metal-organic compounds
catena-Poly[[[diaquairon(II)]-μ-pyridine-2,5-dicarboxylato-[tetraaquairon(II)]-μ-pyridine-2,5-dicarboxylato] tetrahydrate]
aDepartment of Chemistry, Shangqiu Normal College, 476000 Shangqiu, Henan, People's Republic of China
*Correspondence e-mail: xuhyun@yahoo.cn
In the 2(C7H3NO4)2(H2O)6]·4H2O}n, there are two types of coordination for the FeII atoms. One FeII atom is in a distorted octahedral N2O4 environment, with two chelating rings from the pyridinedicarboxylate ligands and two O atoms from the water molecules, while the other is in a distorted octahedral O6 environment with two O atoms from the pyridinedicarboxylate ligands and four O atoms from the water molecules. Both FeII atoms lie on crystallographic centers of symmetry. The complex possesses an infinite chain structure running along the [101] direction. These chains are interconnected by the uncoordinated water molecules through O—H⋯O hydrogen bonds.
of the title compound, {[FeRelated literature
For related literature, see: Hill (1998); Liang et al. (2001); Mitzi et al. (1995); Moler et al. (2001); Zeng et al. (2003); Xu et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808002043/is2270sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808002043/is2270Isup2.hkl
A mixture of H2pydc (0.34 g, 2 mmol), KOH (0.23 g, 4 mmol) and FeSO4.7H2O (0.55 g, 2 mmol) in 15 ml of MeOH/H2O (v/v, 1:1) was sealed in a 25-ml stainless-steel reactor with a teflon liner and was heated at 453 K for 72 h under autogenous pressure. Slow cooling to room temperature yielded 0.36 g (yield 40%) of block red crystals. Anal. Calc. for C7H13NO9Fe (%): C 27.03, H 4.21, N 4.50. Found (%): C 27.14, H 4.46, N 4.36.
The H atoms were included in the riding-model approximation with C—H = 0.93 Å and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C, O). Hydroxyl H atoms were allowed to rotate to best fit the experimental electron density.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Part of the polymeric structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity. The suffix A corresponds to symmetry code (2 - x, 1 - y, 1 - z). | |
Fig. 2. The three-dimensional supramolecular structure of the title compound. Hydrogen bonds are shown by dashed lines. |
[Fe2(C7H3NO4)2(H2O)6]·4H2O | Z = 1 |
Mr = 622.06 | F(000) = 320 |
Triclinic, P1 | Dx = 1.807 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.098 (3) Å | Cell parameters from 714 reflections |
b = 8.922 (3) Å | θ = 2.4–28.2° |
c = 9.720 (2) Å | µ = 1.36 mm−1 |
α = 90.942 (6)° | T = 298 K |
β = 101.375 (6)° | Block, red |
γ = 108.112 (5)° | 0.21 × 0.20 × 0.18 mm |
V = 571.6 (3) Å3 |
Bruker SMART APEX CCD diffractometer | 1989 independent reflections |
Radiation source: fine-focus sealed tube | 1757 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→6 |
Tmin = 0.763, Tmax = 0.792 | k = −10→10 |
2866 measured reflections | l = −11→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.081P)2 + 0.2244P] where P = (Fo2 + 2Fc2)/3 |
1989 reflections | (Δ/σ)max < 0.001 |
166 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
[Fe2(C7H3NO4)2(H2O)6]·4H2O | γ = 108.112 (5)° |
Mr = 622.06 | V = 571.6 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.098 (3) Å | Mo Kα radiation |
b = 8.922 (3) Å | µ = 1.36 mm−1 |
c = 9.720 (2) Å | T = 298 K |
α = 90.942 (6)° | 0.21 × 0.20 × 0.18 mm |
β = 101.375 (6)° |
Bruker SMART APEX CCD diffractometer | 1989 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1757 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 0.792 | Rint = 0.062 |
2866 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.65 e Å−3 |
1989 reflections | Δρmin = −0.60 e Å−3 |
166 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.5000 | 0.5000 | 0.0000 | 0.0222 (2) | |
Fe2 | 1.0000 | 0.5000 | 0.5000 | 0.0258 (2) | |
C1 | 0.6446 (4) | 0.3738 (3) | 0.2523 (3) | 0.0270 (6) | |
C2 | 0.4924 (4) | 0.2309 (3) | 0.1667 (3) | 0.0275 (6) | |
C3 | 0.4514 (5) | 0.0824 (3) | 0.2147 (3) | 0.0330 (7) | |
H3 | 0.5126 | 0.0679 | 0.3050 | 0.040* | |
C4 | 0.3189 (5) | −0.0438 (3) | 0.1270 (3) | 0.0331 (7) | |
H4 | 0.2889 | −0.1449 | 0.1579 | 0.040* | |
C5 | 0.2302 (4) | −0.0216 (3) | −0.0065 (3) | 0.0278 (6) | |
C6 | 0.2767 (4) | 0.1328 (3) | −0.0474 (3) | 0.0279 (6) | |
H6 | 0.2161 | 0.1496 | −0.1372 | 0.033* | |
C7 | 0.0905 (4) | −0.1587 (4) | −0.1093 (3) | 0.0318 (7) | |
N1 | 0.4039 (3) | 0.2565 (3) | 0.0369 (3) | 0.0261 (5) | |
O1 | 0.8315 (4) | 0.6187 (3) | 0.5803 (3) | 0.0448 (6) | |
H1A | 0.7132 | 0.6145 | 0.5373 | 0.054* | |
H1B | 0.9150 | 0.7017 | 0.6279 | 0.054* | |
O2 | 0.9411 (3) | 0.3350 (3) | 0.6494 (2) | 0.0425 (6) | |
H2B | 0.8576 | 0.2419 | 0.6286 | 0.051* | |
H2A | 1.0460 | 0.3570 | 0.7156 | 0.051* | |
O3 | 0.7348 (3) | 0.3533 (2) | 0.3701 (2) | 0.0352 (5) | |
O4 | 0.6748 (3) | 0.5047 (2) | 0.1970 (2) | 0.0334 (5) | |
O5 | 0.2787 (3) | 0.5429 (3) | 0.0954 (2) | 0.0361 (5) | |
H5A | 0.1792 | 0.5354 | 0.0276 | 0.043* | |
H5B | 0.2288 | 0.4806 | 0.1537 | 0.043* | |
O6 | 0.0097 (4) | −0.1287 (3) | −0.2262 (3) | 0.0473 (6) | |
O7 | 0.0653 (4) | −0.2939 (3) | −0.0688 (3) | 0.0430 (6) | |
O8 | 0.4663 (4) | 0.2880 (4) | 0.6019 (3) | 0.0640 (8) | |
H8B | 0.4601 | 0.3105 | 0.6859 | 0.077* | |
H8A | 0.5871 | 0.3270 | 0.5904 | 0.077* | |
O9 | 0.1591 (7) | −0.0327 (5) | 0.4428 (6) | 0.1112 (15) | |
H9B | 0.2489 | 0.0471 | 0.4912 | 0.133* | |
H9A | 0.1463 | 0.0205 | 0.3718 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0226 (3) | 0.0153 (3) | 0.0243 (3) | 0.0050 (2) | −0.0034 (2) | −0.0004 (2) |
Fe2 | 0.0269 (4) | 0.0200 (3) | 0.0247 (3) | 0.0056 (2) | −0.0043 (2) | −0.0003 (2) |
C1 | 0.0253 (14) | 0.0248 (14) | 0.0301 (15) | 0.0088 (12) | 0.0027 (11) | −0.0011 (11) |
C2 | 0.0261 (14) | 0.0260 (14) | 0.0284 (15) | 0.0082 (12) | 0.0021 (11) | −0.0013 (11) |
C3 | 0.0369 (17) | 0.0282 (15) | 0.0302 (16) | 0.0083 (13) | 0.0019 (13) | 0.0059 (12) |
C4 | 0.0357 (16) | 0.0215 (14) | 0.0403 (17) | 0.0090 (13) | 0.0041 (13) | 0.0059 (12) |
C5 | 0.0251 (14) | 0.0225 (14) | 0.0355 (16) | 0.0079 (12) | 0.0054 (12) | 0.0003 (12) |
C6 | 0.0277 (15) | 0.0226 (13) | 0.0314 (15) | 0.0088 (12) | 0.0006 (12) | −0.0004 (11) |
C7 | 0.0242 (14) | 0.0258 (15) | 0.0432 (18) | 0.0083 (12) | 0.0023 (13) | −0.0049 (13) |
N1 | 0.0259 (12) | 0.0187 (11) | 0.0308 (13) | 0.0071 (10) | −0.0003 (10) | 0.0014 (9) |
O1 | 0.0403 (13) | 0.0383 (13) | 0.0492 (14) | 0.0153 (11) | −0.0089 (11) | −0.0151 (11) |
O2 | 0.0407 (13) | 0.0349 (12) | 0.0411 (13) | 0.0033 (10) | −0.0026 (10) | 0.0113 (10) |
O3 | 0.0366 (12) | 0.0278 (11) | 0.0308 (11) | 0.0047 (9) | −0.0072 (9) | 0.0010 (8) |
O4 | 0.0367 (12) | 0.0228 (10) | 0.0314 (11) | 0.0071 (9) | −0.0096 (9) | −0.0011 (8) |
O5 | 0.0320 (11) | 0.0320 (12) | 0.0439 (13) | 0.0104 (10) | 0.0072 (10) | 0.0046 (10) |
O6 | 0.0572 (15) | 0.0302 (12) | 0.0434 (14) | 0.0136 (11) | −0.0134 (11) | −0.0088 (10) |
O7 | 0.0367 (13) | 0.0198 (11) | 0.0632 (16) | 0.0040 (10) | −0.0020 (11) | −0.0008 (10) |
O8 | 0.0469 (16) | 0.075 (2) | 0.066 (2) | 0.0196 (16) | 0.0038 (14) | 0.0019 (16) |
O9 | 0.116 (3) | 0.054 (2) | 0.163 (5) | 0.019 (2) | 0.041 (3) | 0.000 (2) |
Fe1—O4 | 2.058 (2) | C4—C5 | 1.372 (4) |
Fe1—O4i | 2.058 (2) | C4—H4 | 0.9300 |
Fe1—O5i | 2.100 (2) | C5—C6 | 1.397 (4) |
Fe1—O5 | 2.100 (2) | C5—C7 | 1.515 (4) |
Fe1—N1 | 2.125 (2) | C6—N1 | 1.328 (4) |
Fe1—N1i | 2.125 (2) | C6—H6 | 0.9300 |
Fe2—O1 | 2.071 (2) | C7—O6 | 1.241 (4) |
Fe2—O1ii | 2.071 (2) | C7—O7 | 1.245 (4) |
Fe2—O3ii | 2.080 (2) | O1—H1A | 0.8499 |
Fe2—O3 | 2.080 (2) | O1—H1B | 0.8499 |
Fe2—O2 | 2.092 (2) | O2—H2B | 0.8500 |
Fe2—O2ii | 2.092 (2) | O2—H2A | 0.8501 |
C1—O3 | 1.242 (3) | O5—H5A | 0.8499 |
C1—O4 | 1.268 (4) | O5—H5B | 0.8500 |
C1—C2 | 1.496 (4) | O8—H8B | 0.8500 |
C2—N1 | 1.351 (4) | O8—H8A | 0.8499 |
C2—C3 | 1.376 (4) | O9—H9B | 0.8499 |
C3—C4 | 1.368 (4) | O9—H9A | 0.8500 |
C3—H3 | 0.9300 | ||
O4—Fe1—O4i | 180.00 (11) | N1—C2—C1 | 115.5 (2) |
O4—Fe1—O5i | 90.89 (9) | C3—C2—C1 | 122.3 (3) |
O4i—Fe1—O5i | 89.11 (9) | C4—C3—C2 | 118.8 (3) |
O4—Fe1—O5 | 89.11 (9) | C4—C3—H3 | 120.6 |
O4i—Fe1—O5 | 90.89 (9) | C2—C3—H3 | 120.6 |
O5i—Fe1—O5 | 180.00 (6) | C3—C4—C5 | 120.2 (3) |
O4—Fe1—N1 | 79.00 (8) | C3—C4—H4 | 119.9 |
O4i—Fe1—N1 | 101.00 (8) | C5—C4—H4 | 119.9 |
O5i—Fe1—N1 | 88.20 (9) | C4—C5—C6 | 117.9 (3) |
O5—Fe1—N1 | 91.80 (9) | C4—C5—C7 | 121.9 (3) |
O4—Fe1—N1i | 101.00 (8) | C6—C5—C7 | 120.2 (3) |
O4i—Fe1—N1i | 79.00 (8) | N1—C6—C5 | 122.5 (3) |
O5i—Fe1—N1i | 91.80 (9) | N1—C6—H6 | 118.7 |
O5—Fe1—N1i | 88.20 (9) | C5—C6—H6 | 118.7 |
N1—Fe1—N1i | 180.0 | O6—C7—O7 | 125.1 (3) |
O1—Fe2—O1ii | 180.00 (12) | O6—C7—C5 | 118.1 (3) |
O1—Fe2—O3ii | 90.59 (9) | O7—C7—C5 | 116.8 (3) |
O1ii—Fe2—O3ii | 89.41 (9) | C6—N1—C2 | 118.4 (2) |
O1—Fe2—O3 | 89.41 (9) | C6—N1—Fe1 | 129.8 (2) |
O1ii—Fe2—O3 | 90.59 (9) | C2—N1—Fe1 | 111.81 (18) |
O3ii—Fe2—O3 | 180.0 | Fe2—O1—H1A | 122.3 |
O1—Fe2—O2 | 89.15 (10) | Fe2—O1—H1B | 107.1 |
O1ii—Fe2—O2 | 90.85 (10) | H1A—O1—H1B | 122.4 |
O3ii—Fe2—O2 | 93.74 (9) | Fe2—O2—H2B | 122.9 |
O3—Fe2—O2 | 86.26 (9) | Fe2—O2—H2A | 108.0 |
O1—Fe2—O2ii | 90.85 (10) | H2B—O2—H2A | 122.9 |
O1ii—Fe2—O2ii | 89.15 (10) | C1—O3—Fe2 | 129.74 (18) |
O3ii—Fe2—O2ii | 86.26 (9) | C1—O4—Fe1 | 116.24 (18) |
O3—Fe2—O2ii | 93.74 (9) | Fe1—O5—H5A | 104.8 |
O2—Fe2—O2ii | 180.0 | Fe1—O5—H5B | 119.7 |
O3—C1—O4 | 125.5 (3) | H5A—O5—H5B | 105.0 |
O3—C1—C2 | 117.1 (2) | H8B—O8—H8A | 110.3 |
O4—C1—C2 | 117.3 (2) | H9B—O9—H9A | 91.5 |
N1—C2—C3 | 122.2 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9B···O8 | 0.85 | 2.32 | 3.159 (6) | 171 |
O9—H9A···O6iii | 0.85 | 2.06 | 2.849 (5) | 154 |
O8—H8B···O5iv | 0.85 | 2.55 | 3.204 (4) | 134 |
O8—H8B···O4iv | 0.85 | 2.51 | 3.171 (4) | 136 |
O8—H8A···O3 | 0.85 | 2.55 | 3.177 (4) | 132 |
O8—H8A···O2 | 0.85 | 2.44 | 3.201 (4) | 149 |
O5—H5B···O7iii | 0.85 | 2.22 | 2.706 (3) | 116 |
O2—H2B···O9v | 0.85 | 1.94 | 2.657 (5) | 141 |
O2—H2A···O4ii | 0.85 | 1.99 | 2.758 (3) | 150 |
O1—H1B···O6vi | 0.85 | 1.92 | 2.715 (3) | 156 |
O1—H1A···O8iv | 0.85 | 2.06 | 2.822 (4) | 148 |
Symmetry codes: (ii) −x+2, −y+1, −z+1; (iii) −x, −y, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x+1, y+1, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Fe2(C7H3NO4)2(H2O)6]·4H2O |
Mr | 622.06 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.098 (3), 8.922 (3), 9.720 (2) |
α, β, γ (°) | 90.942 (6), 101.375 (6), 108.112 (5) |
V (Å3) | 571.6 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.21 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.763, 0.792 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2866, 1989, 1757 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.124, 1.06 |
No. of reflections | 1989 |
No. of parameters | 166 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.60 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9B···O8 | 0.85 | 2.32 | 3.159 (6) | 171 |
O9—H9A···O6i | 0.85 | 2.06 | 2.849 (5) | 154 |
O8—H8B···O5ii | 0.85 | 2.55 | 3.204 (4) | 134 |
O8—H8B···O4ii | 0.85 | 2.51 | 3.171 (4) | 136 |
O8—H8A···O3 | 0.85 | 2.55 | 3.177 (4) | 132 |
O8—H8A···O2 | 0.85 | 2.44 | 3.201 (4) | 149 |
O5—H5B···O7i | 0.85 | 2.22 | 2.706 (3) | 116 |
O2—H2B···O9iii | 0.85 | 1.94 | 2.657 (5) | 141 |
O2—H2A···O4iv | 0.85 | 1.99 | 2.758 (3) | 150 |
O1—H1B···O6v | 0.85 | 1.92 | 2.715 (3) | 156 |
O1—H1A···O8ii | 0.85 | 2.06 | 2.822 (4) | 148 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z+1; (v) x+1, y+1, z+1. |
Acknowledgements
The authors thank the Natural Science Foundation of Henan Province (No. 0511020300) for financial support.
References
Hill, C. L. (1998). Chem. Rev. 98, 1–390. Web of Science CrossRef PubMed CAS Google Scholar
Liang, Y.-C., Hong, M.-C., Su, W.-P., Cao, R. & Zhang, W.-J. (2001). Inorg. Chem. 40, 4574–4582. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mitzi, D. B., Wang, S., Field, C. A., Chess, C. A. & Guloy, A. M. (1995). Science, 267, 1473–1476. CSD CrossRef PubMed CAS Web of Science Google Scholar
Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. Web of Science PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Xu, Y., Han, L., Lin, Z.-Z., Liu, C.-P., Yuan, D.-Q., Zhou, Y.-F. & Hong, M.-C. (2004). Eur. J. Inorg. Chem. pp. 4457–4462. Web of Science CSD CrossRef Google Scholar
Zeng, M.-H., Gao, S., Yu, X.-L. & Chen, X.-M. (2003). New J. Chem. 27, 1599–1602. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Extended frameworks of coordination polymers based on transition metal ions and multifunctional bridging ligands are currently of great interest because of their intriguing topologies and their potential applications (Hill, 1998; Moler et al., 2001; Mitzi et al., 1995). Multi-carboxylate ligands may exhibit various coordination modes to furnish various structures. Recently, many transition metal-organic polymers constructed with multi-carboxylate ligands show varies of novel topology and potential applications in catalysis, materials chemistry and biochemistry (Zeng et al., 2003; Xu et al., 2004; Liang et al., 2001). Pyridine-2,5-dicarboxylic acid (H2pydc) has unique features because of the presence of two carboxylate groups (O donor atoms) and the pyridine ring (N donor atom), which aids to increase the dimensionality of the assembled covalent network. Therefore, it is most likely that pydc will form low symmetric structures with metals. In this paper, we report the preparation and crystal structure of a new three-dimensional supramolecular complex [Fe2(pydc)2(H2O)2].4H2O, (I).
In the complex, (I), there exist two types of coordination geometries around the Fe(II) ions. The Fe1 ions are hexacoordinated in a N2O4 environment with two chelating rings from the pydc ligands and two oxygen atoms from the water molecules. The Fe2 ions are also hexacoordinated in an O6 environment with two oxygen atoms from the pydc ligands and four oxygen atoms from the water molecules. All Fe atoms lie on a crystallographic center of symmetry and the ligand lies on a crystallographic twofold axis. A perspective view of the local coordination environments around the Fe(II) atoms of (I) is shown in Fig. 1. For Fe1 and Fe2, the bond distances of Fe—O (water oxygen), 2.071–2.100 Å, are similar with those of Fe—O (carboxylate oxygen), 2.058–2.080 Å. As presented in Fig. 2, the two kinds of geometries around Fe(II) ions are arranged alternatively to give the one-dimensional polymeric chain. Interestingly, all Fe atoms of one polymeric chain are situated on one line and the neighboring Fe(II) atoms are syn-anti carboxylato bridged with the distance of 5.423 Å. These chains are interconnected by the uncoordinated water molecules through O—H···O hydrogen-bonding interactions and form a two-dimensional layer structure. A three-dimensional supramolecular network is obtained through O—H···O hydrogen-bonding interactions in the layers.