metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m287-m288

Poly[bis­­(2,2′-bi­pyridine-κ2N,N′)deca-μ-oxido-dioxidodicopper(II)tetra­vanadium(V)]

aResearch Academy of Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China, bState Key Laboratory of Applied Organic Chemistry, Lanzhou, Gansu 730000, People's Republic of China, and cState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: xiawj@hit.edu.cn

(Received 23 November 2007; accepted 21 December 2007; online 4 January 2008)

The title compound, [Cu2V4O12(C10H8N2)2]n, shows a two-dimensional copper–vanadate layer composed of eight-membered rings, each containing four corner-sharing VO4 tetra­hedra; these are linked through six penta­coordinated CuII atoms with the 2,2′-bipyridine ligands attached and pointing above and below the plane of the layer. The Cu atom is coordinated by two N donors from the 2,2′-bipyridine ligand and three O atoms from three adjacent VO4 units to form a distorted tetragonal pyramid. These layers are further connected by ππ inter­actions between inter­leaving bipyridine ligands of adjacent layers [centroid–centroid distances = 3.63 (1) and 3.68 (1) Å] into a three-dimensional supra­molecular structure.

Related literature

For related literature, see: DeBord et al. (1996[DeBord, J. R. D., Zhang, Y., Haushalter, R. C., Zubieta, J. & O'Connor, C. J. (1996). J. Solid State Chem. 122, 251-258.]); Kucsera et al. (2002[Kucsera, R., Gyepes, R. & Zurkvoa, L. (2002). Cryst. Res. Technol. 37, 890-895.]); Lu et al. (2002[Lu, Y., Wang, E. B., Yuan, M., Li, Y. G., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). Solid State Sci. 4, 449-453.]); Yi et al. (2007[Yi, Z.-H., Cui, X.-B., Zhang, X., Yu, J.-H., Lu, J., Xu, J.-Q., Yang, G.-D., Wang, T.-G., Yu, H.-H. & Duan, W.-J. (2007). Dalton Trans. pp. 2115-2120.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2V4O12(C10H8N2)2]

  • Mr = 417.60

  • Triclinic, [P \overline 1]

  • a = 8.1019 (4) Å

  • b = 8.3122 (5) Å

  • c = 10.3501 (4) Å

  • α = 72.332 (3)°

  • β = 84.562 (3)°

  • γ = 77.878 (3)°

  • V = 648.98 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.06 mm−1

  • T = 298 (2) K

  • 0.33 × 0.31 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.379, Tmax = 0.469

  • 4603 measured reflections

  • 3114 independent reflections

  • 2553 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 0.99

  • 3114 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 2.012 (2)
Cu1—O4i 2.054 (2)
Cu1—O6ii 2.061 (2)
Cu1—N1 2.084 (2)
Cu1—N2 2.117 (2)
V1—O2 1.615 (2)
V1—O1 1.667 (2)
V1—O5iii 1.824 (2)
V1—O3 1.833 (2)
V2—O4 1.655 (2)
V2—O6 1.670 (2)
V2—O5 1.774 (2)
V2—O3 1.790 (2)
O1—Cu1—O4i 89.62 (9)
O1—Cu1—O6ii 94.53 (9)
O4i—Cu1—O6ii 121.32 (9)
O1—Cu1—N1 100.17 (9)
O4i—Cu1—N1 124.55 (9)
O6ii—Cu1—N1 112.18 (9)
O1—Cu1—N2 172.29 (9)
O4i—Cu1—N2 85.25 (9)
O6ii—Cu1—N2 93.05 (9)
N1—Cu1—N2 78.18 (10)
O2—V1—O1 108.65 (12)
O2—V1—O5iii 109.43 (12)
O1—V1—O5iii 111.53 (11)
O2—V1—O3 107.98 (12)
O1—V1—O3 110.08 (11)
O5iii—V1—O3 109.09 (10)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Considerable efforts have been devoted to the hydrothermal synthesis of solid-state inorganic–organic hybrid vanadate(V) species based on discrete clusters, infinite chain and layer structures, such as [Zn(phen)3][V2O6].10H2O and [Cu(bipy)V2O6] (Yi et al., 2007), [Cu(bipy)][V2O6] and [Cu(bipy)2][V2O6] (DeBord et al., 1996), [Mn(phen)2]2[V4O12].0.5H2O (Lu et al., 2002), and [Co(phen)2]2[V4O12].H2O (Kucsera et al., 2002), because of their diverse topologies and fascinating physical properties. We report here the crystal structure of a new complex, {[Cu(bipy)]2V4O12}n (bipy = 2,2'-bipyridine).

The asymmetric unit of the title compound consists of one CuII atom, one bipy molecule and a half of V4O12 unit (Fig. 1). The V4O12 units are linked through six square-pyramidal CuII atoms to six adjacent V4O12 rings (Fig. 2). Two of VO4 units in the V4O12 unit each connect with one square-pyramidal Cu unit, while the other two VO4 units each exhibit corner-sharing interactions with two Cu units. Each Cu unit links three V4O12 units through corner-sharing interactions. In this way, a two-dimensional layer is formed (Fig. 2). The CuII atom is coordinated by two pyridine N atoms and three tetravanadate O atoms (Fig. 1 and Table 1). The relative orientation of the bipy ligand with respect to the copper–vanadate layer is depicted by a dihedral angel of 84.6 (6)°. Furthermore, these bipy ligands interact with each other through ππ interactions between adjacent layers with centroid–centroid distances of 3.63 (1) and 3.68 (1) Å.

Related literature top

For related literature, see: DeBord et al. (1996); Kucsera et al. (2002); Lu et al. (2002); Yi et al. (2007).

Experimental top

The title compound was prepared hydrothermally from a mixture of V2O5 (0.73 g, 4.0 mmol), 2,2'-bipyridine dihydrate (0.38 g, 2.0 mmol), CuCl2.2H2O (0.34 g, 2.0 mmol) and water (18 ml) (molar ratio 2:1:1:500), adjusting pH to ca 6.1 with 4 M KOH, in a 25 ml Teflon-lined stainless steel reactor heated to 443 K for 7 d. After cooling to room temperature, green crystals were collected.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, extended to show the V4O12 unit. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, y - 1, z; (iii) 2 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. A view of the copper–vanadate layer with C and H atoms of the bipy ligands omitted for clarity.
poly[bis(2,2'-bipyridine-κ2N,N')deca-µ-oxido- dioxidodicopper(II)tetravanadium(V)], top
Crystal data top
[Cu2V4O12(C10H8N2)2]Z = 2
Mr = 417.60F(000) = 410
Triclinic, P1Dx = 2.137 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1019 (4) ÅCell parameters from 3811 reflections
b = 8.3122 (5) Åθ = 2.1–28.3°
c = 10.3501 (4) ŵ = 3.06 mm1
α = 72.332 (3)°T = 298 K
β = 84.562 (3)°Block, green
γ = 77.878 (3)°0.33 × 0.31 × 0.25 mm
V = 648.98 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3114 independent reflections
Radiation source: fine-focus sealed tube2553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 109
Tmin = 0.379, Tmax = 0.469k = 107
4603 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
3114 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cu2V4O12(C10H8N2)2]γ = 77.878 (3)°
Mr = 417.60V = 648.98 (6) Å3
Triclinic, P1Z = 2
a = 8.1019 (4) ÅMo Kα radiation
b = 8.3122 (5) ŵ = 3.06 mm1
c = 10.3501 (4) ÅT = 298 K
α = 72.332 (3)°0.33 × 0.31 × 0.25 mm
β = 84.562 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2553 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.469Rint = 0.055
4603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.99Δρmax = 0.53 e Å3
3114 reflectionsΔρmin = 0.75 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59216 (4)0.14236 (4)0.28662 (3)0.01368 (10)
V10.87679 (6)0.39002 (6)0.34998 (5)0.01604 (12)
V20.73879 (6)0.72867 (6)0.47736 (5)0.01495 (12)
O10.7741 (3)0.2421 (3)0.3367 (2)0.0249 (5)
O20.9198 (3)0.5062 (3)0.1993 (2)0.0359 (6)
O30.7425 (3)0.5317 (3)0.4394 (2)0.0259 (5)
O40.5705 (3)0.7685 (3)0.5748 (2)0.0270 (5)
O50.9278 (3)0.7084 (3)0.5595 (2)0.0285 (5)
O60.7286 (3)0.8942 (3)0.3363 (2)0.0247 (5)
N10.5900 (3)0.2590 (3)0.0777 (2)0.0191 (5)
N20.3794 (3)0.0700 (3)0.2320 (2)0.0202 (5)
C10.7065 (4)0.3461 (4)0.0041 (3)0.0242 (6)
H10.79030.36710.04890.029*
C20.7057 (4)0.4056 (4)0.1364 (3)0.0300 (7)
H20.78690.46670.18480.036*
C30.5828 (4)0.3731 (4)0.2037 (3)0.0270 (7)
H30.58110.41070.29800.032*
C40.4620 (4)0.2835 (4)0.1289 (3)0.0232 (6)
H40.37870.25940.17220.028*
C50.4675 (4)0.2303 (4)0.0120 (3)0.0192 (6)
C60.3397 (4)0.1390 (4)0.1003 (3)0.0187 (6)
C70.1878 (4)0.1270 (4)0.0534 (3)0.0288 (7)
H70.16100.17750.03720.035*
C80.0781 (4)0.0386 (4)0.1448 (4)0.0309 (7)
H80.02370.02900.11600.037*
C90.1209 (4)0.0351 (4)0.2786 (3)0.0274 (7)
H90.04920.09620.34090.033*
C100.2718 (4)0.0166 (4)0.3187 (3)0.0247 (6)
H100.30010.06600.40910.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01353 (17)0.01631 (18)0.01260 (17)0.00306 (12)0.00204 (12)0.00563 (13)
V10.0140 (2)0.0172 (2)0.0183 (2)0.00322 (18)0.00335 (18)0.00613 (19)
V20.0127 (2)0.0155 (2)0.0177 (2)0.00107 (17)0.00215 (18)0.00696 (18)
O10.0202 (11)0.0282 (12)0.0335 (12)0.0079 (9)0.0034 (9)0.0167 (10)
O20.0332 (14)0.0428 (14)0.0249 (12)0.0122 (11)0.0004 (10)0.0031 (11)
O30.0243 (12)0.0225 (11)0.0346 (13)0.0036 (9)0.0016 (10)0.0154 (10)
O40.0201 (11)0.0366 (13)0.0301 (12)0.0050 (9)0.0047 (9)0.0201 (10)
O50.0228 (12)0.0308 (12)0.0346 (13)0.0013 (9)0.0112 (10)0.0128 (10)
O60.0245 (11)0.0204 (11)0.0266 (11)0.0018 (9)0.0051 (9)0.0034 (9)
N10.0195 (12)0.0206 (12)0.0179 (12)0.0040 (10)0.0029 (10)0.0059 (10)
N20.0225 (13)0.0233 (13)0.0178 (12)0.0065 (10)0.0011 (10)0.0088 (10)
C10.0211 (15)0.0252 (16)0.0269 (16)0.0057 (12)0.0012 (12)0.0077 (13)
C20.0264 (17)0.0326 (18)0.0299 (17)0.0117 (14)0.0065 (14)0.0058 (14)
C30.0328 (18)0.0269 (16)0.0177 (15)0.0036 (13)0.0008 (13)0.0027 (12)
C40.0261 (16)0.0256 (16)0.0199 (15)0.0037 (12)0.0050 (12)0.0090 (12)
C50.0181 (14)0.0190 (14)0.0211 (14)0.0013 (11)0.0044 (11)0.0072 (11)
C60.0188 (14)0.0207 (14)0.0188 (14)0.0048 (11)0.0023 (11)0.0078 (11)
C70.0270 (17)0.0350 (18)0.0252 (16)0.0084 (14)0.0101 (13)0.0056 (14)
C80.0204 (16)0.0381 (19)0.0376 (19)0.0095 (14)0.0062 (14)0.0118 (15)
C90.0242 (16)0.0299 (17)0.0318 (18)0.0129 (13)0.0058 (13)0.0110 (14)
C100.0263 (17)0.0295 (17)0.0192 (14)0.0094 (13)0.0023 (12)0.0065 (12)
Geometric parameters (Å, º) top
Cu1—O12.012 (2)N2—C61.350 (4)
Cu1—O4i2.054 (2)C1—C21.387 (4)
Cu1—O6ii2.061 (2)C1—H10.9300
Cu1—N12.084 (2)C2—C31.381 (5)
Cu1—N22.117 (2)C2—H20.9300
V1—O21.615 (2)C3—C41.388 (5)
V1—O11.667 (2)C3—H30.9300
V1—O5iii1.824 (2)C4—C51.392 (4)
V1—O31.833 (2)C4—H40.9300
V2—O41.655 (2)C5—C61.488 (4)
V2—O61.670 (2)C6—C71.397 (4)
V2—O51.774 (2)C7—C81.384 (5)
V2—O31.790 (2)C7—H70.9300
O4—Cu1i2.054 (2)C8—C91.379 (5)
O5—V1iii1.824 (2)C8—H80.9300
O6—Cu1iv2.061 (2)C9—C101.379 (4)
N1—C11.346 (4)C9—H90.9300
N1—C51.352 (4)C10—H100.9300
N2—C101.344 (4)
O1—Cu1—O4i89.62 (9)C6—N2—Cu1114.9 (2)
O1—Cu1—O6ii94.53 (9)N1—C1—C2122.1 (3)
O4i—Cu1—O6ii121.32 (9)N1—C1—H1118.9
O1—Cu1—N1100.17 (9)C2—C1—H1118.9
O4i—Cu1—N1124.55 (9)C3—C2—C1119.2 (3)
O6ii—Cu1—N1112.18 (9)C3—C2—H2120.4
O1—Cu1—N2172.29 (9)C1—C2—H2120.4
O4i—Cu1—N285.25 (9)C2—C3—C4119.1 (3)
O6ii—Cu1—N293.05 (9)C2—C3—H3120.4
N1—Cu1—N278.18 (10)C4—C3—H3120.4
O2—V1—O1108.65 (12)C3—C4—C5118.9 (3)
O2—V1—O5iii109.43 (12)C3—C4—H4120.6
O1—V1—O5iii111.53 (11)C5—C4—H4120.6
O2—V1—O3107.98 (12)N1—C5—C4121.9 (3)
O1—V1—O3110.08 (11)N1—C5—C6115.6 (3)
O5iii—V1—O3109.09 (10)C4—C5—C6122.5 (3)
O4—V2—O6107.88 (11)N2—C6—C7121.6 (3)
O4—V2—O5111.20 (11)N2—C6—C5114.8 (2)
O6—V2—O5108.55 (11)C7—C6—C5123.6 (3)
O4—V2—O3109.63 (11)C8—C7—C6118.6 (3)
O6—V2—O3111.29 (11)C8—C7—H7120.7
O5—V2—O3108.30 (10)C6—C7—H7120.7
V1—O1—Cu1159.01 (14)C9—C8—C7119.6 (3)
V2—O3—V1139.64 (14)C9—C8—H8120.2
V2—O4—Cu1i162.64 (14)C7—C8—H8120.2
V2—O5—V1iii160.20 (14)C8—C9—C10118.9 (3)
V2—O6—Cu1iv133.16 (13)C8—C9—H9120.6
C1—N1—C5118.7 (3)C10—C9—H9120.6
C1—N1—Cu1125.5 (2)N2—C10—C9122.5 (3)
C5—N1—Cu1115.6 (2)N2—C10—H10118.7
C10—N2—C6118.8 (3)C9—C10—H10118.7
C10—N2—Cu1125.7 (2)
O2—V1—O1—Cu160.3 (4)N1—Cu1—N2—C10175.0 (3)
O5iii—V1—O1—Cu1179.0 (4)O4i—Cu1—N2—C6122.4 (2)
O3—V1—O1—Cu157.8 (4)O6ii—Cu1—N2—C6116.4 (2)
O4i—Cu1—O1—V168.8 (4)N1—Cu1—N2—C64.4 (2)
O6ii—Cu1—O1—V1169.8 (4)C5—N1—C1—C20.6 (5)
N1—Cu1—O1—V156.3 (4)Cu1—N1—C1—C2173.5 (2)
O4—V2—O3—V1176.89 (19)N1—C1—C2—C30.8 (5)
O6—V2—O3—V163.8 (2)C1—C2—C3—C40.8 (5)
O5—V2—O3—V155.4 (2)C2—C3—C4—C50.5 (5)
O2—V1—O3—V251.5 (2)C1—N1—C5—C42.0 (4)
O1—V1—O3—V2169.94 (19)Cu1—N1—C5—C4172.6 (2)
O5iii—V1—O3—V267.4 (2)C1—N1—C5—C6177.8 (3)
O6—V2—O4—Cu1i84.8 (5)Cu1—N1—C5—C67.5 (3)
O5—V2—O4—Cu1i34.1 (5)C3—C4—C5—N12.0 (4)
O3—V2—O4—Cu1i153.8 (4)C3—C4—C5—C6177.9 (3)
O4—V2—O5—V1iii104.6 (4)C10—N2—C6—C72.1 (4)
O6—V2—O5—V1iii136.9 (4)Cu1—N2—C6—C7169.2 (2)
O3—V2—O5—V1iii15.9 (5)C10—N2—C6—C5179.3 (3)
O4—V2—O6—Cu1iv17.23 (19)Cu1—N2—C6—C59.5 (3)
O5—V2—O6—Cu1iv103.38 (17)N1—C5—C6—N211.3 (4)
O3—V2—O6—Cu1iv137.53 (15)C4—C5—C6—N2168.8 (3)
O1—Cu1—N1—C111.4 (3)N1—C5—C6—C7167.3 (3)
O4i—Cu1—N1—C1108.1 (2)C4—C5—C6—C712.5 (5)
O6ii—Cu1—N1—C187.8 (3)N2—C6—C7—C81.5 (5)
N2—Cu1—N1—C1176.2 (3)C5—C6—C7—C8180.0 (3)
O1—Cu1—N1—C5174.30 (19)C6—C7—C8—C90.0 (5)
O4i—Cu1—N1—C577.7 (2)C7—C8—C9—C100.9 (5)
O6ii—Cu1—N1—C586.5 (2)C6—N2—C10—C91.2 (5)
N2—Cu1—N1—C51.97 (19)Cu1—N2—C10—C9169.1 (2)
O4i—Cu1—N2—C1048.2 (3)C8—C9—C10—N20.3 (5)
O6ii—Cu1—N2—C1073.0 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2V4O12(C10H8N2)2]
Mr417.60
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1019 (4), 8.3122 (5), 10.3501 (4)
α, β, γ (°)72.332 (3), 84.562 (3), 77.878 (3)
V3)648.98 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.06
Crystal size (mm)0.33 × 0.31 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.379, 0.469
No. of measured, independent and
observed [I > 2σ(I)] reflections
4603, 3114, 2553
Rint0.055
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 0.99
No. of reflections3114
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.75

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999).

Selected geometric parameters (Å, º) top
Cu1—O12.012 (2)V1—O5iii1.824 (2)
Cu1—O4i2.054 (2)V1—O31.833 (2)
Cu1—O6ii2.061 (2)V2—O41.655 (2)
Cu1—N12.084 (2)V2—O61.670 (2)
Cu1—N22.117 (2)V2—O51.774 (2)
V1—O21.615 (2)V2—O31.790 (2)
V1—O11.667 (2)
O1—Cu1—O4i89.62 (9)O6ii—Cu1—N293.05 (9)
O1—Cu1—O6ii94.53 (9)N1—Cu1—N278.18 (10)
O4i—Cu1—O6ii121.32 (9)O2—V1—O1108.65 (12)
O1—Cu1—N1100.17 (9)O2—V1—O5iii109.43 (12)
O4i—Cu1—N1124.55 (9)O1—V1—O5iii111.53 (11)
O6ii—Cu1—N1112.18 (9)O2—V1—O3107.98 (12)
O1—Cu1—N2172.29 (9)O1—V1—O3110.08 (11)
O4i—Cu1—N285.25 (9)O5iii—V1—O3109.09 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the New Century Talent Program of the Chinese Ministry of Education and the Postdoctoral Foundation of Heilongjiang Province.

References

First citationBrandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART (Version 5.62), SAINT (Version 6.02) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeBord, J. R. D., Zhang, Y., Haushalter, R. C., Zubieta, J. & O'Connor, C. J. (1996). J. Solid State Chem. 122, 251–258.  CSD CrossRef CAS Web of Science Google Scholar
First citationKucsera, R., Gyepes, R. & Zurkvoa, L. (2002). Cryst. Res. Technol. 37, 890–895.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y., Wang, E. B., Yuan, M., Li, Y. G., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). Solid State Sci. 4, 449–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYi, Z.-H., Cui, X.-B., Zhang, X., Yu, J.-H., Lu, J., Xu, J.-Q., Yang, G.-D., Wang, T.-G., Yu, H.-H. & Duan, W.-J. (2007). Dalton Trans. pp. 2115–2120.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m287-m288
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds