metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m305-m306

Di­ammonium bis­­[(2-amino­acetato-κ2N,O)(2,2′-bi­pyridine-κ2N,N′)(N,N-di­methyl­formamide-κO)copper(II)] hexa­cosa­oxido­octa­molybdate(VI)

aCollege of Chemistry and Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
*Correspondence e-mail: hyliu2007@yahoo.cn

(Received 6 December 2007; accepted 1 January 2008; online 9 January 2008)

The title compound, (NH4)2[Cu(C2H4NO2)(C10H8N2)(C3H7NO)]2[Mo8O26], contains a centrosymmetric β-type octa­molybdate anion, two copper(II) complex cations and two ammonium ions. The CuII atom is coordinated in a square-pyramidal geometry by a 2,2′-bipyridine and a 2-amino­acetate ligands in the basal plane and by an O atom of N,N-dimethyl­formamide in the apical position. The anions and cations are linked by N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For related literature, see: Allis et al. (2004[Allis, D. G., Rarig, R. S., Burkholder, E. & Zubieta, J. (2004). J. Mol. Struct. 688, 11-31.]); Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)2[Cu(C2H4NO2)(C10H8N2)(C3H7NO)]2[Mo8O26]

  • Mr = 1953.38

  • Triclinic, [P \overline 1]

  • a = 10.222 (2) Å

  • b = 10.849 (2) Å

  • c = 13.020 (3) Å

  • α = 81.82 (3)°

  • β = 69.91 (2)°

  • γ = 81.61 (3)°

  • V = 1334.9 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 291 (2) K

  • 0.28 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.530, Tmax = 0.690

  • 10864 measured reflections

  • 4889 independent reflections

  • 3591 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.110

  • S = 0.99

  • 4889 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O14 1.925 (4)
Cu—O16 2.604 (4)
Cu—N1 1.985 (6)
Cu—N2 1.989 (6)
Cu—N3 1.990 (6)
Mo1—O1 1.705 (5)
Mo1—O6 1.720 (4)
Mo1—O11 1.896 (4)
Mo1—O10 1.995 (5)
Mo1—O12 2.306 (4)
Mo1—O7i 2.356 (5)
Mo2—O8 1.699 (4)
Mo2—O2 1.722 (5)
Mo2—O9 1.897 (4)
Mo2—O7i 1.998 (5)
Mo2—O10 2.340 (4)
Mo2—O12i 2.346 (4)
Mo3—O4 1.696 (5)
Mo3—O5 1.756 (5)
Mo3—O10 1.960 (4)
Mo3—O7 1.967 (4)
Mo3—O12 2.143 (4)
Mo3—O12i 2.380 (4)
Mo4—O13 1.693 (4)
Mo4—O3 1.716 (5)
Mo4—O9i 1.921 (4)
Mo4—O11 1.945 (4)
Mo4—O5i 2.257 (5)
Mo4—O12 2.491 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3ii 0.90 2.32 3.093 (7) 144
N1—H1B⋯O6 0.90 2.01 2.863 (6) 158
N5—HN1⋯O1 0.90 2.10 2.888 (7) 146
N5—HN2⋯O4 0.95 2.13 3.028 (8) 158
N5—HN3⋯O15iii 0.95 1.94 2.761 (8) 143
N5—HN4⋯O14iii 0.98 2.26 3.132 (7) 148
Symmetry codes: (ii) -x+1, -y+2, -z+1; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.].

Supporting information


Comment top

Polymolybdates (POMs) modified by transition metal complexes have been extensively explored (Allis et al., 2004). To further explore new POMs belonging to this family, the title compound is reported here.

The title compound consists of a [Mo8O26]4- anion, two [Cu(bpy)(gly)(dmf)]+ cations and two ammonium ions (bpy = 2,2'-bipyridine, gly = 2-aminoacetate, dmf = N,N-dimethylfomamide) (Fig. 1). The [Mo8O26]4- anion in the β-type lies on an inversion center, made up of eight edge-sharing MoO6 octahedra. The CuII atom in the [Cu(bpy)(gly)(dmf)]+ cation displays a distorted square-pyramidal geometry with two N atoms from the 2,2'-bipyridine ligand and an O atom and an N atom from the 2-aminoacetate ligand in the basal plane and an O atom of N,N-dimethylfomamide in the apical position. The Mo—O, Cu—N and Cu—O distances are given in Table 1. A calculation of bond valence sum (Brown & Altermatt, 1985) indicates the oxidation states of 5.71–5.84 for the Mo atoms and 2.17 for the Cu atom, in agreement with the expected values. These anions and cations connect to each other by N—H···O hydrogen bonds (Table 2), forming a three-dimensional supramolecular network, as shown in Fig. 2.

Related literature top

For related literature, see: Allis et al. (2004); Brown & Altermatt (1985).

Experimental top

(NH4)6(Mo7O24).4H2O (1.50 g, 1.2 mmol), Cu(CH3COO)2.2H2O (0.20 g, 1.0 mmol), 2-aminoacetic acid (0.075 g, 1.0 mmol) and bpy (0.16 g, 1.0 mmol) were dissolved in 0.5 M HCl solution (15 ml) with stirring. Then the suspension was added to a dmf solution (10 ml), which was refluxed at 333 K for 3 h. After cooling to room temperature, the mixture was filtrated and transferred into a 50 ml beaker. Blue block crystals of the title compound suitable for X-ray diffraction were obtained after several days.

Refinement top

H atoms of ammonium were located in difference Fourier maps and fixed in their as-found positions (N—H = 0.90–0.98 Å) with Uiso(H) = 1.2Ueq(N). The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (CH), 0.97Å (CH2), N—H = 0.90Å and Uiso(H) = 1.2Ueq(C,N), and with C—H = 0.96Å (CH3) and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1997.

Figures top
[Figure 1] Fig. 1. The structures of the anion and cation of the title compound (the ammonium ion has been omitted). Displacement ellipsoides are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Crystal packing of the title compound. The ammonium ions are drawn as ball. Dotted lines denote hydrogen bonds.
Diammonium bis[(2-aminoacetato-κ2N,O)(2,2'-bipyridine-κ2N,N')(N,N- dimethylformamide-κO)copper(II)] hexacosaoxidooctamolybdate(VI) top
Crystal data top
(NH4)2[Cu(C2H4NO2)(C10H8N2)(C3H7NO)]2[Mo8O26]Z = 1
Mr = 1953.38F(000) = 946
Triclinic, P1Dx = 2.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.222 (2) ÅCell parameters from 3544 reflections
b = 10.849 (2) Åθ = 1.6–26.3°
c = 13.020 (3) ŵ = 2.70 mm1
α = 81.82 (3)°T = 291 K
β = 69.91 (2)°Block, blue
γ = 81.61 (3)°0.28 × 0.20 × 0.14 mm
V = 1334.9 (5) Å3
Data collection top
Bruker SMART APEXII
diffractometer
4889 independent reflections
Radiation source: fine-focus sealed tube3591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 25.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.530, Tmax = 0.690k = 1313
10864 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0226P)2]
where P = (Fo2 + 2Fc2)/3
4889 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
(NH4)2[Cu(C2H4NO2)(C10H8N2)(C3H7NO)]2[Mo8O26]γ = 81.61 (3)°
Mr = 1953.38V = 1334.9 (5) Å3
Triclinic, P1Z = 1
a = 10.222 (2) ÅMo Kα radiation
b = 10.849 (2) ŵ = 2.70 mm1
c = 13.020 (3) ÅT = 291 K
α = 81.82 (3)°0.28 × 0.20 × 0.14 mm
β = 69.91 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
4889 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3591 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 0.690Rint = 0.071
10864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.99Δρmax = 0.86 e Å3
4889 reflectionsΔρmin = 0.83 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.56754 (7)0.78752 (8)0.79555 (7)0.0191 (2)
Mo10.39065 (5)0.75790 (5)0.50257 (5)0.01630 (15)
Mo20.36042 (5)0.54294 (5)0.72689 (5)0.01687 (15)
Mo30.34518 (5)0.48004 (5)0.47185 (5)0.01409 (15)
Mo40.69102 (5)0.74002 (5)0.30214 (5)0.01864 (16)
O10.3028 (4)0.8061 (4)0.4114 (4)0.0242 (11)
O20.4582 (4)0.4794 (4)0.8097 (4)0.0244 (11)
O30.5990 (4)0.7957 (4)0.2141 (4)0.0258 (11)
O40.2585 (4)0.5422 (4)0.3833 (4)0.0227 (11)
O50.2406 (4)0.3680 (4)0.5603 (4)0.0211 (11)
O60.3191 (4)0.8577 (4)0.6038 (4)0.0235 (11)
O70.4909 (4)0.3616 (4)0.3840 (4)0.0172 (10)
O80.2517 (5)0.6614 (4)0.7940 (4)0.0256 (11)
O90.2357 (4)0.4195 (4)0.7536 (4)0.0223 (11)
O100.2874 (4)0.6092 (4)0.5743 (4)0.0167 (10)
O110.5653 (4)0.8223 (4)0.4285 (4)0.0192 (10)
O120.5191 (4)0.5901 (4)0.4106 (3)0.0150 (9)
O130.8335 (4)0.8205 (5)0.2580 (4)0.0282 (12)
O140.4272 (4)0.7617 (4)0.9377 (4)0.0223 (11)
O150.2086 (4)0.8280 (4)1.0374 (4)0.0247 (11)
O160.6474 (5)0.9741 (5)0.8567 (5)0.0330 (13)
N10.4294 (5)0.9213 (5)0.7618 (4)0.0186 (12)
H1A0.46240.99620.75150.022*
H1B0.41620.90840.69940.022*
N20.7255 (5)0.8036 (5)0.6548 (5)0.0195 (13)
N30.7002 (5)0.6481 (5)0.8305 (5)0.0176 (12)
N40.8488 (6)0.8849 (6)0.8898 (5)0.0257 (14)
N50.3354 (5)0.7456 (6)0.1944 (5)0.0272 (14)
HN10.34380.79030.24420.033*
HN20.33300.67040.24180.033*
HN30.25840.76930.16870.033*
HN40.39960.74290.11890.033*
C10.6771 (7)0.5713 (7)0.9239 (6)0.0281 (18)
H10.59090.58210.97910.034*
C20.7758 (6)0.4768 (6)0.9418 (5)0.0214 (15)
H20.75700.42541.00760.026*
C30.9044 (7)0.4610 (7)0.8582 (6)0.0305 (17)
H30.97190.39670.86670.037*
C40.9304 (7)0.5408 (7)0.7636 (6)0.0269 (17)
H41.01740.53280.70890.032*
C50.9663 (7)0.7332 (7)0.5632 (6)0.0243 (16)
H51.04680.68020.56200.029*
C60.9666 (7)0.8216 (8)0.4778 (7)0.037 (2)
H61.04830.82790.41790.044*
C70.8487 (7)0.9025 (6)0.4776 (6)0.0242 (15)
H70.84920.96210.41860.029*
C80.7291 (6)0.8904 (6)0.5697 (6)0.0202 (15)
H80.64890.94460.57240.024*
C90.8275 (6)0.6337 (6)0.7489 (6)0.0200 (15)
C100.8423 (6)0.7234 (6)0.6532 (5)0.0177 (14)
C110.2938 (6)0.9214 (7)0.8538 (6)0.0216 (15)
H11A0.22300.89610.82930.026*
H11B0.26351.00530.87610.026*
C120.3090 (6)0.8328 (6)0.9503 (6)0.0213 (16)
C130.7109 (7)0.9109 (7)0.9152 (7)0.0316 (19)
H140.65640.87820.98420.038*
C140.9409 (7)0.9421 (8)0.7868 (7)0.039 (2)
H14A1.03680.91440.78030.058*
H14B0.92571.03160.78630.058*
H14C0.92080.91790.72610.058*
C150.9148 (8)0.8121 (9)0.9643 (7)0.043 (2)
H15A1.01460.80490.92960.065*
H15B0.88330.73020.98250.065*
H15C0.89020.85301.03010.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0149 (4)0.0195 (5)0.0211 (5)0.0014 (3)0.0060 (3)0.0001 (4)
Mo10.0182 (3)0.0128 (3)0.0184 (3)0.0010 (2)0.0078 (2)0.0011 (2)
Mo20.0177 (3)0.0176 (3)0.0147 (3)0.0002 (2)0.0052 (2)0.0019 (2)
Mo30.0135 (3)0.0140 (3)0.0155 (3)0.0008 (2)0.0062 (2)0.0008 (2)
Mo40.0185 (3)0.0172 (3)0.0199 (3)0.0037 (2)0.0073 (2)0.0036 (3)
O10.027 (2)0.023 (3)0.024 (3)0.004 (2)0.012 (2)0.002 (2)
O20.027 (2)0.026 (3)0.018 (3)0.001 (2)0.006 (2)0.003 (2)
O30.027 (3)0.020 (3)0.029 (3)0.002 (2)0.012 (2)0.009 (2)
O40.019 (2)0.029 (3)0.023 (3)0.004 (2)0.011 (2)0.007 (2)
O50.017 (2)0.021 (3)0.027 (3)0.0034 (19)0.009 (2)0.001 (2)
O60.030 (3)0.019 (3)0.024 (3)0.002 (2)0.012 (2)0.005 (2)
O70.021 (2)0.013 (2)0.020 (2)0.0024 (18)0.0121 (19)0.001 (2)
O80.031 (3)0.021 (3)0.025 (3)0.003 (2)0.012 (2)0.005 (2)
O90.017 (2)0.025 (3)0.023 (3)0.0033 (19)0.007 (2)0.002 (2)
O100.017 (2)0.018 (2)0.016 (2)0.0007 (18)0.0081 (19)0.001 (2)
O110.022 (2)0.016 (2)0.021 (3)0.0067 (18)0.008 (2)0.002 (2)
O120.014 (2)0.015 (2)0.016 (2)0.0009 (17)0.0053 (19)0.0000 (19)
O130.026 (3)0.026 (3)0.034 (3)0.012 (2)0.012 (2)0.008 (2)
O140.015 (2)0.029 (3)0.016 (3)0.0027 (19)0.0006 (19)0.006 (2)
O150.021 (2)0.028 (3)0.023 (3)0.002 (2)0.006 (2)0.002 (2)
O160.036 (3)0.031 (3)0.042 (3)0.012 (2)0.023 (3)0.000 (3)
N10.022 (3)0.019 (3)0.015 (3)0.002 (2)0.006 (2)0.002 (3)
N20.019 (3)0.015 (3)0.027 (3)0.001 (2)0.010 (3)0.006 (3)
N30.020 (3)0.013 (3)0.021 (3)0.001 (2)0.011 (2)0.003 (3)
N40.027 (3)0.026 (3)0.024 (3)0.010 (3)0.007 (3)0.001 (3)
N50.029 (3)0.034 (4)0.019 (3)0.002 (3)0.012 (3)0.004 (3)
C10.022 (3)0.026 (4)0.034 (4)0.004 (3)0.006 (3)0.006 (4)
C20.026 (3)0.020 (4)0.014 (3)0.005 (3)0.005 (3)0.010 (3)
C30.029 (4)0.032 (5)0.027 (4)0.006 (3)0.013 (3)0.005 (4)
C40.018 (3)0.026 (4)0.029 (4)0.001 (3)0.001 (3)0.006 (3)
C50.020 (3)0.027 (4)0.020 (4)0.003 (3)0.005 (3)0.006 (3)
C60.020 (4)0.042 (5)0.042 (5)0.001 (3)0.006 (4)0.000 (4)
C70.027 (4)0.020 (4)0.023 (4)0.009 (3)0.008 (3)0.012 (3)
C80.018 (3)0.015 (3)0.027 (4)0.000 (3)0.009 (3)0.001 (3)
C90.020 (3)0.018 (4)0.023 (4)0.000 (3)0.008 (3)0.005 (3)
C100.020 (3)0.018 (4)0.015 (3)0.003 (3)0.007 (3)0.001 (3)
C110.021 (3)0.022 (4)0.022 (4)0.003 (3)0.009 (3)0.005 (3)
C120.022 (3)0.022 (4)0.024 (4)0.000 (3)0.011 (3)0.008 (3)
C130.029 (4)0.031 (5)0.040 (5)0.008 (3)0.013 (4)0.011 (4)
C140.033 (4)0.046 (5)0.031 (4)0.021 (4)0.002 (4)0.004 (4)
C150.031 (4)0.054 (6)0.038 (5)0.010 (4)0.009 (4)0.001 (5)
Geometric parameters (Å, º) top
Cu—O141.925 (4)N2—C101.367 (8)
Cu—O162.604 (4)N3—C11.343 (10)
Cu—N11.985 (6)N3—C91.373 (8)
Cu—N21.989 (6)N4—C131.329 (8)
Cu—N31.990 (6)N4—C151.447 (10)
Mo1—O11.705 (5)N4—C141.462 (9)
Mo1—O61.720 (4)N5—HN10.8954
Mo1—O111.896 (4)N5—HN20.9477
Mo1—O101.995 (5)N5—HN30.9466
Mo1—O122.306 (4)N5—HN40.9785
Mo1—O7i2.356 (5)C1—C21.384 (10)
Mo1—Mo33.2161 (10)C1—H10.9300
Mo2—O81.699 (4)C2—C31.395 (9)
Mo2—O21.722 (5)C2—H20.9300
Mo2—O91.897 (4)C3—C41.370 (11)
Mo2—O7i1.998 (5)C3—H30.9300
Mo2—O102.340 (4)C4—C91.390 (9)
Mo2—O12i2.346 (4)C4—H40.9300
Mo3—O41.696 (5)C5—C61.361 (12)
Mo3—O51.756 (5)C5—C101.405 (9)
Mo3—O101.960 (4)C5—H50.9300
Mo3—O71.967 (4)C6—C71.383 (10)
Mo3—O122.143 (4)C6—H60.9300
Mo3—O12i2.380 (4)C7—C81.395 (9)
Mo4—O131.693 (4)C7—H70.9300
Mo4—O31.716 (5)C8—H80.9300
Mo4—O9i1.921 (4)C9—C101.446 (10)
Mo4—O111.945 (4)C11—C121.508 (10)
Mo4—O5i2.257 (5)C11—H11A0.9700
Mo4—O122.491 (4)C11—H11B0.9700
O14—C121.307 (7)C13—H140.9300
O15—C121.242 (8)C14—H14A0.9600
O16—C131.239 (10)C14—H14B0.9600
N1—C111.488 (8)C14—H14C0.9600
N1—H1A0.9000C15—H15A0.9600
N1—H1B0.9000C15—H15B0.9600
N2—C81.342 (9)C15—H15C0.9600
O14—Cu—N185.8 (2)Mo3—O12—Mo192.51 (14)
O14—Cu—N2174.4 (2)Mo3—O12—Mo2i91.87 (13)
N1—Cu—N299.6 (2)Mo1—O12—Mo2i163.2 (2)
O14—Cu—N393.0 (2)Mo3—O12—Mo3i104.57 (19)
N1—Cu—N3177.5 (2)Mo1—O12—Mo3i97.46 (14)
N2—Cu—N381.7 (2)Mo2i—O12—Mo3i97.08 (14)
O1—Mo1—O6104.5 (2)Mo3—O12—Mo4164.8 (2)
O1—Mo1—O11101.9 (2)Mo1—O12—Mo486.10 (14)
O6—Mo1—O11100.25 (19)Mo2i—O12—Mo485.44 (13)
O1—Mo1—O1096.6 (2)Mo3i—O12—Mo490.65 (12)
O6—Mo1—O10100.2 (2)C12—O14—Cu114.8 (5)
O11—Mo1—O10147.87 (18)C11—N1—Cu110.1 (4)
O1—Mo1—O1294.64 (17)C11—N1—H1A109.6
O6—Mo1—O12160.6 (2)Cu—N1—H1A109.6
O11—Mo1—O1278.82 (16)C11—N1—H1B109.6
O10—Mo1—O1273.67 (15)Cu—N1—H1B109.6
O1—Mo1—O7i164.75 (17)H1A—N1—H1B108.2
O6—Mo1—O7i87.88 (19)C8—N2—C10119.9 (6)
O11—Mo1—O7i84.26 (18)C8—N2—Cu125.9 (4)
O10—Mo1—O7i72.04 (16)C10—N2—Cu113.9 (5)
O12—Mo1—O7i72.68 (15)C1—N3—C9119.0 (6)
O1—Mo1—Mo385.12 (15)C1—N3—Cu126.7 (4)
O6—Mo1—Mo3135.43 (17)C9—N3—Cu114.4 (5)
O11—Mo1—Mo3120.55 (12)C13—N4—C15123.2 (7)
O10—Mo1—Mo335.24 (11)C13—N4—C14119.4 (7)
O12—Mo1—Mo341.75 (10)C15—N4—C14117.1 (6)
O7i—Mo1—Mo379.76 (10)HN1—N5—HN292.1
O8—Mo2—O2105.0 (2)HN1—N5—HN3117.9
O8—Mo2—O9101.5 (2)HN2—N5—HN3117.0
O2—Mo2—O9101.2 (2)HN1—N5—HN4125.0
O8—Mo2—O7i100.7 (2)HN2—N5—HN4116.8
O2—Mo2—O7i96.4 (2)HN3—N5—HN490.7
O9—Mo2—O7i146.90 (17)N3—C1—C2122.9 (7)
O8—Mo2—O1089.67 (19)N3—C1—H1118.5
O2—Mo2—O10163.20 (16)C2—C1—H1118.5
O9—Mo2—O1083.47 (18)C1—C2—C3118.1 (7)
O7i—Mo2—O1072.36 (16)C1—C2—H2121.0
O8—Mo2—O12i161.3 (2)C3—C2—H2121.0
O2—Mo2—O12i93.45 (17)C4—C3—C2119.5 (7)
O9—Mo2—O12i77.44 (15)C4—C3—H3120.2
O7i—Mo2—O12i73.72 (15)C2—C3—H3120.2
O10—Mo2—O12i71.65 (15)C3—C4—C9120.4 (7)
O4—Mo3—O5104.9 (2)C3—C4—H4119.8
O4—Mo3—O10100.12 (19)C9—C4—H4119.8
O5—Mo3—O1096.24 (19)C6—C5—C10118.9 (7)
O4—Mo3—O7102.04 (19)C6—C5—H5120.5
O5—Mo3—O796.87 (19)C10—C5—H5120.5
O10—Mo3—O7150.32 (16)C5—C6—C7121.9 (7)
O4—Mo3—O1298.9 (2)C5—C6—H6119.1
O5—Mo3—O12156.13 (19)C7—C6—H6119.1
O10—Mo3—O1278.15 (16)C6—C7—C8117.0 (7)
O7—Mo3—O1279.11 (16)C6—C7—H7121.5
O4—Mo3—O12i174.24 (19)C8—C7—H7121.5
O5—Mo3—O12i80.71 (18)N2—C8—C7122.5 (6)
O10—Mo3—O12i77.72 (16)N2—C8—H8118.8
O7—Mo3—O12i78.29 (15)C7—C8—H8118.8
O12—Mo3—O12i75.43 (19)N3—C9—C4120.1 (7)
O4—Mo3—Mo189.45 (15)N3—C9—C10114.3 (6)
O5—Mo3—Mo1132.20 (13)C4—C9—C10125.5 (6)
O10—Mo3—Mo135.97 (13)N2—C10—C5119.9 (7)
O7—Mo3—Mo1124.84 (12)N2—C10—C9115.5 (6)
O12—Mo3—Mo145.74 (10)C5—C10—C9124.6 (6)
O12i—Mo3—Mo185.72 (10)N1—C11—C12110.5 (5)
O13—Mo4—O3105.1 (2)N1—C11—H11A109.6
O13—Mo4—O9i103.1 (2)C12—C11—H11A109.6
O3—Mo4—O9i97.9 (2)N1—C11—H11B109.6
O13—Mo4—O11104.12 (19)C12—C11—H11B109.6
O3—Mo4—O1197.0 (2)H11A—C11—H11B108.1
O9i—Mo4—O11144.2 (2)O15—C12—O14122.6 (7)
O13—Mo4—O5i91.8 (2)O15—C12—C11119.1 (6)
O3—Mo4—O5i163.15 (19)O14—C12—C11118.2 (6)
O9i—Mo4—O5i77.85 (18)O16—C13—N4126.8 (8)
O11—Mo4—O5i78.55 (18)O16—C13—H14116.6
O13—Mo4—O12161.5 (2)N4—C13—H14116.6
O3—Mo4—O1293.44 (18)N4—C14—H14A109.5
O9i—Mo4—O1273.45 (16)N4—C14—H14B109.5
O11—Mo4—O1273.35 (15)H14A—C14—H14B109.5
O5i—Mo4—O1269.71 (15)N4—C14—H14C109.5
Mo3—O5—Mo4i118.9 (2)H14A—C14—H14C109.5
Mo3—O7—Mo2i109.0 (2)H14B—C14—H14C109.5
Mo3—O7—Mo1i108.78 (19)N4—C15—H15A109.5
Mo2i—O7—Mo1i103.33 (16)N4—C15—H15B109.5
Mo2—O9—Mo4i118.6 (2)H15A—C15—H15B109.5
Mo3—O10—Mo1108.8 (2)N4—C15—H15C109.5
Mo3—O10—Mo2110.6 (2)H15A—C15—H15C109.5
Mo1—O10—Mo2104.01 (16)H15B—C15—H15C109.5
Mo1—O11—Mo4117.12 (19)
O1—Mo1—Mo3—O40.51 (19)O5—Mo3—O12—Mo2i99.5 (4)
O6—Mo1—Mo3—O4105.2 (3)O10—Mo3—O12—Mo2i178.02 (19)
O11—Mo1—Mo3—O4101.5 (2)O7—Mo3—O12—Mo2i17.22 (17)
O10—Mo1—Mo3—O4108.2 (3)O12i—Mo3—O12—Mo2i97.81 (17)
O12—Mo1—Mo3—O4103.1 (2)Mo1—Mo3—O12—Mo2i163.8 (2)
O7i—Mo1—Mo3—O4178.49 (17)O4—Mo3—O12—Mo3i178.77 (16)
O1—Mo1—Mo3—O5110.3 (3)O5—Mo3—O12—Mo3i1.7 (5)
O6—Mo1—Mo3—O54.6 (3)O10—Mo3—O12—Mo3i80.22 (17)
O11—Mo1—Mo3—O5148.8 (3)O7—Mo3—O12—Mo3i80.58 (18)
O10—Mo1—Mo3—O51.6 (3)O12i—Mo3—O12—Mo3i0.0
O12—Mo1—Mo3—O5147.1 (3)Mo1—Mo3—O12—Mo3i98.37 (17)
O7i—Mo1—Mo3—O571.7 (2)O4—Mo3—O12—Mo44.0 (7)
O1—Mo1—Mo3—O10108.7 (3)O5—Mo3—O12—Mo4179.0 (5)
O6—Mo1—Mo3—O103.0 (3)O10—Mo3—O12—Mo4102.5 (7)
O11—Mo1—Mo3—O10150.3 (3)O7—Mo3—O12—Mo496.7 (7)
O12—Mo1—Mo3—O10148.7 (3)O12i—Mo3—O12—Mo4177.3 (7)
O7i—Mo1—Mo3—O1073.3 (2)Mo1—Mo3—O12—Mo484.4 (7)
O1—Mo1—Mo3—O7103.8 (2)O1—Mo1—O12—Mo377.3 (2)
O6—Mo1—Mo3—O7150.5 (3)O6—Mo1—O12—Mo392.3 (5)
O11—Mo1—Mo3—O72.9 (2)O11—Mo1—O12—Mo3178.6 (2)
O10—Mo1—Mo3—O7147.5 (3)O10—Mo1—O12—Mo318.19 (16)
O12—Mo1—Mo3—O71.2 (2)O7i—Mo1—O12—Mo394.00 (18)
O7i—Mo1—Mo3—O774.2 (2)O1—Mo1—O12—Mo2i27.7 (6)
O1—Mo1—Mo3—O12102.6 (2)O6—Mo1—O12—Mo2i162.7 (6)
O6—Mo1—Mo3—O12151.7 (3)O11—Mo1—O12—Mo2i73.6 (6)
O11—Mo1—Mo3—O121.6 (2)O10—Mo1—O12—Mo2i123.2 (6)
O10—Mo1—Mo3—O12148.7 (3)O7i—Mo1—O12—Mo2i161.0 (6)
O7i—Mo1—Mo3—O1275.4 (2)Mo3—Mo1—O12—Mo2i105.0 (6)
O1—Mo1—Mo3—O12i176.35 (17)O1—Mo1—O12—Mo3i177.61 (19)
O6—Mo1—Mo3—O12i77.9 (2)O6—Mo1—O12—Mo3i12.8 (6)
O11—Mo1—Mo3—O12i75.39 (19)O11—Mo1—O12—Mo3i76.36 (18)
O10—Mo1—Mo3—O12i74.9 (2)O10—Mo1—O12—Mo3i86.86 (18)
O12—Mo1—Mo3—O12i73.8 (2)O7i—Mo1—O12—Mo3i11.05 (14)
O7i—Mo1—Mo3—O12i1.63 (13)Mo3—Mo1—O12—Mo3i105.0 (2)
O4—Mo3—O5—Mo4i178.66 (19)O1—Mo1—O12—Mo487.46 (19)
O10—Mo3—O5—Mo4i76.4 (2)O6—Mo1—O12—Mo4102.9 (6)
O7—Mo3—O5—Mo4i76.9 (2)O11—Mo1—O12—Mo413.79 (16)
O12—Mo3—O5—Mo4i1.7 (5)O10—Mo1—O12—Mo4177.01 (17)
O12i—Mo3—O5—Mo4i0.01 (18)O7i—Mo1—O12—Mo4101.20 (14)
Mo1—Mo3—O5—Mo4i75.5 (3)Mo3—Mo1—O12—Mo4164.8 (2)
O4—Mo3—O7—Mo2i75.4 (2)O13—Mo4—O12—Mo3176.3 (6)
O5—Mo3—O7—Mo2i177.7 (2)O3—Mo4—O12—Mo32.7 (7)
O10—Mo3—O7—Mo2i62.1 (5)O9i—Mo4—O12—Mo394.5 (7)
O12—Mo3—O7—Mo2i21.57 (19)O11—Mo4—O12—Mo399.0 (7)
O12i—Mo3—O7—Mo2i98.76 (19)O5i—Mo4—O12—Mo3177.4 (7)
Mo1—Mo3—O7—Mo2i22.5 (3)O13—Mo4—O12—Mo198.5 (5)
O4—Mo3—O7—Mo1i172.6 (2)O3—Mo4—O12—Mo182.48 (18)
O5—Mo3—O7—Mo1i65.7 (2)O9i—Mo4—O12—Mo1179.72 (18)
O10—Mo3—O7—Mo1i49.9 (5)O11—Mo4—O12—Mo113.75 (16)
O12—Mo3—O7—Mo1i90.45 (19)O5i—Mo4—O12—Mo197.42 (15)
O12i—Mo3—O7—Mo1i13.26 (16)O13—Mo4—O12—Mo2i96.0 (5)
Mo1—Mo3—O7—Mo1i89.5 (2)O3—Mo4—O12—Mo2i83.04 (17)
O8—Mo2—O9—Mo4i178.0 (3)O9i—Mo4—O12—Mo2i14.19 (16)
O2—Mo2—O9—Mo4i70.0 (3)O11—Mo4—O12—Mo2i179.28 (19)
O7i—Mo2—O9—Mo4i50.9 (5)O5i—Mo4—O12—Mo2i97.06 (15)
O10—Mo2—O9—Mo4i93.6 (3)O13—Mo4—O12—Mo3i1.1 (6)
O12i—Mo2—O9—Mo4i21.0 (3)O3—Mo4—O12—Mo3i179.91 (16)
O4—Mo3—O10—Mo174.8 (2)O9i—Mo4—O12—Mo3i82.86 (17)
O5—Mo3—O10—Mo1178.8 (2)O11—Mo4—O12—Mo3i83.68 (17)
O7—Mo3—O10—Mo163.0 (5)O5i—Mo4—O12—Mo3i0.01 (12)
O12—Mo3—O10—Mo122.3 (2)N1—Cu—O14—C122.2 (4)
O12i—Mo3—O10—Mo199.8 (2)N3—Cu—O14—C12175.7 (4)
O4—Mo3—O10—Mo2171.6 (2)O14—Cu—N1—C115.8 (4)
O5—Mo3—O10—Mo265.2 (2)N2—Cu—N1—C11175.4 (4)
O7—Mo3—O10—Mo250.6 (5)N1—Cu—N2—C84.3 (5)
O12—Mo3—O10—Mo291.3 (2)N3—Cu—N2—C8177.9 (5)
O12i—Mo3—O10—Mo213.88 (16)N1—Cu—N2—C10178.2 (4)
Mo1—Mo3—O10—Mo2113.7 (2)N3—Cu—N2—C103.9 (4)
O1—Mo1—O10—Mo371.8 (2)O14—Cu—N3—C12.1 (5)
O6—Mo1—O10—Mo3177.9 (2)N2—Cu—N3—C1179.3 (5)
O11—Mo1—O10—Mo353.3 (4)O14—Cu—N3—C9176.9 (4)
O12—Mo1—O10—Mo321.12 (18)N2—Cu—N3—C91.7 (4)
O7i—Mo1—O10—Mo397.8 (2)C9—N3—C1—C20.6 (9)
O1—Mo1—O10—Mo2170.27 (17)Cu—N3—C1—C2179.6 (4)
O6—Mo1—O10—Mo264.2 (2)N3—C1—C2—C30.4 (10)
O11—Mo1—O10—Mo264.6 (4)C1—C2—C3—C42.0 (10)
O12—Mo1—O10—Mo296.81 (17)C2—C3—C4—C92.6 (10)
O7i—Mo1—O10—Mo220.18 (13)C10—C5—C6—C70.5 (11)
Mo3—Mo1—O10—Mo2117.9 (3)C5—C6—C7—C80.7 (10)
O8—Mo2—O10—Mo3166.0 (2)C10—N2—C8—C70.5 (9)
O2—Mo2—O10—Mo343.0 (7)Cu—N2—C8—C7174.1 (4)
O9—Mo2—O10—Mo364.4 (2)C6—C7—C8—N21.2 (9)
O7i—Mo2—O10—Mo392.7 (2)C1—N3—C9—C40.0 (8)
O12i—Mo2—O10—Mo314.51 (17)Cu—N3—C9—C4179.1 (4)
O8—Mo2—O10—Mo177.4 (2)C1—N3—C9—C10178.5 (5)
O2—Mo2—O10—Mo173.7 (7)Cu—N3—C9—C100.6 (6)
O9—Mo2—O10—Mo1178.95 (18)C3—C4—C9—N31.6 (9)
O7i—Mo2—O10—Mo123.95 (16)C3—C4—C9—C10179.9 (6)
O12i—Mo2—O10—Mo1102.15 (17)C8—N2—C10—C50.8 (8)
O1—Mo1—O11—Mo472.4 (3)Cu—N2—C10—C5173.6 (4)
O6—Mo1—O11—Mo4179.8 (3)C8—N2—C10—C9179.7 (5)
O10—Mo1—O11—Mo451.4 (5)Cu—N2—C10—C95.4 (6)
O12—Mo1—O11—Mo420.0 (2)C6—C5—C10—N21.3 (9)
O7i—Mo1—O11—Mo493.4 (3)C6—C5—C10—C9179.9 (6)
Mo3—Mo1—O11—Mo418.9 (3)N3—C9—C10—N24.0 (7)
O13—Mo4—O11—Mo1179.9 (3)C4—C9—C10—N2177.7 (5)
O3—Mo4—O11—Mo172.6 (3)N3—C9—C10—C5174.9 (5)
O9i—Mo4—O11—Mo141.4 (4)C4—C9—C10—C53.4 (10)
O5i—Mo4—O11—Mo190.9 (3)Cu—N1—C11—C128.0 (6)
O12—Mo4—O11—Mo118.9 (2)Cu—O14—C12—O15179.6 (4)
O4—Mo3—O12—Mo180.40 (18)Cu—O14—C12—C112.2 (7)
O5—Mo3—O12—Mo196.6 (4)N1—C11—C12—O15174.8 (5)
O10—Mo3—O12—Mo118.16 (17)N1—C11—C12—O146.9 (8)
O7—Mo3—O12—Mo1178.96 (19)C15—N4—C13—O16178.7 (7)
O12i—Mo3—O12—Mo198.37 (16)C14—N4—C13—O165.2 (10)
O4—Mo3—O12—Mo2i83.42 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.902.323.093 (7)144
N1—H1B···O60.902.012.863 (6)158
N5—HN1···O10.902.102.888 (7)146
N5—HN2···O40.952.133.028 (8)158
N5—HN3···O15iii0.951.942.761 (8)143
N5—HN4···O14iii0.982.263.132 (7)148
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formula(NH4)2[Cu(C2H4NO2)(C10H8N2)(C3H7NO)]2[Mo8O26]
Mr1953.38
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.222 (2), 10.849 (2), 13.020 (3)
α, β, γ (°)81.82 (3), 69.91 (2), 81.61 (3)
V3)1334.9 (5)
Z1
Radiation typeMo Kα
µ (mm1)2.70
Crystal size (mm)0.28 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.530, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
10864, 4889, 3591
Rint0.071
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 0.99
No. of reflections4889
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.83

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXTL (Bruker, 1997), SHELXTL (Bruker, 1997, DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Cu—O141.925 (4)Mo2—O102.340 (4)
Cu—O162.604 (4)Mo2—O12i2.346 (4)
Cu—N11.985 (6)Mo3—O41.696 (5)
Cu—N21.989 (6)Mo3—O51.756 (5)
Cu—N31.990 (6)Mo3—O101.960 (4)
Mo1—O11.705 (5)Mo3—O71.967 (4)
Mo1—O61.720 (4)Mo3—O122.143 (4)
Mo1—O111.896 (4)Mo3—O12i2.380 (4)
Mo1—O101.995 (5)Mo4—O131.693 (4)
Mo1—O122.306 (4)Mo4—O31.716 (5)
Mo1—O7i2.356 (5)Mo4—O9i1.921 (4)
Mo2—O81.699 (4)Mo4—O111.945 (4)
Mo2—O21.722 (5)Mo4—O5i2.257 (5)
Mo2—O91.897 (4)Mo4—O122.491 (4)
Mo2—O7i1.998 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.902.323.093 (7)144
N1—H1B···O60.902.012.863 (6)158
N5—HN1···O10.902.102.888 (7)146
N5—HN2···O40.952.133.028 (8)158
N5—HN3···O15iii0.951.942.761 (8)143
N5—HN4···O14iii0.982.263.132 (7)148
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y, z1.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Heilong Jiang Province (grant No. 20083145).

References

First citationAllis, D. G., Rarig, R. S., Burkholder, E. & Zubieta, J. (2004). J. Mol. Struct. 688, 11–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m305-m306
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds