organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-N-[2-(4-Chloro­phen­yl)propano­yl]bornane-10,2-sultam

aKey Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: chshliu@mail.ccnu.edu.cn

(Received 16 November 2007; accepted 21 December 2007; online 16 January 2008)

In the mol­ecular structure of the title compound, C19H24ClNO3S, the six-membered ring of the bornane unit shows a boat form, while the five-membered ring of the sultam unit adopts a twist form. Intra­molecular C—H⋯N and C—H⋯O inter­actions are observed. In the crystal structure, mol­ecules are connected by inter­molecular C—H⋯O hydrogen bonds into a chain running along the b axis. The crystal was a partial inversion twin with a twin ratio of 0.73 (1):0.27 (1).

Related literature

For related literature, see: Boiadjiev & Lightner (2001[Boiadjiev, S. E. & Lightner, D. A. (2001). Tetrahedron Asymm. 12, 2551-2564.]); Oppolzer (1989[Oppolzer, W. (1989). Tetrahedron Lett. 41, 5603-5606.], 1990[Oppolzer, W. (1990). Pure Appl. Chem. 62, 1241-1250.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24ClNO3S

  • Mr = 381.90

  • Monoclinic, C 2

  • a = 21.0863 (16) Å

  • b = 7.7948 (6) Å

  • c = 12.102 (1) Å

  • β = 107.433 (1)°

  • V = 1897.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 5780 measured reflections

  • 3715 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.180

  • S = 1.10

  • 3715 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1503 Friedel pairs

  • Flack parameter: 0.27 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯N1 0.96 2.54 3.129 (6) 120
C19—H19⋯O3 0.93 2.59 3.196 (6) 123
C12—H12⋯O1 0.98 2.49 3.268 (6) 137
C10—H10A⋯O3i 0.97 2.36 3.292 (5) 161
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pioneering work of Oppolzer (1990) has resulted in the development of bornane[10,2]sultam serve as popular and widely used chiral auxiliaries in asymmetric synthesis. The resulting asymmetric induction using these auxiliaries are high in carbon-carbon bond formation such as alkylation (Oppolzer, 1989), and we have focused our attention on this field. In this paper, we present X-ray crystallographic analysis of the title compound, (I).

In (I), the six-membered ring of sultam shows a boat form (Fig. 1). The planes constructed by C3/C2/C1/C6and C3/C4/C5/C6 form a dihedral angle of 110.71°. The C7/C8/C9 plane makes dihedral angles of 93.92 and 90.93°, respectively, with C3/C2/C1/C6 and C3/C4/C5/C6 planes. Molecules are linked by the intermolecular C—H···O hydrogen bonds into a one-dimensional chain. No direction-specific interactions were observed between the adjacent chains along the b axis (Fig. 2).

Related literature top

For related literature, see: Boiadjiev & Lightner (2001); Oppolzer (1989, 1990).

Experimental top

For the preparation of compound (I), 2.4 ml n-BuLi (hexane, 2.5 mol/L) was added over 30 min to the THF (25 ml) solution of (+)-N-[2-(4-chlorophenyl)-ethanoyl]bornane-10,2-sultam (1.84 g, 5 mmol) at 193 K. After stirring the mixture at 193 K for 1 h, iodomethane 1.6 ml in 4.5 ml HMPA was added and then stirred at 193 K for 3 h. The solution was slowly warming up to room temperature, quenched with water and extracted bt Et2O to afford a crude product. Single crystals appropriate for data collection were obtained by slow evaporation of a dichloromethane solution at 293 K.

Refinement top

All H atoms were constrained to an ideal geometry (C—H = 0.93 - 0.98 Å) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The ratio of the twin components (major to minor) in crystal selected for diffraction is 0.73 (1):0.27 (1). The absolute configuration of the sultam unit is consistent with the known absolute configuration of (+)-2,10-sultam (Boiadjiev & Lightner, 2001). The major component is (+)-N-[(2S)-(4-chlorophenyl)-propanoyl] bornane-10,2-sultam, and the minor is (+)-N-[(2R)-(4-chlorophenyl)-propanoyl] bornane-10,2-sultam. The result was confirmed by HPLC.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal packing, showing the formation of the one-dimensional chain formed by a C10—H10A···O3 hydrogen bond.
(+)-N-[2-(4-Chlorophenyl)propanoyl]bornane-10,2-sultam top
Crystal data top
C19H24ClNO3SF(000) = 808
Mr = 381.90Dx = 1.337 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2555 reflections
a = 21.0863 (16) Åθ = 2.8–26.0°
b = 7.7948 (6) ŵ = 0.33 mm1
c = 12.102 (1) ÅT = 295 K
β = 107.433 (1)°Block, colorless
V = 1897.8 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3146 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.0°, θmin = 1.8°
ϕ and ω scansh = 2526
5780 measured reflectionsk = 99
3715 independent reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1128P)2 + 0.2113P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3715 reflectionsΔρmax = 0.34 e Å3
229 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1503 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.27 (1)
Crystal data top
C19H24ClNO3SV = 1897.8 (3) Å3
Mr = 381.90Z = 4
Monoclinic, C2Mo Kα radiation
a = 21.0863 (16) ŵ = 0.33 mm1
b = 7.7948 (6) ÅT = 295 K
c = 12.102 (1) Å0.30 × 0.20 × 0.20 mm
β = 107.433 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3146 reflections with I > 2σ(I)
5780 measured reflectionsRint = 0.032
3715 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.180Δρmax = 0.34 e Å3
S = 1.10Δρmin = 0.22 e Å3
3715 reflectionsAbsolute structure: Flack (1983), 1503 Friedel pairs
229 parametersAbsolute structure parameter: 0.27 (1)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41765 (17)0.1484 (5)0.2515 (3)0.0363 (8)
H10.40740.19710.31880.044*
C20.3700 (2)0.2236 (6)0.1388 (4)0.0492 (10)
H2A0.34360.31650.15520.059*
H2B0.39420.26470.08730.059*
C30.32641 (19)0.0678 (7)0.0869 (4)0.0501 (10)
H30.30020.08160.00560.060*
C40.28491 (19)0.0218 (7)0.1686 (4)0.0568 (12)
H4A0.24970.05820.13180.068*
H4B0.26550.12360.19130.068*
C50.33625 (18)0.0616 (6)0.2743 (4)0.0463 (10)
H5A0.33870.00040.34530.056*
H5B0.32560.18100.28290.056*
C60.40133 (17)0.0439 (5)0.2421 (3)0.0364 (8)
C70.37733 (19)0.0803 (6)0.1092 (3)0.0486 (10)
C80.4297 (2)0.0585 (7)0.0450 (4)0.0582 (13)
H8A0.46400.14290.07210.087*
H8B0.44880.05420.05950.087*
H8C0.40900.07310.03670.087*
C90.3474 (3)0.2582 (7)0.0795 (5)0.0661 (14)
H9A0.32910.26880.00300.099*
H9B0.31280.27470.11500.099*
H9C0.38130.34330.10760.099*
C100.46138 (18)0.1414 (5)0.3168 (4)0.0421 (9)
H10A0.46530.25140.28190.051*
H10B0.45700.16140.39330.051*
C110.5168 (2)0.3268 (5)0.2714 (4)0.0438 (9)
C120.59037 (19)0.3421 (6)0.2804 (4)0.0511 (11)
H120.60530.23150.25870.061*
C130.5985 (3)0.4787 (9)0.1933 (5)0.0770 (15)
H13A0.57140.44860.11680.115*
H13B0.64430.48370.19470.115*
H13C0.58510.58860.21420.115*
C140.63302 (19)0.3854 (6)0.4024 (4)0.0475 (10)
C150.7005 (2)0.3585 (7)0.4306 (5)0.0612 (13)
H150.71850.31830.37410.073*
C160.7427 (2)0.3902 (9)0.5418 (5)0.0722 (16)
H160.78790.36740.56020.087*
C170.7166 (2)0.4547 (6)0.6224 (4)0.0513 (11)
C180.6501 (2)0.4816 (7)0.5981 (4)0.0541 (10)
H180.63270.52100.65550.065*
C190.6085 (2)0.4500 (6)0.4877 (4)0.0525 (11)
H190.56330.47260.47060.063*
Cl10.76886 (6)0.4977 (2)0.76187 (10)0.0713 (4)
N10.48941 (14)0.1662 (4)0.2660 (3)0.0379 (7)
O10.57014 (16)0.0733 (5)0.2551 (4)0.0704 (10)
O20.56815 (15)0.0226 (5)0.4436 (3)0.0658 (9)
O30.48162 (16)0.4517 (4)0.2627 (3)0.0652 (9)
S10.53270 (4)0.01249 (12)0.32646 (8)0.0425 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0282 (16)0.043 (2)0.0375 (19)0.0012 (14)0.0089 (15)0.0034 (15)
C20.036 (2)0.055 (3)0.054 (2)0.0044 (18)0.0085 (19)0.0126 (19)
C30.035 (2)0.070 (3)0.040 (2)0.0050 (19)0.0048 (16)0.0042 (19)
C40.0293 (17)0.074 (3)0.064 (3)0.0003 (19)0.0094 (18)0.005 (2)
C50.0349 (19)0.054 (3)0.050 (2)0.0066 (16)0.0133 (17)0.0024 (18)
C60.0295 (16)0.042 (2)0.0350 (17)0.0029 (14)0.0053 (13)0.0059 (15)
C70.0311 (18)0.068 (3)0.040 (2)0.0032 (18)0.0003 (16)0.0083 (19)
C80.050 (2)0.086 (4)0.039 (2)0.003 (2)0.0138 (17)0.007 (2)
C90.050 (3)0.078 (4)0.062 (3)0.019 (2)0.006 (2)0.027 (3)
C100.0339 (18)0.042 (2)0.046 (2)0.0011 (16)0.0052 (16)0.0013 (17)
C110.040 (2)0.040 (2)0.050 (2)0.0063 (16)0.0127 (17)0.0082 (17)
C120.0341 (19)0.058 (3)0.064 (3)0.0119 (18)0.0193 (19)0.014 (2)
C130.065 (3)0.094 (4)0.074 (3)0.021 (3)0.024 (3)0.007 (4)
C140.040 (2)0.039 (2)0.069 (3)0.0104 (16)0.023 (2)0.0057 (19)
C150.044 (2)0.073 (3)0.075 (3)0.001 (2)0.029 (2)0.020 (3)
C160.032 (2)0.099 (4)0.082 (4)0.000 (2)0.011 (2)0.023 (3)
C170.045 (2)0.053 (3)0.056 (2)0.0047 (19)0.0165 (19)0.002 (2)
C180.045 (2)0.063 (3)0.060 (2)0.009 (2)0.0233 (18)0.009 (2)
C190.0355 (19)0.049 (3)0.075 (3)0.0019 (17)0.0184 (19)0.009 (2)
Cl10.0574 (6)0.0895 (9)0.0600 (7)0.0096 (7)0.0069 (5)0.0001 (7)
N10.0274 (14)0.0417 (17)0.0414 (17)0.0041 (13)0.0053 (13)0.0031 (13)
O10.0474 (17)0.065 (2)0.110 (3)0.0134 (15)0.0403 (19)0.0048 (19)
O20.0575 (18)0.068 (2)0.0543 (17)0.0164 (16)0.0104 (14)0.0087 (16)
O30.0473 (16)0.0416 (19)0.103 (3)0.0022 (13)0.0172 (17)0.0090 (16)
S10.0290 (4)0.0460 (5)0.0476 (5)0.0002 (4)0.0041 (3)0.0030 (5)
Geometric parameters (Å, º) top
C1—N11.477 (4)C10—S11.783 (4)
C1—C61.535 (6)C10—H10A0.9700
C1—C21.547 (5)C10—H10B0.9700
C1—H10.9800C11—O31.209 (5)
C2—C31.539 (6)C11—N11.371 (5)
C2—H2A0.9700C11—C121.528 (5)
C2—H2B0.9700C12—C141.518 (6)
C3—C71.544 (6)C12—C131.544 (8)
C3—C41.545 (6)C12—H120.9800
C3—H30.9800C13—H13A0.9600
C4—C51.549 (6)C13—H13B0.9600
C4—H4A0.9700C13—H13C0.9600
C4—H4B0.9700C14—C151.377 (6)
C5—C61.541 (5)C14—C191.380 (6)
C5—H5A0.9700C15—C161.395 (7)
C5—H5B0.9700C15—H150.9300
C6—C101.521 (5)C16—C171.351 (7)
C6—C71.561 (5)C16—H160.9300
C7—C91.522 (7)C17—C181.360 (6)
C7—C81.538 (6)C17—Cl11.749 (4)
C8—H8A0.9600C18—C191.384 (6)
C8—H8B0.9600C18—H180.9300
C8—H8C0.9600C19—H190.9300
C9—H9A0.9600N1—S11.706 (3)
C9—H9B0.9600O1—S11.415 (4)
C9—H9C0.9600O2—S11.417 (3)
N1—C1—C6107.4 (3)C7—C9—H9C109.5
N1—C1—C2116.2 (3)H9A—C9—H9C109.5
C6—C1—C2103.4 (3)H9B—C9—H9C109.5
N1—C1—H1109.8C6—C10—S1107.0 (3)
C6—C1—H1109.8C6—C10—H10A110.3
C2—C1—H1109.8S1—C10—H10A110.3
C3—C2—C1102.2 (3)C6—C10—H10B110.3
C3—C2—H2A111.3S1—C10—H10B110.3
C1—C2—H2A111.3H10A—C10—H10B108.6
C3—C2—H2B111.3O3—C11—N1119.5 (4)
C1—C2—H2B111.3O3—C11—C12121.7 (4)
H2A—C2—H2B109.2N1—C11—C12118.6 (4)
C2—C3—C7102.7 (3)C14—C12—C11112.3 (3)
C2—C3—C4107.8 (4)C14—C12—C13110.8 (4)
C7—C3—C4102.3 (4)C11—C12—C13108.9 (4)
C2—C3—H3114.3C14—C12—H12108.2
C7—C3—H3114.3C11—C12—H12108.2
C4—C3—H3114.3C13—C12—H12108.2
C3—C4—C5103.6 (3)C12—C13—H13A109.5
C3—C4—H4A111.0C12—C13—H13B109.5
C5—C4—H4A111.0H13A—C13—H13B109.5
C3—C4—H4B111.0C12—C13—H13C109.5
C5—C4—H4B111.0H13A—C13—H13C109.5
H4A—C4—H4B109.0H13B—C13—H13C109.5
C6—C5—C4102.0 (3)C15—C14—C19117.4 (4)
C6—C5—H5A111.4C15—C14—C12118.3 (4)
C4—C5—H5A111.4C19—C14—C12124.2 (4)
C6—C5—H5B111.4C14—C15—C16121.6 (4)
C4—C5—H5B111.4C14—C15—H15119.2
H5A—C5—H5B109.2C16—C15—H15119.2
C10—C6—C1108.4 (3)C17—C16—C15118.9 (4)
C10—C6—C5116.8 (3)C17—C16—H16120.5
C1—C6—C5105.4 (3)C15—C16—H16120.5
C10—C6—C7118.5 (3)C16—C17—C18121.1 (4)
C1—C6—C7104.5 (3)C16—C17—Cl1119.6 (3)
C5—C6—C7101.9 (3)C18—C17—Cl1119.3 (3)
C9—C7—C8106.9 (4)C17—C18—C19119.7 (4)
C9—C7—C3115.0 (4)C17—C18—H18120.1
C8—C7—C3113.4 (4)C19—C18—H18120.1
C9—C7—C6113.1 (4)C14—C19—C18121.1 (4)
C8—C7—C6116.1 (3)C14—C19—H19119.4
C3—C7—C692.2 (3)C18—C19—H19119.4
C7—C8—H8A109.5C11—N1—C1119.5 (3)
C7—C8—H8B109.5C11—N1—S1124.2 (3)
H8A—C8—H8B109.5C1—N1—S1111.8 (3)
C7—C8—H8C109.5O1—S1—O2116.8 (2)
H8A—C8—H8C109.5O1—S1—N1109.7 (2)
H8B—C8—H8C109.5O2—S1—N1109.0 (2)
C7—C9—H9A109.5O1—S1—C10112.6 (2)
C7—C9—H9B109.5O2—S1—C10110.9 (2)
H9A—C9—H9B109.5N1—S1—C1095.73 (16)
N1—C1—C2—C3124.3 (3)N1—C11—C12—C14103.2 (4)
C6—C1—C2—C36.9 (4)O3—C11—C12—C1342.4 (6)
C1—C2—C3—C741.2 (4)N1—C11—C12—C13133.6 (4)
C1—C2—C3—C466.3 (4)C11—C12—C14—C15163.0 (4)
C2—C3—C4—C573.6 (4)C13—C12—C14—C1575.0 (6)
C7—C3—C4—C534.3 (4)C11—C12—C14—C1916.9 (6)
C3—C4—C5—C62.8 (5)C13—C12—C14—C19105.2 (5)
N1—C1—C6—C1033.0 (4)C19—C14—C15—C161.9 (8)
C2—C1—C6—C10156.4 (3)C12—C14—C15—C16178.0 (5)
N1—C1—C6—C5158.8 (3)C14—C15—C16—C172.4 (9)
C2—C1—C6—C577.8 (3)C15—C16—C17—C183.0 (9)
N1—C1—C6—C794.3 (3)C15—C16—C17—Cl1179.2 (4)
C2—C1—C6—C729.1 (4)C16—C17—C18—C193.0 (8)
C4—C5—C6—C10169.3 (4)Cl1—C17—C18—C19179.2 (4)
C4—C5—C6—C170.3 (4)C15—C14—C19—C181.9 (7)
C4—C5—C6—C738.6 (4)C12—C14—C19—C18178.0 (5)
C2—C3—C7—C9173.1 (4)C17—C18—C19—C142.4 (8)
C4—C3—C7—C961.4 (5)O3—C11—N1—C11.0 (6)
C2—C3—C7—C863.5 (4)C12—C11—N1—C1177.0 (3)
C4—C3—C7—C8175.2 (3)O3—C11—N1—S1155.2 (4)
C2—C3—C7—C656.3 (4)C12—C11—N1—S128.7 (5)
C4—C3—C7—C655.5 (3)C6—C1—N1—C11177.1 (3)
C10—C6—C7—C969.0 (5)C2—C1—N1—C1161.9 (5)
C1—C6—C7—C9170.2 (4)C6—C1—N1—S125.7 (4)
C5—C6—C7—C960.7 (4)C2—C1—N1—S1140.9 (3)
C10—C6—C7—C855.2 (5)C11—N1—S1—O178.3 (4)
C1—C6—C7—C865.6 (5)C1—N1—S1—O1125.7 (3)
C5—C6—C7—C8175.1 (4)C11—N1—S1—O250.7 (4)
C10—C6—C7—C3172.6 (3)C1—N1—S1—O2105.2 (3)
C1—C6—C7—C351.8 (3)C11—N1—S1—C10165.1 (3)
C5—C6—C7—C357.7 (4)C1—N1—S1—C109.2 (3)
C1—C6—C10—S126.2 (4)C6—C10—S1—O1103.7 (3)
C5—C6—C10—S1145.0 (3)C6—C10—S1—O2123.2 (3)
C7—C6—C10—S192.5 (4)C6—C10—S1—N110.3 (3)
O3—C11—C12—C1480.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···N10.962.543.129 (6)120
C19—H19···O30.932.593.196 (6)123
C12—H12···O10.982.493.268 (6)137
C10—H10A···O3i0.972.363.292 (5)161
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H24ClNO3S
Mr381.90
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)21.0863 (16), 7.7948 (6), 12.102 (1)
β (°) 107.433 (1)
V3)1897.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5780, 3715, 3146
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.180, 1.10
No. of reflections3715
No. of parameters229
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22
Absolute structureFlack (1983), 1503 Friedel pairs
Absolute structure parameter0.27 (1)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···N10.962.543.129 (6)119.6
C19—H19···O30.932.593.196 (6)122.8
C12—H12···O10.982.493.268 (6)136.7
C10—H10A···O3i0.972.363.292 (5)160.6
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20572029), the New Century Excellent Talents in Universities (grant No. NCET-04-0743), and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (grant No. 705039).

References

First citationBoiadjiev, S. E. & Lightner, D. A. (2001). Tetrahedron Asymm. 12, 2551–2564.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOppolzer, W. (1989). Tetrahedron Lett. 41, 5603–5606.  CrossRef Web of Science Google Scholar
First citationOppolzer, W. (1990). Pure Appl. Chem. 62, 1241–1250.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds