11—C121.387 (4)C41—H41c0.98
C11—H110.95C42—N431.140 (5)
C12—C131.378 (4)C51—C521.453 (5)
C13—H130.95C51—H51a0.98
C21—C221.383 (5)C51—H51b0.98
C21—H210.95C51—H51c0.98
C22—C231.374 (5)C52—N531.145 (5)
N3—Ru1—N7175.35 (9)C24—C23—H23120.5
N3—Ru1—N8100.81 (12)C25—C24—C23119.2 (3)
N7—Ru1—N878.90 (12)C25—C24—H24120.4
N3—Ru1—N479.37 (9)C23—C24—H24120.4
N7—Ru1—N496.00 (9)N6—C25—C24121.5 (3)
N8—Ru1—N492.69 (10)N6—C25—C26114.8 (3)
N3—Ru1—N6101.62 (11)C24—C25—C26123.7 (3)
N7—Ru1—N678.75 (11)N7—C26—C27119.8 (3)
N8—Ru1—N6157.58 (9)N7—C26—C25113.7 (3)
N4—Ru1—N691.4 (1)C27—C26—C25126.3 (3)
N3—Ru1—N179.51 (9)C28—C27—C26118.5 (3)
N7—Ru1—N1105.12 (9)C28—C27—H27120.7
N8—Ru1—N190.79 (10)C26—C27—H27120.7
N4—Ru1—N1158.87 (9)C29—C28—C27120.7 (3)
N6—Ru1—N193.3 (1)C29—C28—H28119.6
C1—N1—C4116.3 (2)C27—C28—H28119.6
C1—N1—RU1131.55 (19)C28—C29—C30118.8 (3)
C4—N1—RU1112.15 (18)C28—C29—H29120.6
C4—N2—C3117.3 (3)C30—C29—H29120.6
C5—N3—C9121.2 (2)N7—C30—C29119.1 (3)
C5—N3—RU1119.80 (18)N7—C30—C31113.2 (3)
C9—N3—RU1119.00 (18)C29—C30—C31127.7 (3)
C13—N4—C10116.5 (2)N8—C31—C32121.3 (3)
C13—N4—RU1130.4 (2)N8—C31—C30115.1 (3)
C10—N4—RU1113.08 (18)C32—C31—C30123.6 (3)
C10—N5—C11117.3 (2)C31—C32—C33119.4 (3)
C21—N6—C25118.5 (3)C31—C32—H32120.3
C21—N6—RU1127.5 (2)C33—C32—H32120.3
C25—N6—RU1113.9 (2)C34—C33—C32119.5 (3)
C26—N7—C30123.0 (2)C34—C33—H33120.3
C26—N7—RU1118.3 (2)C32—C33—H33120.3
C30—N7—RU1117.8 (2)C33—C34—C35118.4 (3)
C35—N8—C31118.5 (3)C33—C34—H34120.8
C35—N8—RU1127.7 (2)C35—C34—H34120.8
C31—N8—RU1113.8 (2)N8—C35—C34122.9 (3)
N1—C1—C2121.0 (3)N8—C35—H35118.6
N1—C1—H1119.5C34—C35—H35118.6
C2—C1—H1119.5F13—P1—F15179.9 (2)
C3—C2—C1119.3 (3)F13—P1—F1689.53 (13)
C3—C2—CL1120.6 (2)F15—P1—F1690.45 (13)
C1—C2—CL1120.0 (2)F13—P1—F1490.07 (13)
N2—C3—C2120.9 (3)F15—P1—F1489.98 (15)
N2—C3—H3119.6F16—P1—F1491.42 (15)
C2—C3—H3119.6F13—P1—F1190.51 (12)
N2—C4—N1125.1 (3)F15—P1—F1189.51 (13)
N2—C4—C5119.1 (3)F16—P1—F11179.77 (18)
N1—C4—C5115.7 (2)F14—P1—F1188.81 (14)
N3—C5—C6120.9 (3)F13—P1—F1289.74 (14)
N3—C5—C4112.8 (2)F15—P1—F1290.21 (13)
C6—C5—C4126.3 (3)F16—P1—F1289.14 (15)
C5—C6—C7118.5 (3)F14—P1—F12179.41 (16)
C5—C6—H6120.8F11—P1—F1290.63 (14)
C7—C6—H6120.8F22—P2—F24179.57 (19)
C8—C7—C6119.7 (2)F22—P2—F2189.79 (15)
C8—C7—H7120.2F24—P2—F2190.59 (18)
C6—C7—H7120.2F22—P2—F2390.44 (15)
C7—C8—C9119.9 (3)F24—P2—F2389.76 (15)
C7—C8—H8120.1F21—P2—F2390.67 (14)
C9—C8—H8120.1F22—P2—F2590.61 (16)
N3—C9—C8119.8 (2)F24—P2—F2589.19 (15)
N3—C9—C10112.4 (2)F21—P2—F2590.15 (13)
C8—C9—C10127.8 (2)F23—P2—F25178.67 (18)
N5—C10—N4125.1 (3)F22—P2—F2689.60 (12)
N5—C10—C9118.7 (2)F24—P2—F2690.02 (16)
N4—C10—C9116.2 (2)F21—P2—F26179.30 (17)
N5—C11—C12121.1 (3)F23—P2—F2689.68 (13)
N5—C11—H11119.5F25—P2—F2689.51 (14)
C12—C11—H11119.5C42—C41—H41A109.5
C13—C12—C11119.0 (3)C42—C41—H41B109.5
C13—C12—CL2120.3 (2)H41A—C41—H41B109.5
C11—C12—CL2120.7 (2)C42—C41—H41C109.5
N4—C13—C12120.9 (3)H41A—C41—H41C109.5
N4—C13—H13119.5H41B—C41—H41C109.5
C12—C13—H13119.5N43—C42—C41179.1 (5)
N6—C21—C22122.3 (3)C52—C51—H51A109.5
N6—C21—H21118.9C52—C51—H51B109.5
C22—C21—H21118.9H51A—C51—H51B109.5
C23—C22—C21119.4 (3)C52—C51—H51C109.5
C23—C22—H22120.3H51A—C51—H51C109.5
C21—C22—H22120.3H51B—C51—H51C109.5
C22—C23—C24118.9 (3)N53—C52—C51179.4 (5)
C22—C23—H23120.5
N3—RU1—N1—C1178.0 (3)N1—C4—C5—N31.7 (4)
N7—RU1—N1—C11.6 (3)N2—C4—C5—C61.3 (5)
N8—RU1—N1—C177.1 (3)N1—C4—C5—C6177.6 (3)
N4—RU1—N1—C1176.7 (3)N3—C5—C6—C71.1 (5)
N6—RU1—N1—C180.8 (3)C4—C5—C6—C7179.7 (3)
N3—RU1—N1—C40.1 (2)C5—C6—C7—C80.5 (6)
N7—RU1—N1—C4179.5 (2)C6—C7—C8—C92.5 (6)
N8—RU1—N1—C4100.8 (2)C5—N3—C9—C81.3 (5)
N4—RU1—N1—C41.3 (4)RU1—N3—C9—C8179.5 (3)
N6—RU1—N1—C4101.3 (2)C5—N3—C9—C10178.7 (3)
N8—RU1—N3—C587.7 (3)RU1—N3—C9—C100.5 (4)
N4—RU1—N3—C5178.4 (3)C7—C8—C9—N32.9 (5)
N6—RU1—N3—C592.3 (3)C7—C8—C9—C10177.1 (3)
N1—RU1—N3—C51.1 (3)C11—N5—C10—N42.5 (5)
N8—RU1—N3—C990.5 (3)C11—N5—C10—C9177.4 (3)
N4—RU1—N3—C90.2 (3)C13—N4—C10—N50.7 (5)
N6—RU1—N3—C989.5 (3)RU1—N4—C10—N5179.5 (3)
N1—RU1—N3—C9179.3 (3)C13—N4—C10—C9179.2 (3)
N3—RU1—N4—C13178.7 (3)RU1—N4—C10—C90.4 (4)
N7—RU1—N4—C131.7 (3)N3—C9—C10—N5179.4 (3)
N8—RU1—N4—C1380.8 (3)C8—C9—C10—N50.6 (5)
N6—RU1—N4—C1377.2 (3)N3—C9—C10—N40.6 (4)
N1—RU1—N4—C13179.9 (2)C8—C9—C10—N4179.4 (3)
N3—RU1—N4—C100.1 (2)C10—N5—C11—C121.7 (4)
N7—RU1—N4—C10179.7 (2)N5—C11—C12—C130.7 (5)
N8—RU1—N4—C10100.6 (2)N5—C11—C12—CL2180.0 (2)
N6—RU1—N4—C10101.4 (2)C10—N4—C13—C121.9 (4)
N1—RU1—N4—C101.4 (4)RU1—N4—C13—C12176.7 (2)
N3—RU1—N6—C213.4 (3)C11—C12—C13—N42.6 (5)
N7—RU1—N6—C21178.7 (3)CL2—C12—C13—N4178.1 (2)
N8—RU1—N6—C21176.7 (2)C25—N6—C21—C223.4 (5)
N4—RU1—N6—C2182.9 (3)RU1—N6—C21—C22175.4 (2)
N1—RU1—N6—C2176.5 (2)N6—C21—C22—C230.8 (5)
N3—RU1—N6—C25177.8 (2)C21—C22—C23—C243.9 (5)
N7—RU1—N6—C252.5 (2)C22—C23—C24—C252.9 (5)
N8—RU1—N6—C252.2 (4)C21—N6—C25—C244.5 (4)
N4—RU1—N6—C2598.3 (2)RU1—N6—C25—C24174.5 (2)
N1—RU1—N6—C25102.3 (2)C21—N6—C25—C26174.9 (3)
N8—RU1—N7—C26179.8 (2)RU1—N6—C25—C266.1 (3)
N4—RU1—N7—C2688.3 (2)C23—C24—C25—N61.3 (5)
N6—RU1—N7—C262.0 (2)C23—C24—C25—C26178.0 (3)
N1—RU1—N7—C2692.4 (2)C30—N7—C26—C270.2 (4)
N8—RU1—N7—C3010.2 (2)RU1—N7—C26—C27168.9 (2)
N4—RU1—N7—C3081.4 (2)C30—N7—C26—C25174.8 (3)
N6—RU1—N7—C30171.6 (2)RU1—N7—C26—C255.7 (3)
N1—RU1—N7—C3098.0 (2)N6—C25—C26—N77.7 (4)
N3—RU1—N8—C3512.3 (3)C24—C25—C26—N7172.9 (3)
N7—RU1—N8—C35172.5 (3)N6—C25—C26—C27166.5 (3)
N4—RU1—N8—C3591.9 (3)C24—C25—C26—C2712.9 (5)
N6—RU1—N8—C35167.8 (2)N7—C26—C27—C280.4 (5)
N1—RU1—N8—C3567.2 (3)C25—C26—C27—C28173.5 (3)
N3—RU1—N8—C31167.6 (2)C26—C27—C28—C290.2 (5)
N7—RU1—N8—C317.6 (2)C27—C28—C29—C300.4 (5)
N4—RU1—N8—C3187.9 (2)C26—N7—C30—C290.9 (4)
N6—RU1—N8—C3112.3 (4)RU1—N7—C30—C29168.3 (2)
N1—RU1—N8—C31112.9 (2)C26—N7—C30—C31179.7 (3)
C4—N1—C1—C21.8 (4)RU1—N7—C30—C3110.6 (3)
RU1—N1—C1—C2176.1 (2)C28—C29—C30—N71.0 (5)
N1—C1—C2—C33.1 (5)C28—C29—C30—C31179.6 (3)
N1—C1—C2—CL1175.5 (3)C35—N8—C31—C323.9 (4)
C4—N2—C3—C21.5 (4)RU1—N8—C31—C32176.0 (2)
C1—C2—C3—N21.5 (5)C35—N8—C31—C30175.6 (3)
CL1—C2—C3—N2177.1 (2)RU1—N8—C31—C304.5 (3)
C3—N2—C4—N13.0 (4)N7—C30—C31—N83.6 (4)
C3—N2—C4—C5175.8 (3)C29—C30—C31—N8175.1 (3)
C1—N1—C4—N21.3 (4)N7—C30—C31—C32175.9 (3)
RU1—N1—C4—N2179.6 (2)C29—C30—C31—C325.4 (5)
C1—N1—C4—C5177.4 (3)N8—C31—C32—C332.8 (5)
RU1—N1—C4—C50.8 (3)C30—C31—C32—C33176.7 (3)
C9—N3—C5—C60.7 (6)C31—C32—C33—C340.0 (5)
RU1—N3—C5—C6177.5 (3)C32—C33—C34—C351.6 (5)
C9—N3—C5—C4180.0 (3)C31—N8—C35—C342.3 (5)
RU1—N3—C5—C41.8 (4)RU1—N8—C35—C34177.6 (2)
N2—C4—C5—N3179.5 (3)C33—C34—C35—N80.5 (5)

Experimental details

Crystal data
Chemical formula[Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3N
Mr1010.52
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)16.3846 (2), 62.8985 (8), 14.5581 (2)
V3)15003.1 (3)
Z16
Radiation typeCu Kα
µ (mm1)6.44
Crystal size (mm)0.48 × 0.25 × 0.07
Data collection
DiffractometerBruker SMART 2K
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.190, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
45518, 7327, 7121
Rint0.053
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.08
No. of reflections7327
No. of parameters534
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.38
Absolute structureFlack (1983), 3439 Friedel pairs
Absolute structure parameter0.052 (5)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997), UdMX (local program).

Selected geometric parameters (Å, º) top
Ru1—N12.088 (2)Ru1—N62.083 (3)
Ru1—N31.980 (2)Ru1—N72.000 (2)
Ru1—N42.069 (2)Ru1—N82.068 (3)
N3—Ru1—N7175.35 (9)N8—Ru1—N6157.58 (9)
N3—Ru1—N8100.81 (12)N4—Ru1—N691.4 (1)
N7—Ru1—N878.90 (12)N3—Ru1—N179.51 (9)
N3—Ru1—N479.37 (9)N7—Ru1—N1105.12 (9)
N7—Ru1—N496.00 (9)N8—Ru1—N190.79 (10)
N8—Ru1—N492.69 (10)N4—Ru1—N1158.87 (9)
N3—Ru1—N6101.62 (11)N6—Ru1—N193.3 (1)
N7—Ru1—N678.75 (11)
 

Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada and the Ministère de l'Education du Québec for financial support.

References

First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SMART (Version 5.059) and SAINT (Version 6.06). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R. & Campagna, S. (2002). J. Am. Chem. Soc. 124, 7912–7913.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroen, J. H., van Leeuwen, P. W. N. M. & Vrieze, K. (1998). Dalton Trans. pp. 113–117.  CrossRef Google Scholar
First citationMedlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev. 34, 133–142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). Chem. Eur. J. 10, 3640–3648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem. 38, 3337–3343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds