metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(3-formyl-2-oxidobenzoato-κ2O1,O2)(1,10-phenanthroline-κ2N,N′)copper(II) methanol solvate

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: zhw@henu.edu.cn

(Received 10 November 2007; accepted 20 December 2007; online 4 January 2008)

In the structure of the title complex, [Cu(C8H4O4)(C12H8N2)(H2O)]·CH4O, the CuII ion is penta­coordinated in a tetra­gonal–pyramidal geometry, with two O atoms of the 3-formyl-2-oxidobenzoate (3-formyl­salicylate) anion and two N atoms of 1,10-phenanthroline occupying the basal plane, and a water O atom located at the apical site. The structure displays O—H⋯O hydrogen bonding.

Related literature

For related literature, see: Erxleben & Schumacher (2001[Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039-3046.]); Ma et al. (2007[Ma, S. L., Sun, X. X., Gao, S., Qi, C. M., Huang, H. B. & Zhu, W. X. (2007). Eur. J. Inorg. Chem. 6, 846-851.]); Akitsu & Einaga (2006[Akitsu, T. & Einaga, Y. (2006). Inorg. Chem. 45, 9826-9833.]); Yu, Cui et al. (2007[Yu, Z.-W., Cui, Q.-X., Zhang, W. & Hao, Y.-L. (2007). Acta Cryst. E63, m1563-m1565.]); Yu, Hao et al. (2006[Yu, Z.-W., Hao, Y.-L., Zhang, W. & Cui, Q.-X. (2006). Acta Cryst. E62, m2786-m2788.]); Costes et al. (2004[Costes, J.-P., Dahan, F., Donnadieu, B., Rodriquez Douton, M.-J., Fernandez Garcia, M. I., Bousseksou, A. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 2736-2744.]); Karmakar et al. (2005[Karmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Rivière, E., Mallah, T., Aromí, G. & Chandra, S. K. (2005). Inorg. Chem. 44, 2391-2399.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H4O4)(C12H8N2)(H2O)]·CH4O

  • Mr = 457.91

  • Triclinic, [P \overline 1]

  • a = 8.6714 (11) Å

  • b = 10.3895 (13) Å

  • c = 11.7617 (14) Å

  • α = 115.125 (2)°

  • β = 95.859 (2)°

  • γ = 93.589 (2)°

  • V = 947.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 296 (2) K

  • 0.21 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 4953 measured reflections

  • 3336 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 0.94

  • 3336 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1W 2.348 (3)
Cu1—O2 1.898 (2)
Cu1—O3 1.898 (2)
Cu1—N1 2.016 (3)
Cu1—N2 2.011 (3)
O1W—Cu1—O2 93.40 (11)
O1W—Cu1—O3 90.04 (10)
O1W—Cu1—N1 96.50 (11)
O1W—Cu1—N2 97.69 (10)
O2—Cu1—O3 94.32 (10)
O2—Cu1—N1 88.77 (11)
O2—Cu1—N2 166.01 (11)
O3—Cu1—N1 172.59 (11)
O3—Cu1—N2 94.17 (11)
N1—Cu1—N2 81.55 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1i 0.82 1.89 2.703 (4) 171
O1W—H1WB⋯O5ii 0.85 1.93 2.747 (4) 162
O1W—H1WA⋯O4iii 0.85 2.00 2.844 (4) 170
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff bases of 3-formylsalicylic acid with diamines have been studied for many years and their binuclear complexes have been intensively investigated in view of the interesting magnetic interaction between the bridged metals (Akitsu & Einaga, 2006; Karmakar et al., 2005; Costes et al., 2004). Recently some complexes with the schiff base of 3-formysalicylic acid and monoamines (Yu, Hao et al., 2006; Yu, Cui et al., 2007; Erxleben & Schumacher, 2001; Ma et al., 2007) have also been reported. But to our knowledge, complexes using 3-formylsalicylic acid directly as ligand have received much less attention. Here we synthesized a multicomponent complex, containing 3-formylsalicylic acid and 1,10-phenanthroline.

The CuII ion is coordinated in distorted square pyramid, where the basal plane is formed by NNOO atoms coming from 1,10-phenanthroline and 3-formylsalcylate anion; the apical site is occupied by the O atom of water. The 3-formylsalicylate anion acts as a bidentate ligand. The O atom of the formyl group is not coordinated.

There are three kinds of intermolecular hydrogen bonds in the crystal. One is between the H atom of water and the O atom of methanol, the second is between the H atom of water and the formyl O atom, the third is between the H atom of methanol and the uncoordinated O atom of the carboxylate group. The intermolecular hydrogen bonds link the molecules into a onedimensional chain, running in the [1 - 1 0] direction (Figure 2).

Related literature top

For related literature, see: Erxleben & Schumacher (2001); Ma et al. (2007); Akitsu & Einaga (2006); Yu, Cui et al. (2007). Yu, Hao et al. (2006); Costes et al. (2004); Karmakar et al. (2005).

Experimental top

3-formylsalicylic acid (0.166 g, 1.0 mmol) was dissolved in 10 ml NaOH (0.080 g, 2.0 mmol) aqueous solution. To this solution, 15 ml me thanol solution containing 1,10-phenanthroline (0.1982 g, 1 mmol) and CuCl2.2H2O (0.1705 g, 1 mmol) was added. The mixture was stirred at ambient temperature for 2 h, then filtered to give a green solution. The filtrate was airproofed and kept at room temperature. Two weeks later, green block-shaped crystal of X-ray quality were obtained.

Refinement top

The approximate positions of the water H atoms, obtained from a difference Fourier map, were restrained to ideal water geometry and fixed in the final stages of refinement. All other H atoms were included in calculated positions, with C—H distances ranging from 0.93 to 0.96 Å and O—H distances of 0.82 Å. They were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are indicated by dashed lines.
Aqua(3-formyl-2-oxidobenzoato-κ2O1,O2)(1,10-phenanthroline- κ2N,N')copper(II) methanol solvate top
Crystal data top
[Cu(C8H4O4)(C12H8N2)(H2O)]·CH4OZ = 2
Mr = 457.91F(000) = 470
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6714 (11) ÅCell parameters from 1476 reflections
b = 10.3895 (13) Åθ = 2.4–23.1°
c = 11.7617 (14) ŵ = 1.20 mm1
α = 115.125 (2)°T = 296 K
β = 95.859 (2)°Block, green
γ = 93.589 (2)°0.21 × 0.16 × 0.15 mm
V = 947.7 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 108
4953 measured reflectionsk = 1112
3336 independent reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
3336 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C8H4O4)(C12H8N2)(H2O)]·CH4Oγ = 93.589 (2)°
Mr = 457.91V = 947.7 (2) Å3
Triclinic, P1Z = 2
a = 8.6714 (11) ÅMo Kα radiation
b = 10.3895 (13) ŵ = 1.20 mm1
c = 11.7617 (14) ÅT = 296 K
α = 115.125 (2)°0.21 × 0.16 × 0.15 mm
β = 95.859 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2336 reflections with I > 2σ(I)
4953 measured reflectionsRint = 0.061
3336 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.94Δρmax = 0.56 e Å3
3336 reflectionsΔρmin = 0.40 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.04891 (5)0.15042 (5)0.43931 (4)0.04238 (18)
O1W0.2655 (3)0.2918 (3)0.4306 (3)0.0690 (8)
H1WA0.33700.23820.40540.083*
H1WB0.24520.32750.37850.083*
N10.1078 (3)0.2009 (3)0.3305 (3)0.0395 (7)
N20.0517 (3)0.0202 (3)0.2729 (3)0.0366 (7)
O10.0334 (3)0.4719 (2)0.7766 (2)0.0541 (7)
O20.0072 (3)0.3010 (3)0.5848 (2)0.0518 (7)
O30.1798 (3)0.0801 (2)0.5341 (2)0.0433 (6)
O40.5232 (3)0.0845 (3)0.6619 (3)0.0694 (9)
C10.2080 (4)0.2978 (3)0.7301 (3)0.0344 (8)
C20.2507 (4)0.1602 (3)0.6484 (3)0.0347 (8)
C30.3754 (4)0.1093 (4)0.6985 (3)0.0364 (8)
C40.4531 (4)0.1902 (4)0.8211 (4)0.0455 (9)
H4A0.53490.15450.85170.055*
C50.4121 (5)0.3205 (4)0.8972 (4)0.0517 (10)
H5A0.46490.37380.97880.062*
C60.2905 (4)0.3714 (4)0.8503 (3)0.0433 (9)
H6A0.26240.46010.90250.052*
C70.0722 (4)0.3618 (4)0.6951 (3)0.0377 (8)
C80.4236 (4)0.0293 (4)0.6237 (4)0.0480 (10)
H8A0.37480.07980.54040.058*
C90.1828 (4)0.3141 (4)0.3596 (4)0.0511 (10)
H9A0.15960.38760.44130.061*
C100.2942 (5)0.3298 (4)0.2752 (4)0.0560 (11)
H10A0.34510.41160.30050.067*
C110.3287 (5)0.2251 (4)0.1550 (4)0.0554 (11)
H11A0.40430.23470.09790.066*
C120.2512 (4)0.1027 (4)0.1166 (3)0.0429 (9)
C130.2754 (5)0.0140 (4)0.0074 (4)0.0534 (11)
H13A0.34940.01190.06950.064*
C140.1935 (5)0.1267 (4)0.0360 (4)0.0546 (11)
H14A0.21200.20070.11770.066*
C150.0787 (4)0.1356 (4)0.0558 (3)0.0421 (9)
C160.0130 (5)0.2480 (4)0.0336 (3)0.0505 (10)
H16A0.00070.32540.04610.061*
C170.1192 (5)0.2437 (4)0.1277 (4)0.0493 (10)
H17A0.18100.31780.11260.059*
C180.1366 (4)0.1285 (4)0.2479 (3)0.0429 (9)
H18A0.20950.12760.31200.051*
C190.0538 (4)0.0235 (4)0.1789 (3)0.0362 (8)
C200.1402 (4)0.0960 (4)0.2081 (3)0.0373 (8)
C210.6449 (6)0.4308 (6)0.6735 (6)0.108 (2)
H21A0.60250.44680.75010.162*
H21B0.68870.34160.64340.162*
H21C0.56350.42750.61030.162*
O50.7606 (4)0.5414 (3)0.6979 (3)0.0751 (9)
H50.84590.51830.71380.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0434 (3)0.0424 (3)0.0300 (3)0.0188 (2)0.00278 (19)0.0037 (2)
O1W0.0605 (19)0.0671 (19)0.092 (2)0.0250 (16)0.0175 (17)0.0422 (18)
N10.0402 (18)0.0358 (17)0.0363 (17)0.0096 (15)0.0087 (14)0.0085 (14)
N20.0324 (17)0.0363 (17)0.0342 (17)0.0068 (14)0.0089 (14)0.0074 (14)
O10.0666 (19)0.0384 (15)0.0413 (15)0.0236 (14)0.0049 (14)0.0001 (13)
O20.0540 (17)0.0520 (16)0.0321 (14)0.0283 (14)0.0016 (12)0.0000 (12)
O30.0487 (16)0.0346 (13)0.0327 (14)0.0154 (12)0.0007 (12)0.0014 (11)
O40.0579 (19)0.0649 (19)0.092 (2)0.0275 (16)0.0107 (17)0.0382 (18)
C10.036 (2)0.0324 (19)0.0313 (19)0.0047 (16)0.0042 (16)0.0100 (16)
C20.034 (2)0.036 (2)0.034 (2)0.0034 (17)0.0070 (16)0.0144 (17)
C30.032 (2)0.037 (2)0.042 (2)0.0041 (17)0.0067 (17)0.0188 (18)
C40.036 (2)0.051 (2)0.055 (3)0.0044 (19)0.0007 (19)0.030 (2)
C50.054 (3)0.049 (2)0.042 (2)0.003 (2)0.012 (2)0.015 (2)
C60.050 (2)0.033 (2)0.037 (2)0.0011 (18)0.0020 (18)0.0064 (17)
C70.041 (2)0.034 (2)0.032 (2)0.0050 (17)0.0070 (17)0.0079 (17)
C80.041 (2)0.049 (2)0.057 (3)0.011 (2)0.012 (2)0.024 (2)
C90.049 (2)0.046 (2)0.055 (3)0.014 (2)0.009 (2)0.018 (2)
C100.050 (3)0.054 (3)0.068 (3)0.019 (2)0.008 (2)0.029 (2)
C110.051 (3)0.064 (3)0.060 (3)0.006 (2)0.003 (2)0.038 (3)
C120.039 (2)0.050 (2)0.042 (2)0.0015 (19)0.0021 (18)0.025 (2)
C130.057 (3)0.062 (3)0.041 (2)0.011 (2)0.009 (2)0.029 (2)
C140.066 (3)0.053 (3)0.033 (2)0.012 (2)0.001 (2)0.010 (2)
C150.044 (2)0.042 (2)0.033 (2)0.0061 (19)0.0078 (18)0.0098 (17)
C160.058 (3)0.042 (2)0.034 (2)0.003 (2)0.016 (2)0.0004 (19)
C170.054 (3)0.036 (2)0.048 (2)0.0128 (19)0.022 (2)0.0048 (19)
C180.037 (2)0.043 (2)0.044 (2)0.0078 (18)0.0091 (18)0.0141 (18)
C190.037 (2)0.038 (2)0.0274 (19)0.0022 (17)0.0053 (16)0.0089 (16)
C200.035 (2)0.043 (2)0.032 (2)0.0003 (18)0.0048 (17)0.0157 (18)
C210.068 (4)0.116 (5)0.173 (6)0.040 (4)0.040 (4)0.085 (5)
O50.078 (2)0.0586 (19)0.085 (2)0.0297 (18)0.001 (2)0.0276 (18)
Geometric parameters (Å, º) top
Cu1—O1W2.348 (3)C8—H8A0.9300
Cu1—O21.898 (2)C9—C101.381 (5)
Cu1—O31.898 (2)C9—H9A0.9300
Cu1—N12.016 (3)C10—C111.356 (5)
Cu1—N22.011 (3)C10—H10A0.9300
O1W—H1WA0.8500C11—C121.399 (5)
O1W—H1WB0.8499C11—H11A0.9300
N1—C91.312 (4)C12—C201.396 (5)
N1—C201.373 (4)C12—C131.430 (5)
N2—C181.327 (4)C13—C141.344 (5)
N2—C191.348 (4)C13—H13A0.9300
O1—C71.234 (4)C14—C151.430 (5)
O2—C71.273 (4)C14—H14A0.9300
O3—C21.301 (4)C15—C161.401 (5)
O4—C81.216 (4)C15—C191.403 (4)
C1—C61.380 (5)C16—C171.350 (5)
C1—C21.441 (4)C16—H16A0.9300
C1—C71.494 (5)C17—C181.397 (5)
C2—C31.415 (5)C17—H17A0.9300
C3—C41.394 (5)C18—H18A0.9300
C3—C81.448 (5)C19—C201.424 (5)
C4—C51.363 (5)C21—O51.388 (5)
C4—H4A0.9300C21—H21A0.9600
C5—C61.375 (5)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—H6A0.9300O5—H50.8200
O1W—Cu1—O293.40 (11)C3—C8—H8A117.6
O1W—Cu1—O390.04 (10)N1—C9—C10123.4 (4)
O1W—Cu1—N196.50 (11)N1—C9—H9A118.3
O1W—Cu1—N297.69 (10)C10—C9—H9A118.3
O2—Cu1—O394.32 (10)C11—C10—C9119.5 (4)
O2—Cu1—N188.77 (11)C11—C10—H10A120.2
O2—Cu1—N2166.01 (11)C9—C10—H10A120.2
O3—Cu1—N1172.59 (11)C10—C11—C12120.2 (4)
O3—Cu1—N294.17 (11)C10—C11—H11A119.9
N1—Cu1—N281.55 (11)C12—C11—H11A119.9
Cu1—O1W—H1WA107.8C20—C12—C11116.4 (4)
Cu1—O1W—H1WB112.5C20—C12—C13118.0 (4)
H1WA—O1W—H1WB107.7C11—C12—C13125.6 (4)
C9—N1—C20117.2 (3)C14—C13—C12121.4 (4)
C9—N1—Cu1130.2 (3)C14—C13—H13A119.3
C20—N1—Cu1112.5 (2)C12—C13—H13A119.3
C18—N2—C19118.4 (3)C13—C14—C15121.6 (4)
C18—N2—Cu1128.5 (3)C13—C14—H14A119.2
C19—N2—Cu1113.0 (2)C15—C14—H14A119.2
C7—O2—Cu1126.8 (2)C16—C15—C19116.4 (4)
C2—O3—Cu1123.3 (2)C16—C15—C14125.3 (4)
C6—C1—C2118.7 (3)C19—C15—C14118.3 (4)
C6—C1—C7117.6 (3)C17—C16—C15120.0 (3)
C2—C1—C7123.6 (3)C17—C16—H16A120.0
O3—C2—C3118.8 (3)C15—C16—H16A120.0
O3—C2—C1124.2 (3)C16—C17—C18120.2 (4)
C3—C2—C1117.0 (3)C16—C17—H17A119.9
C4—C3—C2120.9 (3)C18—C17—H17A119.9
C4—C3—C8118.5 (3)N2—C18—C17121.7 (4)
C2—C3—C8120.6 (3)N2—C18—H18A119.2
C5—C4—C3121.6 (3)C17—C18—H18A119.2
C5—C4—H4A119.2N2—C19—C15123.5 (3)
C3—C4—H4A119.2N2—C19—C20116.9 (3)
C4—C5—C6118.3 (4)C15—C19—C20119.6 (3)
C4—C5—H5A120.8N1—C20—C12123.3 (3)
C6—C5—H5A120.8N1—C20—C19115.7 (3)
C5—C6—C1123.6 (3)C12—C20—C19121.0 (3)
C5—C6—H6A118.2O5—C21—H21A109.5
C1—C6—H6A118.2O5—C21—H21B109.5
O1—C7—O2120.1 (3)H21A—C21—H21B109.5
O1—C7—C1118.9 (3)O5—C21—H21C109.5
O2—C7—C1120.9 (3)H21A—C21—H21C109.5
O4—C8—C3124.8 (4)H21B—C21—H21C109.5
O4—C8—H8A117.6C21—O5—H5109.5
O2—Cu1—N1—C912.7 (3)C6—C1—C7—O2178.7 (3)
N2—Cu1—N1—C9177.4 (3)C2—C1—C7—O25.4 (5)
O1W—Cu1—N1—C980.5 (3)C4—C3—C8—O43.6 (5)
O2—Cu1—N1—C20165.8 (2)C2—C3—C8—O4175.6 (3)
N2—Cu1—N1—C204.1 (2)C20—N1—C9—C102.1 (5)
O1W—Cu1—N1—C20100.9 (2)Cu1—N1—C9—C10176.3 (3)
O2—Cu1—N2—C18134.6 (4)N1—C9—C10—C110.8 (6)
O3—Cu1—N2—C187.3 (3)C9—C10—C11—C120.5 (6)
N1—Cu1—N2—C18178.7 (3)C10—C11—C12—C200.4 (5)
O1W—Cu1—N2—C1883.3 (3)C10—C11—C12—C13179.2 (4)
O2—Cu1—N2—C1942.0 (6)C20—C12—C13—C140.5 (5)
O3—Cu1—N2—C19169.2 (2)C11—C12—C13—C14179.1 (4)
N1—Cu1—N2—C194.7 (2)C12—C13—C14—C150.2 (6)
O1W—Cu1—N2—C19100.2 (2)C13—C14—C15—C16179.2 (3)
O3—Cu1—O2—C725.9 (3)C13—C14—C15—C190.7 (5)
N2—Cu1—O2—C7153.2 (4)C19—C15—C16—C170.6 (5)
N1—Cu1—O2—C7160.8 (3)C14—C15—C16—C17179.3 (3)
O1W—Cu1—O2—C764.4 (3)C15—C16—C17—C180.8 (6)
O2—Cu1—O3—C227.2 (3)C19—N2—C18—C170.2 (5)
N2—Cu1—O3—C2163.9 (3)Cu1—N2—C18—C17176.6 (2)
O1W—Cu1—O3—C266.2 (3)C16—C17—C18—N20.7 (5)
Cu1—O3—C2—C3163.8 (2)C18—N2—C19—C150.0 (5)
Cu1—O3—C2—C117.9 (4)Cu1—N2—C19—C15176.9 (2)
C6—C1—C2—O3178.8 (3)C18—N2—C19—C20178.5 (3)
C7—C1—C2—O32.8 (5)Cu1—N2—C19—C204.6 (4)
C6—C1—C2—C30.4 (5)C16—C15—C19—N20.2 (5)
C7—C1—C2—C3175.5 (3)C14—C15—C19—N2179.7 (3)
O3—C2—C3—C4178.9 (3)C16—C15—C19—C20178.6 (3)
C1—C2—C3—C40.5 (5)C14—C15—C19—C201.2 (5)
O3—C2—C3—C80.3 (5)C9—N1—C20—C122.3 (5)
C1—C2—C3—C8178.7 (3)Cu1—N1—C20—C12176.5 (3)
C2—C3—C4—C50.2 (5)C9—N1—C20—C19178.4 (3)
C8—C3—C4—C5179.0 (3)Cu1—N1—C20—C192.9 (4)
C3—C4—C5—C60.2 (5)C11—C12—C20—N11.1 (5)
C4—C5—C6—C10.3 (6)C13—C12—C20—N1179.4 (3)
C2—C1—C6—C50.1 (5)C11—C12—C20—C19179.7 (3)
C7—C1—C6—C5176.1 (3)C13—C12—C20—C190.1 (5)
Cu1—O2—C7—O1169.4 (2)N2—C19—C20—N11.1 (4)
Cu1—O2—C7—C113.8 (5)C15—C19—C20—N1179.7 (3)
C6—C1—C7—O14.5 (5)N2—C19—C20—C12179.5 (3)
C2—C1—C7—O1171.4 (3)C15—C19—C20—C120.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.821.892.703 (4)171
O1W—H1WB···O5ii0.851.932.747 (4)162
O1W—H1WA···O4iii0.852.002.844 (4)170
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C8H4O4)(C12H8N2)(H2O)]·CH4O
Mr457.91
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.6714 (11), 10.3895 (13), 11.7617 (14)
α, β, γ (°)115.125 (2), 95.859 (2), 93.589 (2)
V3)947.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.21 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4953, 3336, 2336
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 0.94
No. of reflections3336
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).

Selected geometric parameters (Å, º) top
Cu1—O1W2.348 (3)Cu1—N12.016 (3)
Cu1—O21.898 (2)Cu1—N22.011 (3)
Cu1—O31.898 (2)
O1W—Cu1—O293.40 (11)O2—Cu1—N188.77 (11)
O1W—Cu1—O390.04 (10)O2—Cu1—N2166.01 (11)
O1W—Cu1—N196.50 (11)O3—Cu1—N1172.59 (11)
O1W—Cu1—N297.69 (10)O3—Cu1—N294.17 (11)
O2—Cu1—O394.32 (10)N1—Cu1—N281.55 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.821.892.703 (4)170.7
O1W—H1WB···O5ii0.851.932.747 (4)162.2
O1W—H1WA···O4iii0.852.002.844 (4)170.3
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

References

First citationAkitsu, T. & Einaga, Y. (2006). Inorg. Chem. 45, 9826–9833.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J.-P., Dahan, F., Donnadieu, B., Rodriquez Douton, M.-J., Fernandez Garcia, M. I., Bousseksou, A. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 2736–2744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationErxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039–3046.  CrossRef Google Scholar
First citationKarmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Rivière, E., Mallah, T., Aromí, G. & Chandra, S. K. (2005). Inorg. Chem. 44, 2391–2399.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, S. L., Sun, X. X., Gao, S., Qi, C. M., Huang, H. B. & Zhu, W. X. (2007). Eur. J. Inorg. Chem. 6, 846–851.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYu, Z.-W., Cui, Q.-X., Zhang, W. & Hao, Y.-L. (2007). Acta Cryst. E63, m1563–m1565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Z.-W., Hao, Y.-L., Zhang, W. & Cui, Q.-X. (2006). Acta Cryst. E62, m2786–m2788.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds