metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m432-m433

catena-Poly[[[trans-di­aqua­bis­(pyridine-κN)cobalt(II)]-μ-(4-{N′-[1-(3-acetyl-4-methyl-1H-pyrazol-5-yl)ethyl­­idene]hydrazino}benzoato-κ3O:N,N′)-[bis­­(pyridine-κN)cobalt(III)]-μ-(4-{N′-[1-(3-acetyl-4-methyl-1H-pyrazol-5-yl)ethyl­­idene]hydrazino}benzoato-κ3N,N′:O)]perchlorate 3.66-hydrate]

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kiev, Ukraine, bUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland, and cInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
*Correspondence e-mail: ifritsky@univ.kiev.ua

(Received 29 November 2007; accepted 24 January 2008; online 30 January 2008)

The title compound, {[Co2(C15H14N4O3)2(C5H5N)4(H2O)2]ClO4·3.66H2O}n, is a one-dimensional coordination polymer, with both CoII and CoIII centres in its structure. The ligand environment surrounding CoIII is formed by two N,N-chelating pyrazole-containing ligands and two pyridine mol­ecules in axial positions. The high-spin CoII ions, situated at crystallographic centres of inversion, exhibit a distorted octa­hedral coordination mode. The ClO4 anion is linked to the polymer chain via hydrogen bonds. The chains are connected by hydrogen bonds to produce a three-dimensional structure.

Related literature

For related literature, see: Dalai et al. (2002[Dalai, S., Mukherjee, P. S., Drew, M. G. B., Lu, T.-H. & Chaudhuri, N. R. (2002). Inorg. Chim. Acta, 335, 85-90.]); Eisenwiener et al. (2007[Eisenwiener, A., Neuburger, M. & Kaden, T. A. (2007). Dalton Trans. pp. 218-233.]); James (2003[James, S. (2003). Chem. Soc. Rev. 32, 276-288.]); Li & Xiao (2004[Li, X.-H. & Xiao, H.-P. (2004). Acta Cryst. E60, m898-m900.]); Min et al. (2002[Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143-146.]); Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]); Sato et al. (1999[Sato, S., Fukuda, T., Ishii, K., Nakano, Y. & Fujii, Y. (1999). Acta Cryst. C55, 1466-1470.]); Takahashi et al. (2006[Takahashi, P. M., Melo, L. P., Frem, R. C. G., Netto, A. V. G., Mauro, A. E., Santos, R. H. A. & Ferreira, J. G. (2006). J. Mol. Struct. 783, 161-167.]); Xiao et al. (2005[Xiao, H.-P., Wang, J.-G., Li, X.-H., Hu, M.-L. & Zhang, W.-B. (2005). Acta Cryst. E61, m257-m259.]); Yin et al. (2007[Yin, G., Zhang, Y., Li, B. & Zhang, Y. (2007). J. Mol. Struct. 837, 263-268.]); Zhu et al. (2004[Zhu, Z.-B., Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m808-m810.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C15H14N4O3)2(C5H5N)4(H2O)2]ClO4·3.66H2O

  • Mr = 1232.38

  • Triclinic, [P \overline 1]

  • a = 10.1128 (2) Å

  • b = 13.9615 (4) Å

  • c = 20.1840 (6) Å

  • α = 85.969 (2)°

  • β = 80.844 (2)°

  • γ = 84.660 (2)°

  • V = 2796.79 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 120 (2) K

  • 0.22 × 0.14 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.866, Tmax = 0.959

  • 37217 measured reflections

  • 9843 independent reflections

  • 7347 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.04

  • 9843 reflections

  • 763 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.96 1.76 2.677 (3) 159
O1—H1P⋯O10 0.91 2.02 2.903 (4) 166
O1—H1P⋯Cl1 0.91 2.91 3.795 (2) 166
O8—H8O⋯O13i 0.95 1.86 2.789 (4) 166
O8—H8P⋯O6ii 0.93 1.84 2.734 (4) 161
O13—H13O⋯O4 0.91 2.01 2.909 (4) 167
O13—H13P⋯O14iii 0.93 1.94 2.835 (5) 160
O14—H14O⋯O15 0.95 1.86 2.809 (7) 178
O14—H14P⋯O6 0.96 1.83 2.751 (5) 162
N2—H2N⋯N8 0.95 2.03 2.924 (4) 155
N2—H2N⋯N9 0.95 2.54 3.173 (4) 124
N11—H11N⋯N5 0.97 1.98 2.864 (4) 151
N11—H11N⋯N4 0.97 2.49 3.092 (4) 120
Symmetry codes: (i) -x+1, -y+2, -z-1; (ii) -x+1, -y+1, -z-1; (iii) -x+2, -y+2, -z-1.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole-based chelating ligands form a variety of coordination complexes providing various coordination geometries and nuclearities (Mukherjee, 2000; Eisenwiener et al., 2007). They are also capable to form coordination polymers which are of great interest from the point of view of material chemistry and condensed matter physics (Dalai et al., 2002; James, 2003; Min et al., 2002; Takahashi et al., 2006; Yin et al., 2007). As it was previously reported (Li & Xiao 2004; Xiao et al., 2005), rigid bridging ligands such as terephthalate anion and its derivatives are good precursors for zigzag coordination polymers. From this point of view, pyrazole-derived ligands with additional donor groups attached to the 3 and 5 positions of the heterocycle are promising precursors for metal-containing chains and frameworks. The preparation and crystal structure of (I), a novel one-dimensional coordination polymer on the basis of the 4-{N'-[1-(5-acetyl-4-methyl-2H-pyrazol-3-yl)-ethylidene]-hydrazino} benzoic acid (L) incorporating the alternating CoII and CoIII ions, is reported herein.

L coordinates the CoIII ion via two nitrogen atoms of the 1H-pyrazole and hydrazone moieties (Fig.1). Two trans-disposed ligands form five-membered chelates in the equatorial plane. Co—N bond distances are in the range of 1.875 (2) – 1.949 (3) Å and are close to those in the [(2S,3S)-α-Me—N,N'-bis(salicylidene)butane- 2,3-diaminato]bis(pyridine)-cobalt(III) reported by Sato et al., 1999 [average Co—N = 1.911 (5) Å]. The axial positions are occupied by the pyridine molecules [Co2—N7 = 1.978 (3) Å, Co2—N6 = 1.984 (3) Å]. The CoIII ion is therefore situated in a distorted octahedral environment. Bond angles at CoIII ranged from 80.6 (1)° to 100.0 (1)°.

Coordination polyhedra of both Co1 and Co3 ions display distorted compressed octahedra. At both metal ions two pyridine and two water molecules are equatorially coordinated in trans-positions. The Co—N(py) and Co—O(H2O) distances are in good agreement with those in diaqua-diformato-dipyridine-cobalt(II) (Zhu et al., 2004), where they are equal to 2.159 (4) and 2.143 (3) Å, respectively. The axial contacts between CoII ions and coordinated carboxylic groups of L are somewhat shorter than those in the equatorial plane [Co1—O2 = 2.040 (2) Å, Co3—O7 = 1.988 (2) Å].

The one-dimensional-polymeric chain displays a zigzag conformation due to nonplanarity of the pyrazole-containing ligand which binds both CoIII and CoII ions. The intermetallic separations are 9.606 (1) Å for Co1···Co2 and 9.770 (1) for Co2···Co3.

A part of the crystal packing of (I) is presented in Fig. 2. The polymeric chains are spread along c axis. The translational chains are connected through hydrogen bonds [O8—H···O13i, O8—H···O(6)ii and O13)—H···O14iii] (Table 1) in a three-dimensional structure.

Related literature top

For related literature, see: Dalai et al. (2002); Eisenwiener et al. (2007); James (2003); Li & Xiao (2004); Min et al. (2002); Mukherjee (2000); Sato et al. (1999); Takahashi et al. (2006); Xiao et al. (2005); Yin et al. (2007); Zhu et al. (2004).

Experimental top

To the solution of the ligand (0.0434 g, 0.1 mmol) in methanol (5 ml) the aqueous solution of Co(ClO4)2 (0.1 M, 2 ml) was added. The mixture was stirred for 10 min and then vapours of pyridine were diffused into the solution. The reaction mixture produced a brown precipitate that was filtered off. The remaining red solution was diluted with methanol (ca 5 ml) and exposed to slow diffusion of diethyl ether vapour. During one week orange plate-shaped crystals suitable for X-ray analysis were obtained. Analysis found: C 46.25, H 4.70, N 12.93%; calculated for C50H60N12Co3O16Cl: C 46.29, H 4.66, N 12.96%.

Refinement top

Two water molecules are disordered over two sites. The disorder was modelled by placing 5/3 water molecules over four sites with occupancies 2/3 (O15) and 1/3 (O16A, O16B, O16C) as the independent refinement of the occupancy factors of three positions of O16 water molecule gives approximately equal values (0.35, 0.33 and 0.32 for O16A, O16B and O16C, repsectively). The H atoms of O15 and O16 O atoms were omitted. Otherwise, the H2O H atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other H atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, and Uiso = 1.2–1.5 Ueq(parent atom). Attempts to refine any more water molecules did not produce acceptable results. The highest peak is located 2.16 Å from atom O16B and the deepest hole is located 0.57 Å from atom Co3.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Monomeric fragment in the crystal structure of (I) with displacement ellipsoids drawn at the 50% probability level. Disordered positions of the water molecules (O15 and O16) and H-atoms not participating in hydrogen bonds are omitted for clarity. Symmetry code: i=1 - x, 1 - y, -z; ii=1 - x, 1 - y, -1 - z.
[Figure 2] Fig. 2. Crystal packing of (I). Disordered positions of the water molecules (O15 and O16) and H-atom not participating in hydrogen bonds are omitted for clarity.
catena-Poly[[[trans-diaquabis(pyridine-κN)cobalt(II)]- µ-(4-{N'-[1-(3-acetyl-4-methyl-1H-pyrazol-5- yl)ethylidene]hydrazino}benzoato-κ3O:N,N')- [bis(pyridine-κN)cobalt(III)]-µ-(4-{N'-[1-(3-acetyl-4-methyl-1H- pyrazol-5-yl)ethylidene]hydrazino}benzoato- κ3N,N':O)]perchlorate 3.66-hydrate] top
Crystal data top
[Co2(C15H14N4O3)2(C5H5N)4(H2O)2]ClO4·3.66H2OZ = 2
Mr = 1232.38F(000) = 1279
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1128 (2) ÅCell parameters from 30667 reflections
b = 13.9615 (4) Åθ = 1.0–27.5°
c = 20.1840 (6) ŵ = 0.72 mm1
α = 85.969 (2)°T = 120 K
β = 80.844 (2)°Plate, orange
γ = 84.660 (2)°0.22 × 0.14 × 0.06 mm
V = 2796.79 (13) Å3
Data collection top
Nonius KappaCCD
diffractometer
9843 independent reflections
Radiation source: fine-focus sealed tube7347 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.058
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.4°
ϕ scans and ω scans with κ offseth = 1112
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1616
Tmin = 0.866, Tmax = 0.959l = 2424
37217 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 3.0428P]
where P = (Fo2 + 2Fc2)/3
9843 reflections(Δ/σ)max = 0.002
763 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Co2(C15H14N4O3)2(C5H5N)4(H2O)2]ClO4·3.66H2Oγ = 84.660 (2)°
Mr = 1232.38V = 2796.79 (13) Å3
Triclinic, P1Z = 2
a = 10.1128 (2) ÅMo Kα radiation
b = 13.9615 (4) ŵ = 0.72 mm1
c = 20.1840 (6) ÅT = 120 K
α = 85.969 (2)°0.22 × 0.14 × 0.06 mm
β = 80.844 (2)°
Data collection top
Nonius KappaCCD
diffractometer
9843 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
7347 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.959Rint = 0.058
37217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.89 e Å3
9843 reflectionsΔρmin = 0.89 e Å3
763 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.50000.00000.01772 (15)
Co20.21356 (4)1.07447 (3)0.24729 (2)0.01750 (12)
Co30.50000.50000.50000.03393 (19)
Cl10.17180 (9)0.29650 (7)0.18619 (6)0.0437 (3)
O10.3981 (2)0.48640 (16)0.10222 (11)0.0238 (5)
H1O0.32750.53620.09880.036*
H1P0.35500.43320.11720.036*
O20.4367 (2)0.64311 (14)0.00198 (11)0.0219 (5)
O30.2401 (2)0.64052 (15)0.06781 (11)0.0222 (5)
O40.7502 (3)1.2930 (2)0.31889 (14)0.0480 (7)
O50.3956 (2)0.97963 (18)0.18204 (12)0.0310 (6)
O60.7025 (3)0.69155 (19)0.51207 (15)0.0457 (7)
O70.4953 (3)0.64269 (18)0.50015 (14)0.0399 (6)
O80.2835 (3)0.50375 (19)0.47900 (13)0.0401 (6)
H8O0.22400.54420.50300.060*
H8P0.26880.43900.47710.060*
O90.0962 (4)0.2458 (3)0.1503 (3)0.0960 (14)
O100.3055 (3)0.2999 (2)0.15105 (17)0.0555 (9)
O110.1786 (4)0.2494 (3)0.25130 (19)0.0894 (14)
O120.1115 (4)0.3924 (2)0.19205 (19)0.0725 (10)
O130.8827 (3)1.4012 (2)0.43516 (17)0.0608 (9)
H13O0.83171.37530.39790.091*
H13P0.95451.35970.45410.091*
O140.9497 (3)0.7500 (3)0.5003 (2)0.0860 (12)
H14O0.97030.75430.45630.129*
H14P0.85720.73800.49690.129*
O151.0143 (5)0.7592 (4)0.3707 (3)0.0713 (16)0.67
O16A1.1607 (12)0.5972 (9)0.3717 (6)0.074 (3)0.33
O16B1.0770 (14)0.6548 (10)0.3599 (8)0.100 (5)0.33
O16C1.1802 (16)0.6246 (10)0.3162 (7)0.096 (4)0.33
N10.6795 (3)0.53403 (19)0.03527 (14)0.0230 (6)
N20.1470 (2)1.04316 (18)0.09920 (12)0.0182 (6)
H2N0.06431.03570.11460.027*
N30.2300 (2)1.08608 (17)0.15337 (13)0.0178 (6)
N40.3844 (2)1.12656 (18)0.25893 (13)0.0194 (6)
N50.4711 (2)1.15209 (18)0.31271 (13)0.0208 (6)
N60.2812 (2)0.93692 (18)0.23800 (13)0.0201 (6)
N70.1348 (2)1.20892 (18)0.25619 (13)0.0201 (6)
N80.0578 (2)1.02941 (18)0.18460 (13)0.0194 (6)
N90.0359 (2)1.04090 (18)0.23749 (13)0.0190 (6)
N100.2051 (2)1.05454 (19)0.34023 (13)0.0201 (6)
N110.3197 (3)1.05118 (19)0.38960 (13)0.0223 (6)
H11N0.37991.09520.37850.033*
N120.5142 (3)0.4901 (2)0.39281 (16)0.0387 (8)
C10.7372 (3)0.4779 (3)0.08101 (19)0.0320 (8)
H10.69100.42520.10260.038*
C20.8603 (4)0.4924 (3)0.0986 (2)0.0421 (10)
H20.89660.45180.13220.050*
C30.9287 (4)0.5675 (3)0.0659 (2)0.0440 (11)
H31.01510.57790.07560.053*
C40.8709 (4)0.6272 (3)0.0193 (2)0.0395 (10)
H40.91560.68020.00300.047*
C50.7469 (3)0.6086 (2)0.00551 (19)0.0286 (8)
H50.70690.65010.02640.034*
C60.3195 (3)0.6796 (2)0.02241 (16)0.0182 (7)
C70.2778 (3)0.7762 (2)0.00855 (16)0.0177 (7)
C80.1421 (3)0.8123 (2)0.00155 (16)0.0187 (7)
H80.07760.77700.03020.022*
C90.1020 (3)0.8986 (2)0.02991 (15)0.0183 (7)
H90.00950.92110.02380.022*
C100.1953 (3)0.9536 (2)0.07052 (15)0.0162 (6)
C110.3308 (3)0.9188 (2)0.08003 (15)0.0184 (7)
H110.39580.95570.10690.022*
C120.3700 (3)0.8307 (2)0.05040 (16)0.0186 (7)
H120.46170.80650.05870.022*
C130.3309 (3)1.1311 (2)0.14138 (16)0.0188 (7)
C140.3557 (3)1.1503 (2)0.07296 (17)0.0249 (7)
H14A0.27461.14050.04040.037*
H14B0.37851.21700.07260.037*
H14C0.43031.10620.06080.037*
C150.4178 (3)1.1587 (2)0.20213 (16)0.0205 (7)
C160.5345 (3)1.2072 (2)0.21908 (17)0.0241 (7)
C170.6133 (4)1.2510 (3)0.17371 (19)0.0350 (9)
H17A0.69551.27370.20010.053*
H17B0.63701.20250.13910.053*
H17C0.55881.30540.15230.053*
C180.5634 (3)1.2011 (2)0.28909 (17)0.0237 (7)
C190.6754 (3)1.2395 (3)0.33711 (19)0.0320 (8)
C200.6922 (4)1.2133 (3)0.40887 (18)0.0339 (9)
H20A0.65001.26540.43550.051*
H20B0.64931.15380.41140.051*
H20C0.78811.20350.42670.051*
C210.1994 (3)0.8673 (2)0.21359 (18)0.0268 (8)
H210.10580.88450.20240.032*
C220.2465 (4)0.7726 (3)0.2044 (2)0.0381 (9)
H220.18600.72550.18700.046*
C230.3820 (4)0.7463 (3)0.2205 (2)0.0399 (10)
H230.41640.68120.21420.048*
C240.4662 (3)0.8162 (2)0.24604 (19)0.0314 (8)
H240.56000.80010.25780.038*
C250.4128 (3)0.9100 (2)0.25427 (16)0.0223 (7)
H250.47170.95780.27230.027*
C260.1629 (3)1.2650 (2)0.31292 (18)0.0271 (8)
H260.22891.24100.34810.033*
C270.1002 (4)1.3552 (3)0.32191 (19)0.0341 (9)
H270.12171.39220.36290.041*
C280.0055 (4)1.3921 (3)0.27101 (19)0.0339 (9)
H280.03851.45470.27620.041*
C290.0238 (3)1.3358 (2)0.21226 (18)0.0283 (8)
H290.08801.35930.17620.034*
C300.0415 (3)1.2449 (2)0.20685 (17)0.0233 (7)
H300.01981.20610.16670.028*
C310.2796 (3)0.9752 (3)0.08851 (18)0.0332 (9)
H31A0.36840.96570.06260.050*
H31B0.24641.03330.07470.050*
H31C0.21710.91930.08020.050*
C320.2900 (3)0.9865 (2)0.16167 (17)0.0232 (7)
C330.1682 (3)1.0067 (2)0.20892 (16)0.0210 (7)
C340.1440 (3)1.0034 (2)0.27931 (17)0.0225 (7)
C350.2355 (3)0.9745 (3)0.32410 (18)0.0295 (8)
H35A0.18720.97130.37010.044*
H35B0.31331.02210.32340.044*
H35C0.26620.91120.30830.044*
C360.0115 (3)1.0268 (2)0.29541 (16)0.0215 (7)
C370.0898 (3)1.0350 (2)0.35526 (16)0.0214 (7)
C380.0627 (3)1.0239 (3)0.42464 (17)0.0297 (8)
H38A0.14361.03530.45700.044*
H38B0.01111.07060.43440.044*
H38C0.03790.95840.42820.044*
C390.3831 (3)0.9603 (2)0.40649 (16)0.0224 (7)
C400.3147 (3)0.8779 (2)0.40348 (17)0.0277 (8)
H400.22280.87880.38370.033*
C410.3814 (3)0.7946 (3)0.42952 (18)0.0297 (8)
H410.33410.73860.42800.036*
C420.5161 (3)0.7912 (2)0.45783 (17)0.0286 (8)
C430.5868 (3)0.8706 (2)0.45577 (17)0.0277 (8)
H430.68070.86720.47150.033*
C440.5215 (3)0.9551 (2)0.43091 (16)0.0247 (7)
H440.57041.00980.43030.030*
C450.5781 (4)0.7027 (3)0.49202 (19)0.0345 (9)
C460.5982 (4)0.5392 (3)0.3651 (2)0.0433 (10)
H460.65870.57750.39400.052*
C470.6008 (5)0.5368 (3)0.2967 (2)0.0493 (11)
H470.66270.57170.27930.059*
C480.5112 (5)0.4824 (3)0.2540 (2)0.0484 (11)
H480.50980.47990.20670.058*
C490.4248 (5)0.4324 (3)0.2814 (2)0.0499 (11)
H490.36180.39510.25350.060*
C500.4309 (4)0.4373 (3)0.3511 (2)0.0459 (10)
H500.37230.40090.36970.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0140 (3)0.0171 (3)0.0220 (3)0.0012 (2)0.0034 (2)0.0000 (2)
Co20.0134 (2)0.0219 (2)0.0169 (2)0.00310 (16)0.00041 (16)0.00095 (17)
Co30.0423 (4)0.0287 (4)0.0295 (4)0.0038 (3)0.0036 (3)0.0060 (3)
Cl10.0306 (5)0.0399 (5)0.0564 (7)0.0010 (4)0.0013 (4)0.0120 (5)
O10.0211 (11)0.0249 (12)0.0248 (13)0.0023 (9)0.0033 (10)0.0024 (10)
O20.0131 (11)0.0194 (11)0.0319 (13)0.0020 (9)0.0004 (9)0.0005 (10)
O30.0187 (11)0.0218 (11)0.0248 (13)0.0028 (9)0.0001 (10)0.0023 (10)
O40.0394 (15)0.070 (2)0.0379 (17)0.0346 (15)0.0002 (13)0.0043 (14)
O50.0153 (12)0.0510 (16)0.0272 (14)0.0082 (10)0.0022 (10)0.0003 (11)
O60.0386 (16)0.0371 (15)0.0560 (19)0.0053 (12)0.0066 (13)0.0077 (13)
O70.0453 (16)0.0295 (14)0.0451 (17)0.0017 (12)0.0070 (13)0.0105 (12)
O80.0409 (15)0.0361 (15)0.0418 (17)0.0062 (12)0.0070 (12)0.0036 (13)
O90.074 (3)0.084 (3)0.141 (4)0.028 (2)0.033 (3)0.019 (3)
O100.0296 (15)0.0569 (19)0.072 (2)0.0041 (13)0.0040 (14)0.0262 (16)
O110.067 (2)0.110 (3)0.066 (2)0.031 (2)0.0190 (19)0.051 (2)
O120.073 (2)0.055 (2)0.085 (3)0.0264 (17)0.0149 (19)0.0010 (18)
O130.0453 (18)0.065 (2)0.066 (2)0.0058 (15)0.0002 (16)0.0170 (17)
O140.049 (2)0.083 (3)0.120 (4)0.0022 (18)0.002 (2)0.006 (2)
O150.044 (3)0.087 (4)0.078 (4)0.025 (3)0.028 (3)0.030 (3)
O16A0.068 (7)0.083 (8)0.065 (8)0.006 (6)0.017 (6)0.024 (6)
O16B0.075 (8)0.080 (9)0.125 (13)0.000 (7)0.043 (9)0.010 (8)
O16C0.130 (12)0.087 (9)0.070 (9)0.021 (8)0.007 (8)0.026 (7)
N10.0185 (14)0.0263 (15)0.0247 (16)0.0007 (11)0.0044 (12)0.0067 (12)
N20.0139 (12)0.0250 (14)0.0146 (14)0.0015 (10)0.0001 (10)0.0020 (11)
N30.0155 (13)0.0188 (13)0.0171 (14)0.0005 (10)0.0020 (11)0.0012 (11)
N40.0168 (13)0.0231 (14)0.0178 (15)0.0018 (11)0.0010 (11)0.0007 (11)
N50.0162 (13)0.0255 (14)0.0197 (15)0.0051 (11)0.0014 (11)0.0004 (11)
N60.0187 (14)0.0244 (14)0.0171 (14)0.0034 (11)0.0016 (11)0.0016 (11)
N70.0152 (13)0.0261 (14)0.0186 (15)0.0028 (11)0.0008 (11)0.0023 (12)
N80.0129 (13)0.0236 (14)0.0212 (15)0.0022 (10)0.0009 (11)0.0005 (11)
N90.0162 (13)0.0237 (14)0.0167 (14)0.0035 (11)0.0002 (11)0.0011 (11)
N100.0144 (13)0.0280 (15)0.0166 (14)0.0042 (11)0.0032 (11)0.0021 (11)
N110.0183 (13)0.0276 (15)0.0196 (15)0.0073 (11)0.0049 (11)0.0036 (12)
N120.0454 (19)0.0373 (18)0.0323 (19)0.0025 (15)0.0037 (15)0.0075 (15)
C10.0277 (19)0.037 (2)0.031 (2)0.0026 (16)0.0057 (16)0.0015 (17)
C20.030 (2)0.061 (3)0.039 (2)0.0030 (19)0.0191 (18)0.011 (2)
C30.0213 (19)0.063 (3)0.052 (3)0.0060 (19)0.0067 (18)0.029 (2)
C40.028 (2)0.043 (2)0.050 (3)0.0132 (17)0.0043 (18)0.015 (2)
C50.0238 (18)0.0263 (18)0.037 (2)0.0057 (14)0.0039 (15)0.0062 (16)
C60.0160 (16)0.0201 (16)0.0205 (17)0.0047 (13)0.0060 (13)0.0029 (13)
C70.0171 (15)0.0184 (15)0.0180 (17)0.0012 (12)0.0027 (13)0.0038 (13)
C80.0162 (15)0.0211 (16)0.0181 (17)0.0052 (12)0.0018 (13)0.0016 (13)
C90.0110 (14)0.0252 (17)0.0186 (17)0.0012 (12)0.0006 (12)0.0040 (13)
C100.0152 (15)0.0179 (15)0.0149 (16)0.0010 (12)0.0007 (12)0.0021 (12)
C110.0154 (15)0.0218 (16)0.0171 (17)0.0046 (12)0.0006 (12)0.0011 (13)
C120.0117 (14)0.0226 (16)0.0211 (17)0.0012 (12)0.0009 (13)0.0019 (13)
C130.0163 (15)0.0186 (16)0.0212 (17)0.0014 (12)0.0038 (13)0.0002 (13)
C140.0247 (17)0.0293 (18)0.0213 (18)0.0049 (14)0.0035 (14)0.0018 (14)
C150.0189 (16)0.0203 (16)0.0226 (18)0.0014 (13)0.0044 (13)0.0001 (13)
C160.0207 (17)0.0258 (17)0.027 (2)0.0060 (13)0.0053 (14)0.0009 (14)
C170.035 (2)0.045 (2)0.030 (2)0.0173 (17)0.0081 (16)0.0010 (17)
C180.0195 (16)0.0267 (17)0.0252 (19)0.0080 (13)0.0002 (14)0.0019 (14)
C190.0267 (19)0.036 (2)0.033 (2)0.0087 (16)0.0004 (16)0.0004 (17)
C200.031 (2)0.044 (2)0.026 (2)0.0148 (16)0.0049 (16)0.0007 (17)
C210.0212 (17)0.0273 (18)0.031 (2)0.0053 (14)0.0022 (14)0.0035 (15)
C220.032 (2)0.0259 (19)0.053 (3)0.0068 (16)0.0058 (18)0.0016 (18)
C230.039 (2)0.0235 (19)0.053 (3)0.0034 (16)0.0018 (19)0.0007 (18)
C240.0243 (18)0.032 (2)0.035 (2)0.0044 (15)0.0008 (15)0.0012 (16)
C250.0176 (16)0.0270 (17)0.0215 (18)0.0022 (13)0.0002 (13)0.0021 (14)
C260.0231 (17)0.0319 (19)0.0247 (19)0.0019 (14)0.0001 (14)0.0013 (15)
C270.034 (2)0.034 (2)0.030 (2)0.0004 (16)0.0003 (16)0.0104 (16)
C280.031 (2)0.0272 (19)0.041 (2)0.0033 (15)0.0035 (17)0.0029 (17)
C290.0228 (17)0.0295 (19)0.033 (2)0.0005 (14)0.0042 (15)0.0095 (16)
C300.0209 (16)0.0292 (18)0.0202 (18)0.0043 (14)0.0036 (14)0.0005 (14)
C310.0183 (17)0.056 (2)0.025 (2)0.0102 (16)0.0002 (14)0.0055 (17)
C320.0196 (17)0.0236 (17)0.0258 (19)0.0038 (13)0.0014 (14)0.0003 (14)
C330.0163 (16)0.0235 (17)0.0221 (18)0.0011 (13)0.0010 (13)0.0011 (14)
C340.0174 (16)0.0265 (17)0.0231 (19)0.0021 (13)0.0022 (13)0.0003 (14)
C350.0199 (17)0.043 (2)0.027 (2)0.0068 (15)0.0053 (15)0.0021 (16)
C360.0181 (16)0.0259 (17)0.0208 (18)0.0015 (13)0.0046 (13)0.0005 (14)
C370.0197 (16)0.0244 (17)0.0196 (18)0.0024 (13)0.0014 (13)0.0002 (14)
C380.0233 (18)0.047 (2)0.0192 (19)0.0061 (16)0.0030 (14)0.0022 (16)
C390.0225 (17)0.0302 (18)0.0146 (17)0.0052 (14)0.0002 (13)0.0038 (14)
C400.0244 (18)0.035 (2)0.0232 (19)0.0070 (15)0.0007 (14)0.0042 (15)
C410.0320 (19)0.0293 (19)0.029 (2)0.0083 (15)0.0026 (15)0.0045 (15)
C420.0306 (19)0.0310 (19)0.0231 (19)0.0002 (15)0.0009 (15)0.0031 (15)
C430.0231 (17)0.036 (2)0.0227 (19)0.0014 (15)0.0010 (14)0.0004 (15)
C440.0225 (17)0.0312 (18)0.0215 (18)0.0077 (14)0.0029 (14)0.0030 (14)
C450.037 (2)0.032 (2)0.032 (2)0.0025 (17)0.0007 (17)0.0019 (16)
C460.046 (2)0.043 (2)0.042 (3)0.0007 (19)0.010 (2)0.0085 (19)
C470.060 (3)0.046 (2)0.045 (3)0.006 (2)0.017 (2)0.011 (2)
C480.068 (3)0.044 (2)0.032 (2)0.012 (2)0.013 (2)0.006 (2)
C490.058 (3)0.054 (3)0.036 (3)0.004 (2)0.004 (2)0.001 (2)
C500.053 (3)0.049 (2)0.036 (2)0.006 (2)0.007 (2)0.003 (2)
Geometric parameters (Å, º) top
Co1—O2i2.040 (2)C9—C101.396 (4)
Co1—O22.040 (2)C9—H90.9500
Co1—N12.156 (3)C10—C111.398 (4)
Co1—N1i2.156 (3)C11—C121.382 (4)
Co1—O12.159 (2)C11—H110.9500
Co1—O1i2.159 (2)C12—H120.9500
Co2—N91.876 (2)C13—C151.442 (4)
Co2—N41.911 (3)C13—C141.489 (5)
Co2—N101.932 (3)C14—H14A0.9800
Co2—N31.948 (3)C14—H14B0.9800
Co2—N71.978 (3)C14—H14C0.9800
Co2—N61.984 (3)C15—C161.399 (4)
Co3—O7ii1.988 (2)C16—C181.404 (5)
Co3—O71.988 (2)C16—C171.499 (5)
Co3—O82.159 (3)C17—H17A0.9800
Co3—O8ii2.159 (3)C17—H17B0.9800
Co3—N122.185 (3)C17—H17C0.9800
Co3—N12ii2.185 (3)C18—C191.483 (5)
Cl1—O91.399 (4)C19—C201.498 (5)
Cl1—O121.424 (3)C20—H20A0.9800
Cl1—O101.427 (3)C20—H20B0.9800
Cl1—O111.436 (3)C20—H20C0.9800
O1—H1O0.9561C21—C221.373 (5)
O1—H1P0.9058C21—H210.9500
O2—C61.281 (4)C22—C231.379 (5)
O3—C61.249 (4)C22—H220.9500
O4—C191.223 (4)C23—C241.374 (5)
O5—C321.218 (4)C23—H230.9500
O6—C451.257 (4)C24—C251.378 (5)
O7—C451.275 (5)C24—H240.9500
O8—H8O0.9520C25—H250.9500
O8—H8P0.9277C26—C271.371 (5)
O13—H13O0.9137C26—H260.9500
O13—H13P0.9336C27—C281.381 (5)
O14—H14O0.9507C27—H270.9500
O14—H14P0.9563C28—C291.383 (5)
O15—O16B1.550 (14)C28—H280.9500
O16A—O16B1.121 (15)C29—C301.381 (5)
O16A—O16C1.260 (16)C29—H290.9500
O16B—O16C1.48 (2)C30—H300.9500
N1—C11.338 (4)C31—C321.493 (5)
N1—C51.350 (4)C31—H31A0.9800
N2—N31.403 (3)C31—H31B0.9800
N2—C101.419 (4)C31—H31C0.9800
N2—H2N0.9539C32—C331.469 (4)
N3—C131.309 (4)C33—C341.406 (5)
N4—N51.332 (4)C34—C361.392 (4)
N4—C151.361 (4)C34—C351.491 (5)
N5—C181.369 (4)C35—H35A0.9800
N6—C251.344 (4)C35—H35B0.9800
N6—C211.350 (4)C35—H35C0.9800
N7—C261.348 (4)C36—C371.460 (4)
N7—C301.348 (4)C37—C381.490 (5)
N8—N91.321 (4)C38—H38A0.9800
N8—C331.360 (4)C38—H38B0.9800
N9—C361.365 (4)C38—H38C0.9800
N10—C371.307 (4)C39—C401.390 (5)
N10—N111.402 (3)C39—C441.405 (4)
N11—C391.406 (4)C40—C411.382 (5)
N11—H11N0.9658C40—H400.9500
N12—C501.329 (5)C41—C421.389 (5)
N12—C461.349 (5)C41—H410.9500
C1—C21.383 (5)C42—C431.380 (5)
C1—H10.9500C42—C451.494 (5)
C2—C31.381 (6)C43—C441.383 (5)
C2—H20.9500C43—H430.9500
C3—C41.378 (6)C44—H440.9500
C3—H30.9500C46—C471.383 (6)
C4—C51.378 (5)C46—H460.9500
C4—H40.9500C47—C481.389 (6)
C5—H50.9500C47—H470.9500
C6—C71.499 (4)C48—C491.372 (6)
C7—C121.397 (4)C48—H480.9500
C7—C81.405 (4)C49—C501.395 (6)
C8—C91.380 (4)C49—H490.9500
C8—H80.9500C50—H500.9500
O2i—Co1—O2180.00 (13)C7—C12—H12119.2
O2i—Co1—N191.07 (9)N3—C13—C15112.3 (3)
O2—Co1—N188.93 (9)N3—C13—C14124.3 (3)
O2i—Co1—N1i88.93 (9)C15—C13—C14123.3 (3)
O2—Co1—N1i91.07 (9)C13—C14—H14A109.5
N1—Co1—N1i180.0C13—C14—H14B109.5
O2i—Co1—O191.36 (8)H14A—C14—H14B109.5
O2—Co1—O188.64 (8)C13—C14—H14C109.5
N1—Co1—O190.39 (9)H14A—C14—H14C109.5
N1i—Co1—O189.61 (9)H14B—C14—H14C109.5
O2i—Co1—O1i88.64 (8)N4—C15—C16109.0 (3)
O2—Co1—O1i91.36 (8)N4—C15—C13114.1 (3)
N1—Co1—O1i89.61 (9)C16—C15—C13136.8 (3)
N1i—Co1—O1i90.39 (9)C15—C16—C18102.8 (3)
O1—Co1—O1i180.000 (1)C15—C16—C17128.9 (3)
N9—Co2—N4172.10 (11)C18—C16—C17128.3 (3)
N9—Co2—N1081.20 (11)C16—C17—H17A109.5
N4—Co2—N1098.79 (11)C16—C17—H17B109.5
N9—Co2—N399.94 (11)H17A—C17—H17B109.5
N4—Co2—N380.63 (11)C16—C17—H17C109.5
N10—Co2—N3175.98 (10)H17A—C17—H17C109.5
N9—Co2—N785.42 (11)H17B—C17—H17C109.5
N4—Co2—N786.69 (10)N5—C18—C16111.6 (3)
N10—Co2—N791.73 (11)N5—C18—C19119.3 (3)
N3—Co2—N792.21 (10)C16—C18—C19129.1 (3)
N9—Co2—N691.00 (11)O4—C19—C18120.8 (3)
N4—Co2—N696.89 (10)O4—C19—C20120.9 (3)
N10—Co2—N687.54 (11)C18—C19—C20118.3 (3)
N3—Co2—N688.58 (10)C19—C20—H20A109.5
N7—Co2—N6176.42 (10)C19—C20—H20B109.5
O7ii—Co3—O7180.0H20A—C20—H20B109.5
O7ii—Co3—O888.11 (10)C19—C20—H20C109.5
O7—Co3—O891.89 (10)H20A—C20—H20C109.5
O7ii—Co3—O8ii91.89 (10)H20B—C20—H20C109.5
O7—Co3—O8ii88.11 (10)N6—C21—C22122.5 (3)
O8—Co3—O8ii180.0N6—C21—H21118.7
O7ii—Co3—N1290.33 (12)C22—C21—H21118.7
O7—Co3—N1289.67 (12)C21—C22—C23119.6 (3)
O8—Co3—N1291.42 (11)C21—C22—H22120.2
O8ii—Co3—N1288.58 (11)C23—C22—H22120.2
O7ii—Co3—N12ii89.67 (12)C24—C23—C22118.6 (3)
O7—Co3—N12ii90.33 (12)C24—C23—H23120.7
O8—Co3—N12ii88.58 (11)C22—C23—H23120.7
O8ii—Co3—N12ii91.42 (11)C23—C24—C25119.1 (3)
N12—Co3—N12ii180.0C23—C24—H24120.4
O9—Cl1—O12108.7 (2)C25—C24—H24120.4
O9—Cl1—O10110.0 (3)N6—C25—C24123.0 (3)
O12—Cl1—O10108.7 (2)N6—C25—H25118.5
O9—Cl1—O11110.2 (3)C24—C25—H25118.5
O12—Cl1—O11110.9 (2)N7—C26—C27122.6 (3)
O10—Cl1—O11108.22 (19)N7—C26—H26118.7
Co1—O1—H1O97.9C27—C26—H26118.7
Co1—O1—H1P120.3C26—C27—C28119.6 (3)
H1O—O1—H1P104.5C26—C27—H27120.2
C6—O2—Co1125.86 (19)C28—C27—H27120.2
C45—O7—Co3135.3 (2)C27—C28—C29118.5 (3)
Co3—O8—H8O124.6C27—C28—H28120.8
Co3—O8—H8P102.4C29—C28—H28120.8
H8O—O8—H8P113.8C30—C29—C28119.0 (3)
H13O—O13—H13P114.4C30—C29—H29120.5
H14O—O14—H14P108.7C28—C29—H29120.5
O16B—O16A—O16C76.9 (12)N7—C30—C29122.7 (3)
O16A—O16B—O16C55.8 (10)N7—C30—H30118.6
O16A—O16B—O15150.5 (12)C29—C30—H30118.6
O16C—O16B—O15125.4 (13)C32—C31—H31A109.5
O16A—O16C—O16B47.3 (9)C32—C31—H31B109.5
C1—N1—C5117.0 (3)H31A—C31—H31B109.5
C1—N1—Co1122.8 (2)C32—C31—H31C109.5
C5—N1—Co1119.8 (2)H31A—C31—H31C109.5
N3—N2—C10117.8 (2)H31B—C31—H31C109.5
N3—N2—H2N106.5O5—C32—C33120.6 (3)
C10—N2—H2N109.1O5—C32—C31121.6 (3)
C13—N3—N2119.0 (3)C33—C32—C31117.8 (3)
C13—N3—Co2116.9 (2)N8—C33—C34111.6 (3)
N2—N3—Co2123.84 (19)N8—C33—C32119.3 (3)
N5—N4—C15110.8 (2)C34—C33—C32129.1 (3)
N5—N4—Co2133.5 (2)C36—C34—C33102.7 (3)
C15—N4—Co2114.7 (2)C36—C34—C35129.3 (3)
N4—N5—C18105.8 (3)C33—C34—C35127.9 (3)
C25—N6—C21117.3 (3)C34—C35—H35A109.5
C25—N6—Co2120.5 (2)C34—C35—H35B109.5
C21—N6—Co2122.2 (2)H35A—C35—H35B109.5
C26—N7—C30117.5 (3)C34—C35—H35C109.5
C26—N7—Co2122.1 (2)H35A—C35—H35C109.5
C30—N7—Co2120.2 (2)H35B—C35—H35C109.5
N9—N8—C33106.0 (3)N9—C36—C34108.8 (3)
N8—N9—C36110.9 (2)N9—C36—C37113.2 (3)
N8—N9—Co2132.8 (2)C34—C36—C37137.9 (3)
C36—N9—Co2116.2 (2)N10—C37—C36111.6 (3)
C37—N10—N11119.8 (3)N10—C37—C38124.9 (3)
C37—N10—Co2117.6 (2)C36—C37—C38123.5 (3)
N11—N10—Co2122.29 (19)C37—C38—H38A109.5
N10—N11—C39118.1 (2)C37—C38—H38B109.5
N10—N11—H11N108.0H38A—C38—H38B109.5
C39—N11—H11N113.7C37—C38—H38C109.5
C50—N12—C46117.0 (4)H38A—C38—H38C109.5
C50—N12—Co3119.1 (3)H38B—C38—H38C109.5
C46—N12—Co3123.8 (3)C40—C39—C44119.2 (3)
N1—C1—C2123.6 (4)C40—C39—N11123.4 (3)
N1—C1—H1118.2C44—C39—N11117.4 (3)
C2—C1—H1118.2C41—C40—C39119.4 (3)
C3—C2—C1118.1 (4)C41—C40—H40120.3
C3—C2—H2120.9C39—C40—H40120.3
C1—C2—H2120.9C40—C41—C42121.3 (3)
C4—C3—C2119.5 (3)C40—C41—H41119.3
C4—C3—H3120.3C42—C41—H41119.3
C2—C3—H3120.3C43—C42—C41119.1 (3)
C5—C4—C3118.6 (4)C43—C42—C45122.2 (3)
C5—C4—H4120.7C41—C42—C45118.6 (3)
C3—C4—H4120.7C42—C43—C44120.3 (3)
N1—C5—C4123.1 (3)C42—C43—H43119.8
N1—C5—H5118.4C44—C43—H43119.8
C4—C5—H5118.4C43—C44—C39120.3 (3)
O3—C6—O2125.3 (3)C43—C44—H44119.9
O3—C6—C7119.4 (3)C39—C44—H44119.9
O2—C6—C7115.3 (3)O6—C45—O7124.0 (3)
C12—C7—C8118.2 (3)O6—C45—C42121.1 (3)
C12—C7—C6121.6 (3)O7—C45—C42114.9 (3)
C8—C7—C6120.2 (3)N12—C46—C47123.3 (4)
C9—C8—C7120.4 (3)N12—C46—H46118.3
C9—C8—H8119.8C47—C46—H46118.3
C7—C8—H8119.8C46—C47—C48118.7 (4)
C8—C9—C10121.0 (3)C46—C47—H47120.7
C8—C9—H9119.5C48—C47—H47120.7
C10—C9—H9119.5C49—C48—C47118.6 (4)
C9—C10—C11118.9 (3)C49—C48—H48120.7
C9—C10—N2117.7 (2)C47—C48—H48120.7
C11—C10—N2123.4 (3)C48—C49—C50119.0 (4)
C12—C11—C10120.0 (3)C48—C49—H49120.5
C12—C11—H11120.0C50—C49—H49120.5
C10—C11—H11120.0N12—C50—C49123.4 (4)
C11—C12—C7121.5 (3)N12—C50—H50118.3
C11—C12—H12119.2C49—C50—H50118.3
N1—Co1—O2—C6132.2 (3)C9—C10—C11—C121.1 (5)
N1i—Co1—O2—C647.8 (3)N2—C10—C11—C12180.0 (3)
O1—Co1—O2—C641.8 (3)C10—C11—C12—C72.5 (5)
O1i—Co1—O2—C6138.2 (3)C8—C7—C12—C111.6 (5)
O8—Co3—O7—C45158.4 (4)C6—C7—C12—C11178.6 (3)
O8ii—Co3—O7—C4521.6 (4)N2—N3—C13—C15171.4 (2)
N12—Co3—O7—C4567.0 (4)Co2—N3—C13—C153.8 (3)
N12ii—Co3—O7—C45113.0 (4)N2—N3—C13—C147.5 (4)
O2i—Co1—N1—C137.8 (3)Co2—N3—C13—C14177.3 (2)
O2—Co1—N1—C1142.2 (3)N5—N4—C15—C160.9 (3)
O1—Co1—N1—C153.6 (3)Co2—N4—C15—C16171.6 (2)
O1i—Co1—N1—C1126.4 (3)N5—N4—C15—C13178.1 (2)
O2i—Co1—N1—C5134.5 (2)Co2—N4—C15—C1311.3 (3)
O2—Co1—N1—C545.5 (2)N3—C13—C15—N44.8 (4)
O1—Co1—N1—C5134.1 (2)C14—C13—C15—N4174.1 (3)
O1i—Co1—N1—C545.9 (2)N3—C13—C15—C16179.1 (3)
C10—N2—N3—C1377.9 (3)C14—C13—C15—C161.9 (6)
C10—N2—N3—Co297.0 (3)N4—C15—C16—C180.7 (3)
N9—Co2—N3—C13164.1 (2)C13—C15—C16—C18176.9 (3)
N4—Co2—N3—C137.9 (2)N4—C15—C16—C17176.8 (3)
N7—Co2—N3—C1378.4 (2)C13—C15—C16—C170.7 (6)
N6—Co2—N3—C13105.1 (2)N4—N5—C18—C160.3 (3)
N9—Co2—N3—N220.8 (2)N4—N5—C18—C19179.8 (3)
N4—Co2—N3—N2167.1 (2)C15—C16—C18—N50.3 (4)
N7—Co2—N3—N2106.6 (2)C17—C16—C18—N5177.3 (3)
N6—Co2—N3—N269.9 (2)C15—C16—C18—C19179.7 (3)
N10—Co2—N4—N55.8 (3)C17—C16—C18—C192.8 (6)
N3—Co2—N4—N5178.2 (3)N5—C18—C19—O4171.4 (3)
N7—Co2—N4—N585.4 (3)C16—C18—C19—O48.5 (6)
N6—Co2—N4—N594.4 (3)N5—C18—C19—C206.9 (5)
N10—Co2—N4—C15173.7 (2)C16—C18—C19—C20173.2 (3)
N3—Co2—N4—C1510.3 (2)C25—N6—C21—C220.9 (5)
N7—Co2—N4—C1582.5 (2)Co2—N6—C21—C22177.2 (3)
N6—Co2—N4—C1597.7 (2)N6—C21—C22—C230.1 (6)
C15—N4—N5—C180.7 (3)C21—C22—C23—C240.5 (6)
Co2—N4—N5—C18169.0 (2)C22—C23—C24—C250.3 (6)
N9—Co2—N6—C25166.5 (2)C21—N6—C25—C241.1 (5)
N4—Co2—N6—C2513.2 (3)Co2—N6—C25—C24177.0 (3)
N10—Co2—N6—C2585.3 (2)C23—C24—C25—N60.5 (5)
N3—Co2—N6—C2593.6 (2)C30—N7—C26—C270.5 (5)
N9—Co2—N6—C2115.5 (3)Co2—N7—C26—C27174.2 (3)
N4—Co2—N6—C21164.8 (3)N7—C26—C27—C281.0 (6)
N10—Co2—N6—C2196.7 (3)C26—C27—C28—C290.5 (6)
N3—Co2—N6—C2184.4 (3)C27—C28—C29—C300.5 (5)
N9—Co2—N7—C26117.0 (3)C26—N7—C30—C290.6 (5)
N4—Co2—N7—C2662.7 (3)Co2—N7—C30—C29175.3 (2)
N10—Co2—N7—C2636.0 (3)C28—C29—C30—N71.1 (5)
N3—Co2—N7—C26143.2 (3)N9—N8—C33—C340.1 (3)
N9—Co2—N7—C3057.5 (2)N9—N8—C33—C32178.3 (3)
N4—Co2—N7—C30122.8 (2)O5—C32—C33—N8169.4 (3)
N10—Co2—N7—C30138.5 (2)C31—C32—C33—N810.4 (4)
N3—Co2—N7—C3042.3 (2)O5—C32—C33—C3412.7 (5)
C33—N8—N9—C360.4 (3)C31—C32—C33—C34167.4 (3)
C33—N8—N9—Co2178.8 (2)N8—C33—C34—C360.6 (3)
N10—Co2—N9—N8177.6 (3)C32—C33—C34—C36178.5 (3)
N3—Co2—N9—N81.5 (3)N8—C33—C34—C35175.3 (3)
N7—Co2—N9—N890.0 (3)C32—C33—C34—C352.7 (5)
N6—Co2—N9—N890.2 (3)N8—N9—C36—C340.8 (3)
N10—Co2—N9—C364.1 (2)Co2—N9—C36—C34179.5 (2)
N3—Co2—N9—C36179.8 (2)N8—N9—C36—C37177.8 (2)
N7—Co2—N9—C3688.4 (2)Co2—N9—C36—C373.5 (3)
N6—Co2—N9—C3691.4 (2)C33—C34—C36—N90.8 (3)
N9—Co2—N10—C374.1 (2)C35—C34—C36—N9175.0 (3)
N4—Co2—N10—C37167.9 (2)C33—C34—C36—C37176.6 (4)
N7—Co2—N10—C3781.0 (2)C35—C34—C36—C370.9 (6)
N6—Co2—N10—C3795.5 (2)N11—N10—C37—C36170.7 (3)
N9—Co2—N10—N11169.6 (2)Co2—N10—C37—C363.2 (3)
N4—Co2—N10—N1118.4 (2)N11—N10—C37—C3810.3 (5)
N7—Co2—N10—N11105.3 (2)Co2—N10—C37—C38175.8 (2)
N6—Co2—N10—N1178.2 (2)N9—C36—C37—N100.2 (4)
C37—N10—N11—C3976.9 (4)C34—C36—C37—N10175.9 (4)
Co2—N10—N11—C3996.7 (3)N9—C36—C37—C38179.2 (3)
O7ii—Co3—N12—C5050.1 (3)C34—C36—C37—C385.1 (6)
O7—Co3—N12—C50129.9 (3)N10—N11—C39—C4030.9 (5)
O8—Co3—N12—C5038.0 (3)N10—N11—C39—C44152.5 (3)
O8ii—Co3—N12—C50142.0 (3)C44—C39—C40—C415.2 (5)
O7ii—Co3—N12—C46133.9 (3)N11—C39—C40—C41171.3 (3)
O7—Co3—N12—C4646.1 (3)C39—C40—C41—C420.9 (5)
O8—Co3—N12—C46138.0 (3)C40—C41—C42—C434.4 (5)
O8ii—Co3—N12—C4642.0 (3)C40—C41—C42—C45173.1 (3)
Co1—N1—C1—C2172.3 (3)C41—C42—C43—C445.4 (5)
N1—C1—C2—C31.6 (6)C45—C42—C43—C44172.1 (3)
C1—C2—C3—C42.4 (6)C42—C43—C44—C391.1 (5)
C2—C3—C4—C51.4 (6)C40—C39—C44—C434.3 (5)
C1—N1—C5—C41.3 (5)N11—C39—C44—C43172.4 (3)
Co1—N1—C5—C4171.4 (3)Co3—O7—C45—O635.7 (6)
C3—C4—C5—N10.5 (5)Co3—O7—C45—C42145.9 (3)
Co1—O2—C6—O323.2 (4)C43—C42—C45—O610.3 (6)
Co1—O2—C6—C7155.6 (2)C41—C42—C45—O6172.3 (3)
O3—C6—C7—C12168.3 (3)C43—C42—C45—O7168.2 (3)
O2—C6—C7—C1212.8 (4)C41—C42—C45—O79.3 (5)
O3—C6—C7—C814.7 (4)C50—N12—C46—C470.0 (6)
O2—C6—C7—C8164.1 (3)Co3—N12—C46—C47176.1 (3)
C12—C7—C8—C90.7 (5)N12—C46—C47—C481.1 (6)
C6—C7—C8—C9176.3 (3)C46—C47—C48—C490.7 (6)
C7—C8—C9—C102.1 (5)C47—C48—C49—C500.6 (6)
C8—C9—C10—C111.2 (5)C46—N12—C50—C491.4 (6)
C8—C9—C10—N2177.8 (3)Co3—N12—C50—C49174.8 (3)
N3—N2—C10—C9163.1 (3)C48—C49—C50—N121.8 (6)
N3—N2—C10—C1117.9 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.961.762.677 (3)159
O1—H1P···O100.912.022.903 (4)166
O1—H1P···Cl10.912.913.795 (2)166
O8—H8O···O13iii0.951.862.789 (4)166
O8—H8P···O6ii0.931.842.734 (4)161
O13—H13O···O40.912.012.909 (4)167
O13—H13P···O14iv0.931.942.835 (5)160
O14—H14O···O150.951.862.809 (7)178
O14—H14P···O60.961.832.751 (5)162
N2—H2N···N80.952.032.924 (4)155
N2—H2N···N90.952.543.173 (4)124
N11—H11N···N50.971.982.864 (4)151
N11—H11N···N40.972.493.092 (4)120
Symmetry codes: (ii) x+1, y+1, z1; (iii) x+1, y+2, z1; (iv) x+2, y+2, z1.

Experimental details

Crystal data
Chemical formula[Co2(C15H14N4O3)2(C5H5N)4(H2O)2]ClO4·3.66H2O
Mr1232.38
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.1128 (2), 13.9615 (4), 20.1840 (6)
α, β, γ (°)85.969 (2), 80.844 (2), 84.660 (2)
V3)2796.79 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.22 × 0.14 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.866, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
37217, 9843, 7347
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.04
No. of reflections9843
No. of parameters763
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.89

Computer programs: COLLECT (Bruker, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.961.762.677 (3)159.4
O1—H1P···O100.912.022.903 (4)165.8
O1—H1P···Cl10.912.913.795 (2)165.5
O8—H8O···O13i0.951.862.789 (4)165.6
O8—H8P···O6ii0.931.842.734 (4)160.9
O13—H13O···O40.912.012.909 (4)167.1
O13—H13P···O14iii0.931.942.835 (5)159.6
O14—H14O···O150.951.862.809 (7)178.1
O14—H14P···O60.961.832.751 (5)162.0
N2—H2N···N80.952.032.924 (4)155.4
N2—H2N···N90.952.543.173 (4)124.2
N11—H11N···N50.971.982.864 (4)151.4
N11—H11N···N40.972.493.092 (4)120.3
Symmetry codes: (i) x+1, y+2, z1; (ii) x+1, y+1, z1; (iii) x+2, y+2, z1.
 

Acknowledgements

The authors thank NATO for financial support (grant No. CBP.NUKR.CLG 982019).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDalai, S., Mukherjee, P. S., Drew, M. G. B., Lu, T.-H. & Chaudhuri, N. R. (2002). Inorg. Chim. Acta, 335, 85–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationEisenwiener, A., Neuburger, M. & Kaden, T. A. (2007). Dalton Trans. pp. 218–233.  Web of Science CSD CrossRef Google Scholar
First citationJames, S. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, X.-H. & Xiao, H.-P. (2004). Acta Cryst. E60, m898–m900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMin, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSato, S., Fukuda, T., Ishii, K., Nakano, Y. & Fujii, Y. (1999). Acta Cryst. C55, 1466–1470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, P. M., Melo, L. P., Frem, R. C. G., Netto, A. V. G., Mauro, A. E., Santos, R. H. A. & Ferreira, J. G. (2006). J. Mol. Struct. 783, 161–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, H.-P., Wang, J.-G., Li, X.-H., Hu, M.-L. & Zhang, W.-B. (2005). Acta Cryst. E61, m257–m259.  CrossRef IUCr Journals Google Scholar
First citationYin, G., Zhang, Y., Li, B. & Zhang, Y. (2007). J. Mol. Struct. 837, 263–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Z.-B., Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m808–m810.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m432-m433
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds