metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[2-(2-pyridylmethyl­amino)ethane­sulfonato-κ3N,N′,O]copper(II)}

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx101012@126.com

(Received 30 November 2007; accepted 21 December 2007; online 11 January 2008)

In the title compound, [Cu2(C8H11N2O3S)2Cl2], the Cu atoms are five-coordinated in a distorted square-pyramidal geometry by three donor atoms of the deprotonated anionic 2-(2-pyridylmethyl­amino)ethanesulfonate (pmt) ligand and two Cl atoms. The Cl atoms bridge two Cu atoms, giving a binuclear structure; the centroid of the Cu2Cl2 ring lies on a crystallographic center of inversion. The complex is stabilized by hydrogen bonds and ππ stacking inter­actions [average inter­planar distance = 3.4969 (1) Å and ring-centroid separation distance = 4.1068 (4) Å].

Related literature

For related literature, see: Li et al. (2006[Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984-m2986.], 2007a[Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007a). Acta Cryst. E63, m213-m215.],b[Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007b). Acta Cryst. E63, m601-m603.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H11N2O3S)2Cl2]

  • Mr = 628.48

  • Triclinic, [P \overline 1]

  • a = 8.294 (1) Å

  • b = 8.362 (1) Å

  • c = 9.110 (1) Å

  • α = 103.773 (2)°

  • β = 98.118 (2)°

  • γ = 113.043 (2)°

  • V = 544.9 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 291 (2) K

  • 0.33 × 0.20 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.504, Tmax = 0.811

  • 3270 measured reflections

  • 2385 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.067

  • S = 1.10

  • 2385 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O3i 0.95 (3) 2.20 (3) 2.966 (2) 137 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Previously, one Co (Li et al., 2006) and two Cu complexes (Li et al., 2007a,b) containing the reduced schiff base ligand 2-pyridine-2-ylmethylamino-ethanesulfonic acid (Hpmt) have been reported. Herein we describe the structure of another dinuclear Cu compound, Figure 1.

The title compound is a binuclear Cu complex and each Cu center has square-pyramidal geometry formed by two N and one O atoms of an anionic pmt ligand and two chlorine atoms. The plane N1/N2/O1/Cl1A defines the base of the pyramid while Cl1 occupies the apical position. Cu1 is situated 0.168 (1) Å above the N1/N2/O1/Cl1A plane. The chlorine atoms bridge the Cu atoms to form this binuclear structure, with a Cu1···Cu1(-x, -y + 2, -z + 1) distance of 3.461 (2) Å.

The N—H donor and S?O acceptor (Table 1) groups of the pmt ligand participate in hydrogen bonding and they join the dinuclear complex units into a one-dimensional chain structure along b axis (Figure 2 and Table 1). These chains are further expanded into a two-dimensional network via π-π stacking between the pyridine rings of adjacent parallel chains. The interplanar average distance and ring-centroid separation disstance are 3.4969 (1) Å and 4.1068 (4) Å, respectively.

Related literature top

For related literature, see: Li et al. (2006, 2007a,b).

Experimental top

The ligand 2-pyridin-2-ylmethylamino-ethanesulfonic acid (Hpmt) was prepared according to the method of Li et al. (2006). 10 ml of an aqueous solution of CuCl2 × 2 H2O (0.171 g, 1 mmol) was dropped into 10 ml of an methanolic solution of Hpmt (0.216 g, 1 mmol). Then the mixture was stirred for 6 h at 343 K.The filtrate was left to stand under air for about one week to obtain blue block-shaped crystals. Analysis, found (%): C, 30.51; H, 3.50; N, 8.91; S, 10.18. [C16H22N4O6S2Cl2Cu2] requires (%): C,30.55; H,5.55; N,12.96; S,14.81.

Refinement top

H atoms bonded to C and N were positioned geometrically with C—H distances of 0.93 or 0.97 Å and a N—H distance of 0.95 Å, respectively, and treated as riding atoms with Uiso(H) = 1.2 Ueq(C or N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom-numbering scheme. Atoms with the suffix A are at the symmetry position (-x, -y + 2, -z + 1).
[Figure 2] Fig. 2. Packing diagram, projected on the bc plane, showing the hydrogen bonding and π-π stacking interactions. H atoms have partially been omitted for the sake of clarity.
Di-µ-chlorido-bis{[2-(2-pyridylmethylamino)ethanesulfonato- κ3N,N',O]copper(II)} top
Crystal data top
[Cu2(C8H11N2O3S)2Cl2]Z = 1
Mr = 628.28F(000) = 318
Triclinic, P1Dx = 1.915 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.294 (1) ÅCell parameters from 2667 reflections
b = 8.362 (1) Åθ = 2.4–28.3°
c = 9.110 (1) ŵ = 2.43 mm1
α = 103.773 (2)°T = 291 K
β = 98.118 (2)°Block, blue
γ = 113.043 (2)°0.33 × 0.20 × 0.09 mm
V = 544.9 (1) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2385 independent reflections
Radiation source: fine-focus sealed tube2224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.505, Tmax = 0.811k = 1010
3270 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.037P)2 + 0.2091P]
where P = (Fo2 + 2Fc2)/3
2385 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu2(C8H11N2O3S)2Cl2]γ = 113.043 (2)°
Mr = 628.28V = 544.9 (1) Å3
Triclinic, P1Z = 1
a = 8.294 (1) ÅMo Kα radiation
b = 8.362 (1) ŵ = 2.43 mm1
c = 9.110 (1) ÅT = 291 K
α = 103.773 (2)°0.33 × 0.20 × 0.09 mm
β = 98.118 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2385 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2224 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.811Rint = 0.009
3270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.48 e Å3
2385 reflectionsΔρmin = 0.34 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00815 (3)0.79189 (3)0.40050 (2)0.02480 (9)
Cl10.21525 (6)1.15056 (7)0.48221 (5)0.02695 (12)
S10.25729 (6)0.72960 (7)0.64825 (6)0.02540 (12)
O10.09412 (19)0.7556 (2)0.59265 (16)0.0311 (3)
O20.4160 (2)0.9013 (2)0.72554 (19)0.0385 (4)
O30.2140 (2)0.6050 (2)0.74013 (19)0.0381 (4)
N10.1223 (2)0.7825 (2)0.18742 (18)0.0257 (3)
N20.1380 (2)0.6952 (2)0.2771 (2)0.0276 (3)
C10.2789 (3)0.7931 (4)0.1445 (3)0.0382 (5)
H10.34260.80780.21880.046*
C20.3480 (3)0.7828 (4)0.0065 (3)0.0443 (6)
H20.45780.78780.03400.053*
C30.2519 (3)0.7652 (3)0.1151 (2)0.0391 (5)
H30.29610.75810.21740.047*
C40.0881 (3)0.7580 (3)0.0712 (2)0.0332 (5)
H40.02030.74810.14300.040*
C50.0275 (3)0.7659 (3)0.0813 (2)0.0264 (4)
C60.1491 (3)0.7631 (3)0.1417 (2)0.0314 (4)
H6A0.17260.68350.06000.038*
H6B0.24780.88570.17310.038*
C70.3187 (3)0.7178 (3)0.3579 (2)0.0287 (4)
H7A0.39880.84720.40990.034*
H7B0.37250.66990.28120.034*
C80.2998 (3)0.6170 (3)0.4776 (2)0.0296 (4)
H8A0.41040.60490.50740.035*
H8B0.20110.49440.42970.035*
H1N0.051 (4)0.570 (4)0.233 (3)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02148 (14)0.03819 (16)0.02055 (13)0.01626 (11)0.00702 (9)0.01323 (10)
Cl10.0222 (2)0.0363 (3)0.0269 (2)0.01426 (19)0.01029 (18)0.01360 (18)
S10.0178 (2)0.0297 (3)0.0285 (2)0.00845 (19)0.00306 (18)0.01438 (19)
O10.0270 (7)0.0504 (9)0.0255 (7)0.0230 (7)0.0082 (6)0.0174 (6)
O20.0268 (8)0.0346 (8)0.0401 (8)0.0044 (6)0.0010 (6)0.0087 (6)
O30.0324 (8)0.0455 (9)0.0432 (9)0.0154 (7)0.0091 (7)0.0296 (7)
N10.0243 (8)0.0332 (9)0.0211 (7)0.0132 (7)0.0053 (6)0.0109 (6)
N20.0229 (8)0.0328 (9)0.0281 (8)0.0125 (7)0.0071 (7)0.0112 (7)
C10.0324 (11)0.0617 (15)0.0289 (10)0.0259 (11)0.0085 (9)0.0196 (10)
C20.0384 (13)0.0680 (17)0.0339 (11)0.0295 (12)0.0035 (10)0.0217 (11)
C30.0485 (14)0.0455 (13)0.0227 (10)0.0210 (11)0.0021 (9)0.0139 (9)
C40.0422 (12)0.0353 (11)0.0224 (9)0.0166 (10)0.0103 (9)0.0096 (8)
C50.0294 (10)0.0245 (9)0.0236 (9)0.0101 (8)0.0073 (8)0.0080 (7)
C60.0297 (10)0.0429 (12)0.0262 (9)0.0174 (9)0.0123 (8)0.0139 (8)
C70.0204 (9)0.0343 (11)0.0319 (10)0.0118 (8)0.0072 (8)0.0115 (8)
C80.0246 (10)0.0280 (10)0.0388 (11)0.0132 (8)0.0078 (8)0.0130 (8)
Geometric parameters (Å, º) top
Cu1—O11.9775 (14)C1—H10.9300
Cu1—N12.0051 (16)C2—C31.371 (4)
Cu1—N22.0268 (17)C2—H20.9300
Cu1—Cl1i2.2901 (5)C3—C41.390 (3)
Cu1—Cl12.6796 (7)C3—H30.9300
Cl1—Cu1i2.2901 (5)C4—C51.386 (3)
S1—O21.4380 (16)C4—H40.9300
S1—O31.4568 (15)C5—C61.501 (3)
S1—O11.4916 (14)C6—H6A0.9700
S1—C81.774 (2)C6—H6B0.9700
N1—C51.345 (3)C7—C81.519 (3)
N1—C11.346 (3)C7—H7A0.9700
N2—C61.475 (3)C7—H7B0.9700
N2—C71.492 (2)C8—H8A0.9700
N2—H1N0.95 (3)C8—H8B0.9700
C1—C21.382 (3)
O1—Cu1—N1169.95 (7)C3—C2—C1118.9 (2)
O1—Cu1—N292.73 (6)C3—C2—H2120.5
N1—Cu1—N281.18 (7)C1—C2—H2120.5
O1—Cu1—Cl1i89.03 (4)C2—C3—C4119.45 (19)
N1—Cu1—Cl1i95.57 (5)C2—C3—H3120.3
N2—Cu1—Cl1i169.68 (5)C4—C3—H3120.3
O1—Cu1—Cl196.00 (5)C5—C4—C3118.9 (2)
N1—Cu1—Cl192.76 (5)C5—C4—H4120.5
N2—Cu1—Cl197.82 (5)C3—C4—H4120.5
Cl1i—Cu1—Cl192.091 (19)N1—C5—C4121.49 (19)
Cu1i—Cl1—Cu187.910 (19)N1—C5—C6115.27 (16)
O2—S1—O3114.61 (10)C4—C5—C6123.21 (18)
O2—S1—O1112.23 (10)N2—C6—C5108.83 (16)
O3—S1—O1109.38 (9)N2—C6—H6A109.9
O2—S1—C8107.16 (10)C5—C6—H6A109.9
O3—S1—C8106.96 (10)N2—C6—H6B109.9
O1—S1—C8105.98 (9)C5—C6—H6B109.9
S1—O1—Cu1134.45 (9)H6A—C6—H6B108.3
C5—N1—C1119.10 (17)N2—C7—C8110.64 (16)
C5—N1—Cu1114.53 (13)N2—C7—H7A109.5
C1—N1—Cu1126.36 (14)C8—C7—H7A109.5
C6—N2—C7111.18 (16)N2—C7—H7B109.5
C6—N2—Cu1108.32 (13)C8—C7—H7B109.5
C7—N2—Cu1120.32 (13)H7A—C7—H7B108.1
C6—N2—H1N104.2 (16)C7—C8—S1113.05 (14)
C7—N2—H1N112.8 (16)C7—C8—H8A109.0
Cu1—N2—H1N98.3 (16)S1—C8—H8A109.0
N1—C1—C2122.1 (2)C7—C8—H8B109.0
N1—C1—H1119.0S1—C8—H8B109.0
C2—C1—H1119.0H8A—C8—H8B107.8
O1—Cu1—Cl1—Cu1i89.25 (4)N1—Cu1—N2—C7158.15 (16)
N1—Cu1—Cl1—Cu1i95.68 (5)Cl1i—Cu1—N2—C7129.6 (2)
N2—Cu1—Cl1—Cu1i177.15 (5)Cl1—Cu1—N2—C766.55 (14)
Cl1i—Cu1—Cl1—Cu1i0.0C5—N1—C1—C21.6 (4)
O2—S1—O1—Cu186.40 (15)Cu1—N1—C1—C2179.12 (19)
O3—S1—O1—Cu1145.24 (13)N1—C1—C2—C31.4 (4)
C8—S1—O1—Cu130.26 (16)C1—C2—C3—C40.0 (4)
N1—Cu1—O1—S170.6 (4)C2—C3—C4—C51.1 (4)
N2—Cu1—O1—S118.24 (15)C1—N1—C5—C40.5 (3)
Cl1i—Cu1—O1—S1171.93 (14)Cu1—N1—C5—C4179.82 (16)
Cl1—Cu1—O1—S179.93 (14)C1—N1—C5—C6177.54 (19)
O1—Cu1—N1—C568.7 (4)Cu1—N1—C5—C61.8 (2)
N2—Cu1—N1—C515.48 (14)C3—C4—C5—N10.9 (3)
Cl1i—Cu1—N1—C5174.39 (13)C3—C4—C5—C6178.7 (2)
Cl1—Cu1—N1—C582.02 (14)C7—N2—C6—C5170.83 (17)
O1—Cu1—N1—C1112.1 (4)Cu1—N2—C6—C536.51 (19)
N2—Cu1—N1—C1165.2 (2)N1—C5—C6—N225.8 (2)
Cl1i—Cu1—N1—C14.89 (19)C4—C5—C6—N2156.21 (19)
Cl1—Cu1—N1—C197.27 (19)C6—N2—C7—C8169.70 (17)
O1—Cu1—N2—C6159.28 (14)Cu1—N2—C7—C862.2 (2)
N1—Cu1—N2—C628.76 (14)N2—C7—C8—S174.07 (19)
Cl1i—Cu1—N2—C6101.0 (3)O2—S1—C8—C765.44 (17)
Cl1—Cu1—N2—C662.84 (13)O3—S1—C8—C7171.21 (14)
O1—Cu1—N2—C729.89 (15)O1—S1—C8—C754.58 (17)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O3ii0.95 (3)2.20 (3)2.966 (2)137 (2)
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H11N2O3S)2Cl2]
Mr628.28
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.294 (1), 8.362 (1), 9.110 (1)
α, β, γ (°)103.773 (2), 98.118 (2), 113.043 (2)
V3)544.9 (1)
Z1
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.33 × 0.20 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.505, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
3270, 2385, 2224
Rint0.009
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.067, 1.10
No. of reflections2385
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O3i0.95 (3)2.20 (3)2.966 (2)137 (2)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007a). Acta Cryst. E63, m213–m215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007b). Acta Cryst. E63, m601–m603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds