metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m276-m277

catena-Poly[[tetra­aqua­zinc(II)]-μ-2,2′-dihydr­­oxy-5,5′-diazenediyldibenzoato]

aDepartment of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China, bSchool of Resources and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China, and cDepartment of Managing Equipment, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: tyxcn@163.com

(Received 18 November 2007; accepted 1 December 2007; online 4 January 2008)

In the title compound, [Zn(C14H8N2O6)(H2O)4]n, the 2,2′-dihydr­oxy-5,5′-diazenediyldibenzoate ligand acts as a carboxyl­ate bridge, leading to the formation of a polymeric chain running along the [1[\overline{1}]0] direction. The ZnII atom is hexa-coordinated in a distorted octa­hedral geometry by six O atoms [Zn—O = 2.055 (4)–2.132 (3) Å] from two carboxylate ligands and four water mol­ecules. The crystal packing is stabilized by inter­molecular O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, and two ππ inter­actions. The centroid–centroid distances are 3.803 (16) and 3.804 (17) Å.

Related literature

For related literature, see: Klotz (2005[Klotz, U. (2005). Dig. Liver Dis. 37, 381-388.]); Tang, Tan & Cao (2007[Tang, Y.-Z., Tan, Y.-H. & Cao, Y.-W. (2007). Acta Cryst. E63, m1175-m1176.]); Tang, Tan, Chen & Cao (2007[Tang, Y.-Z., Tan, Y.-H., Chen, S.-H. & Cao, Y.-W. (2007). Z. Anorg. Allg. Chem. 633, 332-335.]); Tang, Yang et al. (2007[Tang, Y.-Z., Yang, S.-P., Tan, Y.-H., Chen, S.-H., Cao, Y.-W. & Wang, P. (2007). Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 23, 70-74.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H8N2O6)(H2O)4]

  • Mr = 437.66

  • Monoclinic, P 21 /c

  • a = 9.510 (2) Å

  • b = 11.255 (3) Å

  • c = 16.214 (4) Å

  • β = 107.019 (3)°

  • V = 1659.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 296 (2) K

  • 0.25 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.699, Tmax = 0.861

  • 10784 measured reflections

  • 3278 independent reflections

  • 3036 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.10

  • 3278 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O3W 2.055 (4)
Zn1—O4W 2.069 (4)
Zn1—O1W 2.075 (3)
Zn1—O2i 2.086 (3)
Zn1—O5 2.097 (3)
Zn1—O2W 2.132 (3)
O3W—Zn1—O4W 177.75 (16)
O3W—Zn1—O1W 92.90 (16)
O4W—Zn1—O1W 89.28 (15)
O3W—Zn1—O2i 89.72 (15)
O4W—Zn1—O2i 88.10 (14)
O1W—Zn1—O2i 177.36 (13)
O3W—Zn1—O5 87.93 (16)
O4W—Zn1—O5 91.35 (16)
O1W—Zn1—O5 94.52 (13)
O2i—Zn1—O5 85.89 (11)
O3W—Zn1—O2W 88.49 (17)
O4W—Zn1—O2W 92.21 (18)
O1W—Zn1—O2W 86.44 (15)
O2i—Zn1—O2W 93.32 (13)
O5—Zn1—O2W 176.33 (15)
Symmetry code: (i) x-1, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6 0.84 (6) 1.86 (6) 2.677 (5) 168 (6)
O1W—H1WB⋯N2ii 0.88 (7) 2.32 (6) 3.058 (5) 143 (6)
O2W—H2WA⋯O1i 1.01 (6) 1.63 (6) 2.636 (5) 170 (6)
O2W—H2WB⋯O3iii 0.87 (7) 2.44 (8) 2.997 (5) 123 (6)
O3W—H3WA⋯N1iv 0.74 (6) 2.17 (6) 2.893 (5) 164 (5)
O3W—H3WB⋯O6ii 0.78 (8) 1.95 (7) 2.664 (5) 152 (7)
O4W—H4WA⋯O4v 0.79 (7) 2.20 (8) 2.875 (6) 144 (8)
O4W—H4WB⋯O1ii 0.89 (6) 1.85 (6) 2.703 (5) 160 (6)
O3—H3A⋯O2 0.82 1.80 2.528 (4) 147
O4—H4A⋯O5 0.82 1.81 2.537 (4) 148
C2—H2A⋯O1Wvi 0.93 2.53 3.405 (6) 157
Symmetry codes: (i) x-1, y+1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Olsalazine, 2,2'-dihydroxy-5,5'-diazenediyldibenzoic acid, has been widely used to prevent and treat the inflammatory bowel diseases, such as ulcerative colitis (Klotz, 2005). In previous work, we have synthesized a serial of Zn (Tang, Tan, Chen & Cao, 2007), Cd and Co (Tang, Yang et al., 2007) complexes with phenanthroline as auxiliary ligand. We have also reported a Mn complex of olsalazine (Tang, Tan & Cao, 2007), but the zinc complex with single olsalazine as building block has not been reported yet. Here we reported the crystal structure of the title compound, (I), a new zinc complex of olsalazine.

In (I), the Zn atom is hexa-coordinated (Fig. 1) by two O atoms from two L ligands [H2L=3,3-azo-bis(6-hydroxybenzoic acid)] and four water molecules in a distorted octahedral geometry (Table 1). Two ligands are cis to each other in an octahedral environment. Each ligand L acts as a carboxylate bridge, which leads to formation of a polymeric chain running in the direction [110]. Two neighbouring polymeric chains are paired by π···π interactions between the aromatic rings; the distances Cg1···Cg1i and Cg2···Cg2i are 3.803 (16) and 3.804 (17) Å, respectively [Cg1 and Cg2 are centroids of C2—C7 and C8—C13 rings, respectively; symmetry code: (i) x - 1, y - 1, z]. The crystal packing is further stabilized by the intermolecular O—H···O, O—H···N and C—H···O hydrogen bonds (Table 2).

Related literature top

For related literature, see: Klotz (2005); Tang, Tan & Cao (2007); Tang, Tan, Chen & Cao (2007); Tang, Yang et al. (2007).

Refinement top

The hydroxy and C-bound H atoms were placed in calculated positions (C—H = 0.93 Å and O—H = 0.82 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C,O). The water H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A part of the polymeric structure of (I), showing displacement ellipsoids drawn at the 30% probability level and the atomic labelling. Unlabelled atoms are related to labelled atoms by the symmetry code (x - 1, y + 1, z).
catena-Poly[[tetraaquazinc(II)]- µ-2,2'-dihydroxy-5,5'-diazenediyldibenzoato] top
Crystal data top
[Zn(C14H8N2O6)(H2O)4]F(000) = 896
Mr = 437.66Dx = 1.752 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 935 reflections
a = 9.510 (2) Åθ = 1.8–26.0°
b = 11.255 (3) ŵ = 1.54 mm1
c = 16.214 (4) ÅT = 296 K
β = 107.019 (3)°Block, orange
V = 1659.5 (7) Å30.25 × 0.22 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3278 independent reflections
Radiation source: fine-focus sealed tube3036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.699, Tmax = 0.861k = 1313
10784 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0307P)2 + 1.3308P]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Zn(C14H8N2O6)(H2O)4]V = 1659.5 (7) Å3
Mr = 437.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.510 (2) ŵ = 1.54 mm1
b = 11.255 (3) ÅT = 296 K
c = 16.214 (4) Å0.25 × 0.22 × 0.10 mm
β = 107.019 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3278 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3036 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.861Rint = 0.034
10784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.39 e Å3
3278 reflectionsΔρmin = 0.70 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71408 (5)0.64023 (4)0.21196 (3)0.03166 (13)
O60.9487 (4)0.4284 (3)0.2011 (2)0.0620 (11)
O50.7705 (4)0.5388 (3)0.1179 (2)0.0434 (8)
O40.6849 (4)0.5057 (3)0.0439 (2)0.0511 (9)
H4A0.68730.53590.00250.077*
O31.5187 (4)0.2597 (3)0.0536 (2)0.0570 (10)
H3A1.56030.28160.00420.085*
O21.5791 (3)0.2637 (2)0.10891 (19)0.0375 (7)
O11.4725 (4)0.1395 (3)0.17841 (18)0.0508 (8)
O4W0.5362 (4)0.5313 (3)0.2060 (3)0.0535 (9)
O3W0.8865 (4)0.7510 (3)0.2132 (3)0.0501 (8)
O2W0.6659 (4)0.7520 (3)0.3064 (2)0.0493 (9)
O1W0.8398 (4)0.5403 (3)0.3147 (2)0.0431 (8)
N21.0930 (4)0.1421 (3)0.0030 (2)0.0343 (7)
N11.1233 (4)0.1052 (3)0.0637 (2)0.0334 (8)
C140.8672 (5)0.4557 (4)0.1291 (3)0.0402 (11)
C130.8783 (5)0.3916 (3)0.0511 (3)0.0335 (9)
C120.7874 (5)0.4192 (4)0.0312 (3)0.0343 (9)
C110.7972 (5)0.3553 (4)0.1026 (3)0.0414 (10)
H11A0.73670.37510.15710.050*
C100.8949 (5)0.2633 (4)0.0935 (3)0.0372 (9)
H10A0.89890.21960.14140.045*
C90.9877 (5)0.2357 (3)0.0127 (3)0.0316 (9)
C80.9781 (5)0.2998 (4)0.0582 (3)0.0370 (10)
H8A1.04060.28070.11230.044*
C71.2236 (4)0.0099 (3)0.0537 (3)0.0322 (9)
C61.2416 (5)0.0349 (4)0.1298 (3)0.0396 (10)
H6A1.18710.00250.18220.048*
C51.3378 (6)0.1259 (4)0.1296 (3)0.0473 (12)
H5A1.34690.15580.18120.057*
C41.4210 (5)0.1727 (4)0.0517 (3)0.0372 (10)
C31.4032 (4)0.1293 (4)0.0259 (2)0.0301 (8)
C21.3051 (5)0.0383 (3)0.0244 (3)0.0316 (9)
H2A1.29360.00930.07580.038*
C11.4901 (5)0.1794 (4)0.1108 (3)0.0321 (9)
H1WA0.872 (6)0.496 (5)0.283 (4)0.062 (18)*
H3WA0.872 (7)0.779 (5)0.170 (4)0.05 (2)*
H4WA0.507 (9)0.504 (6)0.159 (5)0.09 (3)*
H2WA0.597 (7)0.802 (5)0.260 (4)0.073 (19)*
H3WB0.921 (7)0.796 (6)0.250 (5)0.07 (2)*
H4WB0.545 (7)0.488 (5)0.253 (4)0.066 (19)*
H1WB0.895 (8)0.580 (6)0.359 (4)0.08 (2)*
H2WB0.619 (8)0.703 (6)0.330 (5)0.09 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0368 (2)0.0289 (2)0.0260 (2)0.0034 (2)0.00388 (19)0.0022 (2)
O60.076 (2)0.070 (2)0.0266 (18)0.045 (2)0.0057 (17)0.0064 (16)
O50.0494 (18)0.0396 (16)0.0341 (18)0.0196 (14)0.0009 (13)0.0061 (13)
O40.056 (2)0.0503 (18)0.0372 (19)0.0296 (16)0.0021 (15)0.0070 (15)
O30.076 (2)0.062 (2)0.0339 (19)0.0451 (19)0.0164 (18)0.0057 (16)
O20.0453 (16)0.0341 (14)0.0297 (16)0.0143 (13)0.0057 (13)0.0039 (12)
O10.068 (2)0.0524 (16)0.0286 (15)0.0272 (18)0.0085 (16)0.0010 (16)
O4W0.051 (2)0.059 (2)0.039 (2)0.0120 (16)0.0032 (17)0.0131 (19)
O3W0.060 (2)0.055 (2)0.030 (2)0.0195 (17)0.0066 (17)0.001 (2)
O2W0.061 (2)0.051 (2)0.034 (2)0.0169 (18)0.0105 (16)0.0009 (15)
O1W0.0504 (19)0.0440 (17)0.0321 (19)0.0105 (15)0.0077 (14)0.0042 (14)
N20.0380 (17)0.0340 (15)0.0279 (17)0.0107 (16)0.0052 (14)0.0014 (16)
N10.0393 (18)0.0326 (17)0.0265 (18)0.0100 (14)0.0070 (15)0.0019 (13)
C140.044 (2)0.037 (2)0.036 (3)0.0115 (19)0.0051 (19)0.0071 (19)
C130.039 (2)0.0294 (19)0.026 (2)0.0077 (17)0.0003 (18)0.0018 (15)
C120.032 (2)0.034 (2)0.032 (2)0.0076 (18)0.0013 (16)0.0019 (18)
C110.042 (2)0.048 (2)0.027 (2)0.014 (2)0.0004 (18)0.000 (2)
C100.047 (2)0.039 (2)0.023 (2)0.0071 (19)0.0049 (17)0.0056 (17)
C90.035 (2)0.0302 (19)0.028 (2)0.0089 (16)0.0061 (17)0.0002 (16)
C80.043 (2)0.037 (2)0.026 (2)0.0108 (19)0.0030 (18)0.0017 (18)
C70.035 (2)0.0308 (19)0.029 (2)0.0071 (16)0.0067 (17)0.0030 (17)
C60.047 (3)0.040 (2)0.026 (2)0.015 (2)0.0027 (18)0.0056 (18)
C50.068 (3)0.049 (2)0.023 (2)0.020 (3)0.009 (2)0.001 (2)
C40.046 (2)0.034 (2)0.031 (2)0.0162 (18)0.0108 (19)0.0018 (17)
C30.035 (2)0.0271 (17)0.0262 (19)0.0065 (17)0.0064 (16)0.0032 (17)
C20.035 (2)0.0306 (19)0.029 (2)0.0051 (17)0.0088 (17)0.0001 (17)
C10.036 (2)0.0322 (19)0.026 (2)0.0039 (17)0.0059 (17)0.0014 (16)
Geometric parameters (Å, º) top
Zn1—O3W2.055 (4)N2—N11.267 (5)
Zn1—O4W2.069 (4)N2—C91.425 (5)
Zn1—O1W2.075 (3)N1—C71.413 (5)
Zn1—O2i2.086 (3)C14—C131.487 (6)
Zn1—O52.097 (3)C13—C81.385 (6)
Zn1—O2W2.132 (3)C13—C121.396 (6)
O6—C141.236 (6)C12—C111.389 (6)
O5—C141.286 (5)C11—C101.370 (6)
O4—C121.350 (5)C11—H11A0.9300
O4—H4A0.8200C10—C91.383 (6)
O3—C41.356 (5)C10—H10A0.9300
O3—H3A0.8200C9—C81.383 (6)
O2—C11.278 (5)C8—H8A0.9300
O2—Zn1ii2.086 (3)C7—C21.387 (6)
O1—C11.240 (5)C7—C61.389 (6)
O4W—H4WA0.80 (8)C6—C51.372 (6)
O4W—H4WB0.88 (7)C6—H6A0.9300
O3W—H3WA0.74 (6)C5—C41.382 (6)
O3W—H3WB0.78 (7)C5—H5A0.9300
O2W—H2WA1.02 (7)C4—C31.406 (6)
O2W—H2WB0.87 (7)C3—C21.381 (5)
O1W—H1WA0.83 (6)C3—C11.493 (5)
O1W—H1WB0.88 (7)C2—H2A0.9300
O3W—Zn1—O4W177.75 (16)C12—C13—C14121.8 (4)
O3W—Zn1—O1W92.90 (16)O4—C12—C11117.9 (4)
O4W—Zn1—O1W89.28 (15)O4—C12—C13121.6 (4)
O3W—Zn1—O2i89.72 (15)C11—C12—C13120.5 (4)
O4W—Zn1—O2i88.10 (14)C10—C11—C12120.7 (4)
O1W—Zn1—O2i177.36 (13)C10—C11—H11A119.7
O3W—Zn1—O587.93 (16)C12—C11—H11A119.7
O4W—Zn1—O591.35 (16)C11—C10—C9119.8 (4)
O1W—Zn1—O594.52 (13)C11—C10—H10A120.1
O2i—Zn1—O585.89 (11)C9—C10—H10A120.1
O3W—Zn1—O2W88.49 (17)C8—C9—C10119.4 (4)
O4W—Zn1—O2W92.21 (18)C8—C9—N2116.8 (4)
O1W—Zn1—O2W86.44 (15)C10—C9—N2123.8 (4)
O2i—Zn1—O2W93.32 (13)C9—C8—C13122.0 (4)
O5—Zn1—O2W176.33 (15)C9—C8—H8A119.0
C14—O5—Zn1128.2 (3)C13—C8—H8A119.0
C12—O4—H4A109.5C2—C7—C6119.2 (4)
C4—O3—H3A109.5C2—C7—N1125.4 (4)
C1—O2—Zn1ii128.5 (3)C6—C7—N1115.4 (3)
Zn1—O4W—H4WA109 (6)C5—C6—C7121.6 (4)
Zn1—O4W—H4WB114 (4)C5—C6—H6A119.2
H4WA—O4W—H4WB122 (6)C7—C6—H6A119.2
Zn1—O3W—H3WA109 (5)C6—C5—C4119.3 (4)
Zn1—O3W—H3WB125 (5)C6—C5—H5A120.3
H3WA—O3W—H3WB111 (7)C4—C5—H5A120.3
Zn1—O2W—H2WA91 (3)O3—C4—C5117.9 (4)
Zn1—O2W—H2WB101 (5)O3—C4—C3122.2 (4)
H2WA—O2W—H2WB112 (5)C5—C4—C3119.9 (4)
Zn1—O1W—H1WA93 (4)C2—C3—C4120.0 (3)
Zn1—O1W—H1WB117 (4)C2—C3—C1119.0 (4)
H1WA—O1W—H1WB125 (6)C4—C3—C1121.0 (4)
N1—N2—C9114.4 (3)C3—C2—C7120.0 (4)
N2—N1—C7117.7 (3)C3—C2—H2A120.0
O6—C14—O5122.6 (4)C7—C2—H2A120.0
O6—C14—C13120.1 (4)O1—C1—O2123.5 (4)
O5—C14—C13117.3 (4)O1—C1—C3119.8 (4)
C8—C13—C12117.6 (4)O2—C1—C3116.7 (4)
C8—C13—C14120.6 (4)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O60.84 (6)1.86 (6)2.677 (5)168 (6)
O1W—H1WB···N2iii0.88 (7)2.32 (6)3.058 (5)143 (6)
O2W—H2WA···O1i1.01 (6)1.63 (6)2.636 (5)170 (6)
O2W—H2WB···O3iv0.87 (7)2.44 (8)2.997 (5)123 (6)
O3W—H3WA···N1v0.74 (6)2.17 (6)2.893 (5)164 (5)
O3W—H3WB···O6iii0.78 (8)1.95 (7)2.664 (5)152 (7)
O4W—H4WA···O4vi0.79 (7)2.20 (8)2.875 (6)144 (8)
O4W—H4WB···O1iii0.89 (6)1.85 (6)2.703 (5)160 (6)
O3—H3A···O20.821.802.528 (4)147
O4—H4A···O50.821.812.537 (4)148
C2—H2A···O1Wvii0.932.533.405 (6)157
Symmetry codes: (i) x1, y+1, z; (iii) x+2, y+1/2, z+1/2; (iv) x1, y+1/2, z+1/2; (v) x+2, y+1, z; (vi) x+1, y+1, z; (vii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C14H8N2O6)(H2O)4]
Mr437.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.510 (2), 11.255 (3), 16.214 (4)
β (°) 107.019 (3)
V3)1659.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.25 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.699, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
10784, 3278, 3036
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.10
No. of reflections3278
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.70

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Zn1—O3W2.055 (4)Zn1—O2i2.086 (3)
Zn1—O4W2.069 (4)Zn1—O52.097 (3)
Zn1—O1W2.075 (3)Zn1—O2W2.132 (3)
O3W—Zn1—O4W177.75 (16)O1W—Zn1—O594.52 (13)
O3W—Zn1—O1W92.90 (16)O2i—Zn1—O585.89 (11)
O4W—Zn1—O1W89.28 (15)O3W—Zn1—O2W88.49 (17)
O3W—Zn1—O2i89.72 (15)O4W—Zn1—O2W92.21 (18)
O4W—Zn1—O2i88.10 (14)O1W—Zn1—O2W86.44 (15)
O1W—Zn1—O2i177.36 (13)O2i—Zn1—O2W93.32 (13)
O3W—Zn1—O587.93 (16)O5—Zn1—O2W176.33 (15)
O4W—Zn1—O591.35 (16)
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O60.84 (6)1.86 (6)2.677 (5)168 (6)
O1W—H1WB···N2ii0.88 (7)2.32 (6)3.058 (5)143 (6)
O2W—H2WA···O1i1.01 (6)1.63 (6)2.636 (5)170 (6)
O2W—H2WB···O3iii0.87 (7)2.44 (8)2.997 (5)123 (6)
O3W—H3WA···N1iv0.74 (6)2.17 (6)2.893 (5)164 (5)
O3W—H3WB···O6ii0.78 (8)1.95 (7)2.664 (5)152 (7)
O4W—H4WA···O4v0.79 (7)2.20 (8)2.875 (6)144 (8)
O4W—H4WB···O1ii0.89 (6)1.85 (6)2.703 (5)160 (6)
O3—H3A···O20.821.802.528 (4)147
O4—H4A···O50.821.812.537 (4)148
C2—H2A···O1Wvi0.932.533.405 (6)157
Symmetry codes: (i) x1, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x1, y+1/2, z+1/2; (iv) x+2, y+1, z; (v) x+1, y+1, z; (vi) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Gannan Medical University Master Development Foundation.

References

First citationBruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKlotz, U. (2005). Dig. Liver Dis. 37, 381–388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTang, Y.-Z., Tan, Y.-H. & Cao, Y.-W. (2007). Acta Cryst. E63, m1175–m1176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, Y.-Z., Tan, Y.-H., Chen, S.-H. & Cao, Y.-W. (2007). Z. Anorg. Allg. Chem. 633, 332–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationTang, Y.-Z., Yang, S.-P., Tan, Y.-H., Chen, S.-H., Cao, Y.-W. & Wang, P. (2007). Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 23, 70–74.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m276-m277
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds