metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2,2′-[1,1′-(ethane-1,2-diyldi­nitrilo)di­ethyl­­idyne]diphenolato-κ5O,N,N′,O′:O}bis­­[chloridomanganese(III)]

aDepartment of Chemistry, SN College, Varkala, Kerala 695 145, India, bDepartment of Chemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India, and cDepartment of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dasthampi@hotmail.com

(Received 12 December 2007; accepted 3 January 2008; online 9 January 2008)

The title compound, [Mn2(C18H18N2O2)2Cl2], was synthesized by the reaction between manganese(II) o-chloro­benzoate and the Schiff base generated in situ by the condensation of ethane-1,2-diamine and o-hydroxy­acetophenone. The centrosymmetric dimer contains two Jahn–Teller-distorted mangan­ese(III) ions, each in an octa­hedral geometry, connected through two phen­oxy bridges from two ligands.

Related literature

For related literature, see: Christou (2005[Christou, G. (2005). Polyhedron, 24, 2065-2075.]); Horwitz et al. (1995[Horwitz, C. P., Dailey, G. C. & Tham, F. S. (1995). Acta Cryst. C51, 815-817.]); Jacobsen et al. (1991[Jacobsen, E. N., Güler, M. L. & Zhang, W. (1991). J. Am. Chem. Soc. 113, 6703-6704.]); Larrow & Jacobsen (2004[Larrow, J. F. & Jacobsen, E. N. (2004). Organomet. Chem. 6, 123-152.]); Panja et al. (2003[Panja, A., Shaikha, N., Alib, M., Vojtíekc, P. & Banerjee, P. (2003). Polyhedron, 22, 1191-1198.]); Pecoraro & Butler (1986[Pecoraro, V. L. & Butler, W. M. (1986). Acta Cryst. C42, 1151-1154.]); Saha et al. (2004[Saha, S., Mal, D., Koner, S., Bhattacherjee, A., Gütlich, P., Mondal, S., Mukherjee, M. & Okamoto, K.-I. (2004). Polyhedron, 23, 1811-1817.]); Triller et al. (2002[Triller, M. U., Hsieh, W.-Y., Pecoraro, V. L., Rompel, A. & Krebs, B. (2002). Inorg. Chem. 41, 5544-5554.]); Vites & Lynam (1998[Vites, C. J. & Lynam, M. M. (1998). Coord. Chem. Rev. 172, 319-356.]); Zhang et al. (1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C18H18N2O2)2Cl2]

  • Mr = 769.47

  • Triclinic, [P \overline 1]

  • a = 7.8261 (3) Å

  • b = 9.8046 (3) Å

  • c = 11.2372 (4) Å

  • α = 97.207 (2)°

  • β = 94.701 (2)°

  • γ = 108.081 (2)°

  • V = 806.49 (5) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 8.29 mm−1

  • T = 100 (2) K

  • 0.28 × 0.14 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SAINT-Plus; Bruker, 2004[Bruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.205, Tmax = 0.390 (expected range = 0.165–0.313)

  • 12822 measured reflections

  • 2781 independent reflections

  • 2733 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.10

  • 2781 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O2 1.8738 (16)
Mn1—O1 1.9191 (16)
Mn1—N1 1.9964 (19)
Mn1—N2 2.0129 (19)
Mn1—Cl1 2.4633 (6)
Mn1—O1i 2.4720 (16)
O2—Mn1—O1 95.14 (7)
O2—Mn1—N1 170.58 (8)
O1—Mn1—N1 87.86 (7)
O2—Mn1—N2 90.36 (7)
O1—Mn1—N2 163.69 (8)
N1—Mn1—N2 84.44 (8)
O2—Mn1—Cl1 95.48 (5)
O1—Mn1—Cl1 96.66 (5)
N1—Mn1—Cl1 93.03 (6)
N2—Mn1—Cl1 98.09 (6)
O2—Mn1—O1i 88.58 (6)
O1—Mn1—O1i 77.02 (7)
N1—Mn1—O1i 83.39 (7)
N2—Mn1—O1i 87.80 (7)
Cl1—Mn1—O1i 172.81 (4)
Mn1—O1—Mn1i 102.98 (7)
Symmetry code: (i) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Manganese coordination chemistry, in recent decades, has been in intense research focus in connection with developments in diverse fields as bioinorganic modeling (Triller et al., 2002), asymmetric catalysis (Larrow & Jacobsen, 2004), molecular magnetism (Christou, 2005) etc. Schiff base ligands with nitrogen and oxygen donor atoms seem to stabilize the various oxidation states of manganese better than any other ligand systems, as it is evident from the sheer number of publications in this area (Vites & Lynam, 1998). The penta-coordinate [Mn(salen)Cl] (H2salen = N,N'-bis(salicylidene)-1,2-diaminoethane) was one of the earliest crystallographically characterized manganese(III) Schiff base complexes (Pecoraro & Butler, 1986). This may be considered as a prototype molecule, that has led to the development of large number of manganese(III) complexes with a square planar MnN2O2 core, stabilized by a chiral-salen ligand and a chloride ion in the axial position (Zhang et al., 1990; Jacobsen et al., 1991). In our effort to synthesize dimeric manganese(III) complexes of a salen-like ligand, N,N'-bis(o-hydroxyacetophenonylidene)-1,2-diaminoethane with o-chlorobenzoate as an ancillary ligand, we unexpectedly obtained a dimeric manganese(III) complex stabilized by the Schiff base and two axial chloride ligands. Here we report the crystal structure of the new dichloride dimer (Fig. 1).

In the title compound, the centrosymmetric dimer is crystallographically half independent and consists of two MnIII atoms, linked by two phenolic O atoms of two ligands. Two Mn—N bonds and two Mn—O bonds complete the equatorial square plane geometry around the MnIII atom (Table 1). This leaves the two axial positions open for coordination to the Cl atoms, leading to the formation of a rare dichloride dimer. Jahn-Teller distortion elongates the Mn—Cl bond [Mn1—Cl1 = 2.4633 (6) Å] substantially, which is comparable to the Mn—Cl bond length of 2.461 (1)Å in the square pyramidal [Mn(salen)Cl] (Pecoraro & Butler, 1986). But the elongation is not as much as seen in the square pyramidal [Mn(5—Cl-salen)Cl] (Horwitz et al., 1995) and octahedral [Mn(salen)Cl(H2O)] (Panja et al., 2003), where Mn—Cl distances are 2.572 (1) Å and 2.621 (6) Å, respectively. Jahn-Teller effect is also apparent in the longer Mn—O bond [Mn1—O1 = 2.4720 (16) Å] of the Mn2(µ-O)2 diamond core of the dimer. This makes the Mn—O—Mn bridge of the complex considerably weaker than that in the diazide dimer [Mn2(L)2(N3)2] (H2L = N,N'-bis(o-hydroxyacetophenonylidene)-1,2-diaminoethane) (Saha et al., 2004), where the corresponding bond length is 2.375 (5) Å. The Mn···Mn separation in the title compound is 3.453 (2) Å, compared to 3.341 (2)Å in [Mn2(L)2(N3)2].

Related literature top

For related literature, see: Christou (2005); Horwitz et al. (1995); Jacobsen et al. (1991); Larrow & Jacobsen (2004); Panja et al. (2003); Pecoraro & Butler (1986); Saha et al. (2004); Triller et al. (2002); Vites & Lynam (1998); Zhang et al. (1990).

Experimental top

To a solution of Mn(o—Cl—C6H4CO2)2.2H2O (1.00 g, 2.49 mmol) and o-hydroxyacetophenone (0.68 g, 4.98 mmol) in methanol (40 ml), ethane-1,2-diamine (0.14 g, 2.49 mmol) was added. The solution was stirred for 20 min, filtered and left to evaporation in an open conical flask. Brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air (yield 0.80 g, 80.6% based on Mn).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.99Å (CH2) and Uiso(H) = 1.2Ueq(C), and with C—H = 0.98Å (CH3) and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, 2 - y, -z.]
Bis{µ-2,2'-[1,1'-(ethane-1,2-diyldinitrilo)diethylidyne]diphenolato- κ5O,N,N',O':O}bis[chloridomanganese(III)] top
Crystal data top
[Mn2(C18H18N2O2)2Cl2]Z = 1
Mr = 769.47F(000) = 396
Triclinic, P1Dx = 1.584 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.8261 (3) ÅCell parameters from 2781 reflections
b = 9.8046 (3) Åθ = 9.8–71.6°
c = 11.2372 (4) ŵ = 8.29 mm1
α = 97.207 (2)°T = 100 K
β = 94.701 (2)°Prism, brown
γ = 108.081 (2)°0.28 × 0.14 × 0.14 mm
V = 806.49 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2781 independent reflections
Radiation source: fine-focus sealed tube2733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 67.0°, θmin = 4.0°
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 2004)
h = 99
Tmin = 0.205, Tmax = 0.390k = 1111
12822 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0396P)2 + 1.0982P]
where P = (Fo2 + 2Fc2)/3
2781 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Mn2(C18H18N2O2)2Cl2]γ = 108.081 (2)°
Mr = 769.47V = 806.49 (5) Å3
Triclinic, P1Z = 1
a = 7.8261 (3) ÅCu Kα radiation
b = 9.8046 (3) ŵ = 8.29 mm1
c = 11.2372 (4) ÅT = 100 K
α = 97.207 (2)°0.28 × 0.14 × 0.14 mm
β = 94.701 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2781 independent reflections
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 2004)
2733 reflections with I > 2σ(I)
Tmin = 0.205, Tmax = 0.390Rint = 0.033
12822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
2781 reflectionsΔρmin = 0.44 e Å3
219 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.03321 (5)0.93493 (4)0.13283 (3)0.00849 (13)
Cl10.23277 (7)0.82169 (6)0.23406 (5)0.01447 (15)
O10.1568 (2)0.96398 (17)0.00716 (14)0.0108 (3)
O20.1517 (2)1.12309 (17)0.21677 (14)0.0118 (3)
N10.1287 (3)0.7452 (2)0.04014 (18)0.0107 (4)
N20.1560 (3)0.9047 (2)0.24675 (17)0.0109 (4)
C180.1226 (3)1.1893 (3)0.3192 (2)0.0114 (5)
C120.1614 (3)0.9876 (3)0.3457 (2)0.0107 (5)
C50.1437 (3)0.6051 (3)0.1622 (2)0.0137 (5)
H50.06870.50630.17700.016*
C70.0921 (3)0.6659 (2)0.0498 (2)0.0112 (5)
C80.2364 (3)0.5291 (3)0.1141 (2)0.0142 (5)
H8A0.25280.45280.06340.021*
H8B0.19930.49700.19100.021*
H8C0.35090.54880.12970.021*
C20.3629 (3)0.8946 (3)0.1229 (2)0.0119 (5)
H20.43790.99340.11090.014*
C10.2018 (3)0.8569 (2)0.0705 (2)0.0102 (4)
C110.3108 (3)0.9334 (3)0.4225 (2)0.0160 (5)
H11A0.42500.93750.38300.024*
H11B0.28020.99460.50220.024*
H11C0.32380.83280.43210.024*
C90.3112 (3)0.7098 (3)0.0770 (2)0.0135 (5)
H9A0.37380.60360.05770.016*
H9B0.38290.75880.03230.016*
C130.0262 (3)1.1327 (3)0.3837 (2)0.0123 (5)
C140.0442 (3)1.2227 (3)0.4882 (2)0.0158 (5)
H140.14391.18740.53150.019*
C60.0872 (3)0.7094 (3)0.0912 (2)0.0106 (4)
C170.2500 (3)1.3270 (3)0.3664 (2)0.0141 (5)
H170.35421.36220.32700.017*
C100.2963 (3)0.7598 (3)0.2119 (2)0.0139 (5)
H10A0.41460.76520.23310.017*
H10B0.26370.68890.25690.017*
C30.4149 (3)0.7907 (3)0.1920 (2)0.0138 (5)
H30.52470.81830.22690.017*
C160.2281 (3)1.4120 (3)0.4680 (2)0.0165 (5)
H160.31421.50540.49630.020*
C40.3054 (3)0.6445 (3)0.2101 (2)0.0146 (5)
H40.34260.57260.25550.018*
C150.0780 (4)1.3594 (3)0.5286 (2)0.0184 (5)
H150.06041.41770.59760.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0089 (2)0.0085 (2)0.0068 (2)0.00102 (14)0.00293 (13)0.00013 (14)
Cl10.0154 (3)0.0175 (3)0.0120 (3)0.0072 (2)0.0016 (2)0.0030 (2)
O10.0127 (8)0.0106 (8)0.0091 (8)0.0036 (6)0.0037 (6)0.0006 (6)
O20.0130 (8)0.0121 (8)0.0087 (8)0.0018 (6)0.0039 (6)0.0004 (6)
N10.0095 (9)0.0113 (9)0.0110 (10)0.0017 (7)0.0032 (7)0.0036 (8)
N20.0104 (9)0.0115 (9)0.0110 (10)0.0028 (8)0.0027 (7)0.0031 (8)
C180.0136 (11)0.0143 (11)0.0085 (11)0.0074 (9)0.0005 (9)0.0026 (9)
C120.0108 (11)0.0160 (11)0.0078 (11)0.0072 (9)0.0015 (8)0.0042 (9)
C50.0182 (12)0.0103 (11)0.0109 (11)0.0027 (9)0.0004 (9)0.0008 (9)
C70.0159 (12)0.0108 (11)0.0068 (11)0.0040 (9)0.0004 (9)0.0029 (9)
C80.0142 (12)0.0132 (11)0.0129 (12)0.0017 (9)0.0029 (9)0.0004 (9)
C20.0119 (11)0.0135 (11)0.0089 (11)0.0027 (9)0.0011 (9)0.0021 (9)
C10.0121 (11)0.0128 (11)0.0061 (10)0.0052 (9)0.0004 (8)0.0011 (9)
C110.0154 (12)0.0188 (12)0.0129 (12)0.0037 (10)0.0059 (9)0.0014 (10)
C90.0094 (11)0.0138 (11)0.0154 (12)0.0012 (9)0.0037 (9)0.0011 (9)
C130.0139 (12)0.0150 (11)0.0087 (11)0.0056 (9)0.0014 (9)0.0015 (9)
C140.0166 (12)0.0207 (12)0.0108 (12)0.0064 (10)0.0044 (9)0.0023 (10)
C60.0117 (11)0.0136 (11)0.0062 (10)0.0041 (9)0.0009 (8)0.0015 (9)
C170.0143 (12)0.0150 (11)0.0121 (11)0.0029 (9)0.0028 (9)0.0029 (9)
C100.0119 (11)0.0134 (11)0.0148 (12)0.0005 (9)0.0057 (9)0.0039 (9)
C30.0117 (11)0.0199 (12)0.0096 (11)0.0049 (9)0.0027 (9)0.0009 (9)
C160.0194 (13)0.0137 (11)0.0135 (12)0.0028 (10)0.0005 (9)0.0010 (10)
C40.0169 (12)0.0154 (12)0.0123 (12)0.0078 (10)0.0021 (9)0.0021 (9)
C150.0242 (13)0.0196 (13)0.0117 (12)0.0089 (11)0.0035 (10)0.0021 (10)
Geometric parameters (Å, º) top
Mn1—O21.8738 (16)C8—H8C0.9800
Mn1—O11.9191 (16)C2—C31.385 (3)
Mn1—N11.9964 (19)C2—C11.400 (3)
Mn1—N22.0129 (19)C2—H20.9500
Mn1—Cl12.4633 (6)C1—C61.423 (3)
Mn1—O1i2.4720 (16)C11—H11A0.9800
O1—C11.348 (3)C11—H11B0.9800
O1—Mn1i2.4720 (16)C11—H11C0.9800
O2—C181.321 (3)C9—C101.517 (3)
N1—C71.302 (3)C9—H9A0.9900
N1—C91.469 (3)C9—H9B0.9900
N2—C121.305 (3)C13—C141.422 (3)
N2—C101.483 (3)C14—C151.378 (4)
C18—C171.413 (3)C14—H140.9500
C18—C131.424 (3)C17—C161.382 (3)
C12—C131.471 (3)C17—H170.9500
C12—C111.513 (3)C10—H10A0.9900
C5—C41.379 (4)C10—H10B0.9900
C5—C61.418 (3)C3—C41.402 (3)
C5—H50.9500C3—H30.9500
C7—C61.467 (3)C16—C151.398 (4)
C7—C81.510 (3)C16—H160.9500
C8—H8A0.9800C4—H40.9500
C8—H8B0.9800C15—H150.9500
O2—Mn1—O195.14 (7)O1—C1—C2118.2 (2)
O2—Mn1—N1170.58 (8)O1—C1—C6122.4 (2)
O1—Mn1—N187.86 (7)C2—C1—C6119.3 (2)
O2—Mn1—N290.36 (7)C12—C11—H11A109.5
O1—Mn1—N2163.69 (8)C12—C11—H11B109.5
N1—Mn1—N284.44 (8)H11A—C11—H11B109.5
O2—Mn1—Cl195.48 (5)C12—C11—H11C109.5
O1—Mn1—Cl196.66 (5)H11A—C11—H11C109.5
N1—Mn1—Cl193.03 (6)H11B—C11—H11C109.5
N2—Mn1—Cl198.09 (6)N1—C9—C10109.25 (19)
O2—Mn1—O1i88.58 (6)N1—C9—H9A109.8
O1—Mn1—O1i77.02 (7)C10—C9—H9A109.8
N1—Mn1—O1i83.39 (7)N1—C9—H9B109.8
N2—Mn1—O1i87.80 (7)C10—C9—H9B109.8
Cl1—Mn1—O1i172.81 (4)H9A—C9—H9B108.3
C1—O1—Mn1121.87 (14)C14—C13—C18117.7 (2)
C1—O1—Mn1i112.89 (13)C14—C13—C12119.4 (2)
Mn1—O1—Mn1i102.98 (7)C18—C13—C12122.9 (2)
C18—O2—Mn1130.34 (15)C15—C14—C13122.2 (2)
C7—N1—C9121.6 (2)C15—C14—H14118.9
C7—N1—Mn1127.36 (16)C13—C14—H14118.9
C9—N1—Mn1110.67 (14)C5—C6—C1118.3 (2)
C12—N2—C10119.38 (19)C5—C6—C7119.8 (2)
C12—N2—Mn1129.33 (16)C1—C6—C7121.7 (2)
C10—N2—Mn1111.08 (14)C16—C17—C18122.1 (2)
O2—C18—C17116.5 (2)C16—C17—H17118.9
O2—C18—C13125.0 (2)C18—C17—H17118.9
C17—C18—C13118.5 (2)N2—C10—C9109.88 (18)
N2—C12—C13121.5 (2)N2—C10—H10A109.7
N2—C12—C11119.1 (2)C9—C10—H10A109.7
C13—C12—C11119.4 (2)N2—C10—H10B109.7
C4—C5—C6121.3 (2)C9—C10—H10B109.7
C4—C5—H5119.4H10A—C10—H10B108.2
C6—C5—H5119.4C2—C3—C4119.9 (2)
N1—C7—C6120.7 (2)C2—C3—H3120.1
N1—C7—C8119.9 (2)C4—C3—H3120.1
C6—C7—C8119.4 (2)C17—C16—C15119.4 (2)
C7—C8—H8A109.5C17—C16—H16120.3
C7—C8—H8B109.5C15—C16—H16120.3
H8A—C8—H8B109.5C5—C4—C3119.9 (2)
C7—C8—H8C109.5C5—C4—H4120.0
H8A—C8—H8C109.5C3—C4—H4120.0
H8B—C8—H8C109.5C14—C15—C16119.8 (2)
C3—C2—C1121.3 (2)C14—C15—H15120.1
C3—C2—H2119.4C16—C15—H15120.1
C1—C2—H2119.4
O2—Mn1—O1—C1144.83 (16)Mn1—N1—C7—C8176.24 (16)
N1—Mn1—O1—C144.12 (17)Mn1—O1—C1—C2145.77 (17)
N2—Mn1—O1—C1105.9 (3)Mn1i—O1—C1—C290.9 (2)
Cl1—Mn1—O1—C148.69 (16)Mn1—O1—C1—C637.8 (3)
O1i—Mn1—O1—C1127.83 (18)Mn1i—O1—C1—C685.5 (2)
O2—Mn1—O1—Mn1i87.35 (7)C3—C2—C1—O1178.2 (2)
N1—Mn1—O1—Mn1i83.71 (7)C3—C2—C1—C61.7 (3)
N2—Mn1—O1—Mn1i21.9 (3)C7—N1—C9—C10149.6 (2)
Cl1—Mn1—O1—Mn1i176.51 (4)Mn1—N1—C9—C1036.7 (2)
O1i—Mn1—O1—Mn1i0.0O2—C18—C13—C14175.6 (2)
O1—Mn1—O2—C18172.36 (19)C17—C18—C13—C144.1 (3)
N2—Mn1—O2—C187.7 (2)O2—C18—C13—C123.3 (4)
Cl1—Mn1—O2—C1890.43 (19)C17—C18—C13—C12177.0 (2)
O1i—Mn1—O2—C1895.52 (19)N2—C12—C13—C14176.1 (2)
O1—Mn1—N1—C725.1 (2)C11—C12—C13—C143.6 (3)
N2—Mn1—N1—C7169.3 (2)N2—C12—C13—C182.9 (3)
Cl1—Mn1—N1—C771.4 (2)C11—C12—C13—C18177.4 (2)
O1i—Mn1—N1—C7102.3 (2)C18—C13—C14—C151.2 (4)
O1—Mn1—N1—C9148.16 (15)C12—C13—C14—C15179.8 (2)
N2—Mn1—N1—C917.44 (15)C4—C5—C6—C10.1 (3)
Cl1—Mn1—N1—C9115.28 (14)C4—C5—C6—C7175.1 (2)
O1i—Mn1—N1—C970.98 (15)O1—C1—C6—C5178.0 (2)
O2—Mn1—N2—C127.3 (2)C2—C1—C6—C51.6 (3)
O1—Mn1—N2—C12117.2 (3)O1—C1—C6—C73.1 (3)
N1—Mn1—N2—C12179.4 (2)C2—C1—C6—C7173.3 (2)
Cl1—Mn1—N2—C1288.3 (2)N1—C7—C6—C5161.2 (2)
O1i—Mn1—N2—C1295.9 (2)C8—C7—C6—C520.0 (3)
O2—Mn1—N2—C10178.04 (15)N1—C7—C6—C124.0 (3)
O1—Mn1—N2—C1068.1 (3)C8—C7—C6—C1154.8 (2)
N1—Mn1—N2—C105.90 (15)O2—C18—C17—C16175.2 (2)
Cl1—Mn1—N2—C1086.38 (15)C13—C18—C17—C164.5 (4)
O1i—Mn1—N2—C1089.48 (15)C12—N2—C10—C9157.5 (2)
Mn1—O2—C18—C17172.84 (15)Mn1—N2—C10—C927.3 (2)
Mn1—O2—C18—C137.4 (3)N1—C9—C10—N241.7 (3)
C10—N2—C12—C13179.6 (2)C1—C2—C3—C40.1 (4)
Mn1—N2—C12—C136.2 (3)C18—C17—C16—C151.8 (4)
C10—N2—C12—C110.2 (3)C6—C5—C4—C31.9 (4)
Mn1—N2—C12—C11174.11 (16)C2—C3—C4—C51.9 (4)
C9—N1—C7—C6175.2 (2)C13—C14—C15—C161.5 (4)
Mn1—N1—C7—C62.5 (3)C17—C16—C15—C141.2 (4)
C9—N1—C7—C83.6 (3)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Mn2(C18H18N2O2)2Cl2]
Mr769.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8261 (3), 9.8046 (3), 11.2372 (4)
α, β, γ (°)97.207 (2), 94.701 (2), 108.081 (2)
V3)806.49 (5)
Z1
Radiation typeCu Kα
µ (mm1)8.29
Crystal size (mm)0.28 × 0.14 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SAINT-Plus; Bruker, 2004)
Tmin, Tmax0.205, 0.390
No. of measured, independent and
observed [I > 2σ(I)] reflections
12822, 2781, 2733
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.10
No. of reflections2781
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.44

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
Mn1—O21.8738 (16)Mn1—N22.0129 (19)
Mn1—O11.9191 (16)Mn1—Cl12.4633 (6)
Mn1—N11.9964 (19)Mn1—O1i2.4720 (16)
O2—Mn1—O195.14 (7)N1—Mn1—Cl193.03 (6)
O2—Mn1—N1170.58 (8)N2—Mn1—Cl198.09 (6)
O1—Mn1—N187.86 (7)O2—Mn1—O1i88.58 (6)
O2—Mn1—N290.36 (7)O1—Mn1—O1i77.02 (7)
O1—Mn1—N2163.69 (8)N1—Mn1—O1i83.39 (7)
N1—Mn1—N284.44 (8)N2—Mn1—O1i87.80 (7)
O2—Mn1—Cl195.48 (5)Cl1—Mn1—O1i172.81 (4)
O1—Mn1—Cl196.66 (5)Mn1—O1—Mn1i102.98 (7)
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

The authors acknowledge the authorities of SN College, Varkala, Kerala, India, for access to the college facilities for this research. The authors also acknowledge the NSF (grant No. CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

References

First citationBruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristou, G. (2005). Polyhedron, 24, 2065–2075.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHorwitz, C. P., Dailey, G. C. & Tham, F. S. (1995). Acta Cryst. C51, 815–817.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobsen, E. N., Güler, M. L. & Zhang, W. (1991). J. Am. Chem. Soc. 113, 6703–6704.  CrossRef CAS Web of Science Google Scholar
First citationLarrow, J. F. & Jacobsen, E. N. (2004). Organomet. Chem. 6, 123–152.  CAS Google Scholar
First citationPanja, A., Shaikha, N., Alib, M., Vojtíekc, P. & Banerjee, P. (2003). Polyhedron, 22, 1191–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationPecoraro, V. L. & Butler, W. M. (1986). Acta Cryst. C42, 1151–1154.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaha, S., Mal, D., Koner, S., Bhattacherjee, A., Gütlich, P., Mondal, S., Mukherjee, M. & Okamoto, K.-I. (2004). Polyhedron, 23, 1811–1817.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTriller, M. U., Hsieh, W.-Y., Pecoraro, V. L., Rompel, A. & Krebs, B. (2002). Inorg. Chem. 41, 5544–5554.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVites, C. J. & Lynam, M. M. (1998). Coord. Chem. Rev. 172, 319–356.  Web of Science CrossRef CAS Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds