organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(1H-Inden-2-yl)-1,3-benzodioxole

aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and bAnalysis Center, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: dengliu20022002@yahoo.com.cn

(Received 17 November 2007; accepted 15 January 2008; online 23 January 2008)

In the title compound, C16H12O2, the non-H atoms are coplanar with a mean r.m.s. deviation of 0.0260 (2) Å. The deviations of the bond angles from normal values at the indenyl junction C atom and the indenyl bridgehead C atom nearest the junction are imposed by the five-membered ring geometry. Due to conjugation, the single bond linking the two ring systems [1.455 (3) Å] is significantly shorter than the formal single bonds in the five-membered carbocyclic ring [1.500 (3) and 1.489 (3) Å].

Related literature

For related literature, see: Rayabarapu et al. (2003[Rayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem. 68, 6726-6731.]); Senanayake et al. (1995[Senanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett. 36, 3993-3996.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O2

  • Mr = 236.26

  • Orthorhombic, P c a 21

  • a = 22.277 (10) Å

  • b = 6.892 (3) Å

  • c = 7.580 (3) Å

  • V = 1163.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.990

  • 6325 measured reflections

  • 1286 independent reflections

  • 1072 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.08

  • 1286 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indene ring frameworks are present in a large number of biologically active compounds, and their metallocene complexes are able to catalyze olefin polymerization (Senanayake et al., 1995; Rayabarapu et al., 2003). Some derivatives have shown analgesic and myorelaxation activity whereas others are used as valuable intermediates for the synthesis of indenyl chrysanthemates that possess insecticidal properties. In the recent three decades, many chemists have been attracted by the synthesis of indenes. In this context, we report the synthesis and crystal structure of the title compound, (I). The molecul of (I) (Fig. 1) is almost planar (except the H atoms) with the mean value of r.m.s. deviation of 0.0260 (2) Å. The bonding angles of C16—C8—C5 and C16—C8—C9 are 128.3 (2) and 108.88 (19)°, respectively; their deviations from ideal values are imposed by request of a five-ring geometry. The similar deviation is also observed for the C15 with the angles of C14—C15—C16 [132.2 (2)°] and C10—C15—C16 [108.1 (2)°]. Due to the π-π conjugation of the C5?C6 and C8?C16, the single bond distance of the C5—C8 [1.455 (3) Å] is significantly shorter than that of C8—C9 [1.500 (3) Å].

Related literature top

For related literature, see: Rayabarapu et al. (2003); Senanayake et al. (1995).

Experimental top

o-Bromobenzyl zinc bromide (3.5 mmol, 3.5 equiv) in 3.5 ml CH2Cl2 was added to a degassed refluxing CH2Cl2 solution (8 ml) of 5-ethynyl benzo [1,3] dioxole (1.0 mmol, 1.0 equiv) and Ni(PPh3)2I2 (0.1 mmol, 0.1 equiv). After stirring at 313 K for 6 h, the solution was cooled to room temperature. The solution obtained was diluted with 50 ml e thyl acetate. The organic layer was washed with 10 ml aqueous HCl solution, saturated by NaCl. The aqueous layer was back-extracted with ethyl acetate. The combined organic layer was dried over anhydrous Na2SO4. After filtration, the solvent was removed under reduced pressure and the residue was purified via flash chromatography (SiO2) to afford the compound. Crystals suitale for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution at 298 K.

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.93 and 0.97%A) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent). In the absence of significant anomalous scattering effects the Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
5-(1H-Inden-2-yl)-1,3-benzodioxole top
Crystal data top
C16H12O2F(000) = 496
Mr = 236.26Dx = 1.348 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2528 reflections
a = 22.277 (10) Åθ = 2.7–25.2°
b = 6.892 (3) ŵ = 0.09 mm1
c = 7.580 (3) ÅT = 294 K
V = 1163.7 (9) Å3Plate, colourless
Z = 40.24 × 0.22 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1286 independent reflections
Radiation source: fine-focus sealed tube1072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2713
Tmin = 0.979, Tmax = 0.990k = 88
6325 measured reflectionsl = 89
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.0272P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.12 e Å3
1286 reflectionsΔρmin = 0.11 e Å3
164 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.006 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: indeterminate
Secondary atom site location: difference Fourier map
Crystal data top
C16H12O2V = 1163.7 (9) Å3
Mr = 236.26Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 22.277 (10) ŵ = 0.09 mm1
b = 6.892 (3) ÅT = 294 K
c = 7.580 (3) Å0.24 × 0.22 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1072 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.990Rint = 0.035
6325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.12 e Å3
1286 reflectionsΔρmin = 0.11 e Å3
164 parametersAbsolute structure: indeterminate
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33678 (7)0.3967 (2)0.9508 (3)0.0629 (5)
O20.41993 (8)0.2623 (2)1.0832 (3)0.0676 (6)
C10.35772 (11)0.2393 (4)1.0539 (5)0.0686 (8)
H1A0.33660.23621.16580.082*
H1B0.35020.11800.99290.082*
C20.38388 (9)0.5252 (3)0.9457 (3)0.0472 (5)
C30.38568 (10)0.7034 (3)0.8718 (4)0.0512 (6)
H30.35230.75680.81620.061*
C40.43988 (10)0.8035 (3)0.8829 (3)0.0480 (5)
H40.44250.92620.83260.058*
C50.49008 (9)0.7272 (3)0.9662 (3)0.0415 (5)
C60.48641 (10)0.5410 (3)1.0401 (3)0.0468 (5)
H60.51920.48491.09660.056*
C70.43337 (10)0.4460 (3)1.0263 (3)0.0472 (5)
C80.54537 (9)0.8392 (3)0.9756 (3)0.0417 (5)
C90.55116 (10)1.0396 (3)0.9004 (3)0.0482 (5)
H9A0.54351.03940.77440.058*
H9B0.52341.12840.95700.058*
C100.61447 (10)1.0948 (3)0.9384 (3)0.0488 (6)
C110.64540 (11)1.2630 (4)0.9035 (4)0.0606 (7)
H110.62711.36490.84380.073*
C120.70444 (12)1.2778 (4)0.9592 (4)0.0703 (8)
H120.72591.39100.93720.084*
C130.73163 (11)1.1275 (4)1.0462 (4)0.0692 (8)
H130.77141.13991.08220.083*
C140.70099 (10)0.9578 (4)1.0814 (4)0.0611 (7)
H140.71980.85641.14050.073*
C150.64208 (10)0.9406 (3)1.0277 (3)0.0489 (6)
C160.59838 (10)0.7872 (3)1.0480 (3)0.0483 (5)
H160.60570.66911.10320.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0482 (8)0.0638 (10)0.0767 (12)0.0047 (7)0.0055 (9)0.0074 (10)
O20.0584 (10)0.0524 (10)0.0920 (15)0.0043 (8)0.0100 (10)0.0205 (10)
C10.0586 (15)0.0618 (15)0.085 (2)0.0056 (12)0.0049 (15)0.0124 (16)
C20.0460 (12)0.0512 (12)0.0443 (12)0.0027 (9)0.0027 (11)0.0031 (11)
C30.0485 (13)0.0532 (12)0.0519 (13)0.0110 (10)0.0098 (11)0.0034 (12)
C40.0531 (13)0.0433 (11)0.0477 (12)0.0069 (10)0.0060 (11)0.0016 (10)
C50.0479 (12)0.0410 (10)0.0357 (10)0.0080 (8)0.0030 (10)0.0034 (9)
C60.0482 (12)0.0446 (12)0.0476 (12)0.0082 (9)0.0083 (10)0.0005 (11)
C70.0523 (12)0.0428 (11)0.0466 (12)0.0080 (10)0.0005 (11)0.0005 (10)
C80.0470 (11)0.0414 (10)0.0365 (10)0.0086 (9)0.0040 (9)0.0039 (9)
C90.0536 (12)0.0425 (11)0.0485 (13)0.0069 (10)0.0049 (11)0.0001 (10)
C100.0521 (13)0.0539 (12)0.0404 (12)0.0021 (10)0.0062 (10)0.0082 (11)
C110.0640 (16)0.0615 (15)0.0564 (15)0.0072 (12)0.0080 (13)0.0007 (12)
C120.0664 (17)0.0803 (18)0.0644 (16)0.0188 (13)0.0157 (16)0.0118 (16)
C130.0431 (13)0.094 (2)0.0701 (18)0.0063 (13)0.0081 (14)0.0234 (17)
C140.0461 (14)0.0761 (18)0.0612 (16)0.0082 (12)0.0014 (12)0.0127 (13)
C150.0450 (12)0.0569 (13)0.0450 (12)0.0079 (10)0.0026 (11)0.0102 (11)
C160.0517 (12)0.0459 (11)0.0473 (12)0.0076 (10)0.0047 (11)0.0022 (11)
Geometric parameters (Å, º) top
O1—C21.374 (3)C8—C91.500 (3)
O1—C11.416 (3)C9—C101.489 (3)
O2—C71.370 (3)C9—H9A0.9700
O2—C11.412 (3)C9—H9B0.9700
C1—H1A0.9700C10—C111.375 (3)
C1—H1B0.9700C10—C151.402 (3)
C2—C31.351 (3)C11—C121.385 (4)
C2—C71.373 (3)C11—H110.9300
C3—C41.393 (3)C12—C131.369 (4)
C3—H30.9300C12—H120.9300
C4—C51.387 (3)C13—C141.380 (4)
C4—H40.9300C13—H130.9300
C5—C61.402 (3)C14—C151.379 (3)
C5—C81.455 (3)C14—H140.9300
C6—C71.355 (3)C15—C161.446 (3)
C6—H60.9300C16—H160.9300
C8—C161.350 (3)
C2—O1—C1104.93 (18)C5—C8—C9122.86 (17)
C7—O2—C1105.56 (18)C10—C9—C8104.06 (17)
O2—C1—O1108.9 (2)C10—C9—H9A110.9
O2—C1—H1A109.9C8—C9—H9A110.9
O1—C1—H1A109.9C10—C9—H9B110.9
O2—C1—H1B109.9C8—C9—H9B110.9
O1—C1—H1B109.9H9A—C9—H9B109.0
H1A—C1—H1B108.3C11—C10—C15120.8 (2)
C3—C2—C7121.5 (2)C11—C10—C9130.8 (2)
C3—C2—O1128.4 (2)C15—C10—C9108.4 (2)
C7—C2—O1110.1 (2)C10—C11—C12118.6 (3)
C2—C3—C4116.8 (2)C10—C11—H11120.7
C2—C3—H3121.6C12—C11—H11120.7
C4—C3—H3121.6C13—C12—C11120.8 (3)
C5—C4—C3122.6 (2)C13—C12—H12119.6
C5—C4—H4118.7C11—C12—H12119.6
C3—C4—H4118.7C12—C13—C14121.0 (2)
C4—C5—C6118.8 (2)C12—C13—H13119.5
C4—C5—C8120.23 (19)C14—C13—H13119.5
C6—C5—C8120.99 (18)C15—C14—C13119.1 (3)
C7—C6—C5117.51 (19)C15—C14—H14120.4
C7—C6—H6121.2C13—C14—H14120.4
C5—C6—H6121.2C14—C15—C10119.7 (2)
C6—C7—O2127.8 (2)C14—C15—C16132.2 (2)
C6—C7—C2122.8 (2)C10—C15—C16108.1 (2)
O2—C7—C2109.38 (19)C8—C16—C15110.6 (2)
C16—C8—C5128.3 (2)C8—C16—H16124.7
C16—C8—C9108.88 (19)C15—C16—H16124.7
C7—O2—C1—O110.4 (3)C4—C5—C8—C90.9 (3)
C2—O1—C1—O29.7 (3)C6—C5—C8—C9179.3 (2)
C1—O1—C2—C3176.1 (3)C16—C8—C9—C100.3 (2)
C1—O1—C2—C75.4 (3)C5—C8—C9—C10179.4 (2)
C7—C2—C3—C40.7 (3)C8—C9—C10—C11178.7 (2)
O1—C2—C3—C4179.0 (2)C8—C9—C10—C150.2 (2)
C2—C3—C4—C50.4 (4)C15—C10—C11—C120.3 (4)
C3—C4—C5—C60.9 (4)C9—C10—C11—C12178.0 (3)
C3—C4—C5—C8179.3 (2)C10—C11—C12—C130.4 (4)
C4—C5—C6—C70.3 (3)C11—C12—C13—C140.2 (4)
C8—C5—C6—C7179.9 (2)C12—C13—C14—C150.1 (4)
C5—C6—C7—O2177.9 (2)C13—C14—C15—C100.1 (4)
C5—C6—C7—C20.8 (4)C13—C14—C15—C16178.2 (3)
C1—O2—C7—C6174.2 (3)C11—C10—C15—C140.1 (3)
C1—O2—C7—C27.0 (3)C9—C10—C15—C14178.6 (2)
C3—C2—C7—C61.3 (4)C11—C10—C15—C16178.8 (2)
O1—C2—C7—C6179.9 (2)C9—C10—C15—C160.1 (3)
C3—C2—C7—O2177.6 (2)C5—C8—C16—C15179.4 (2)
O1—C2—C7—O21.0 (3)C9—C8—C16—C150.2 (3)
C4—C5—C8—C16178.7 (2)C14—C15—C16—C8178.6 (2)
C6—C5—C8—C161.1 (4)C10—C15—C16—C80.1 (3)

Experimental details

Crystal data
Chemical formulaC16H12O2
Mr236.26
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)294
a, b, c (Å)22.277 (10), 6.892 (3), 7.580 (3)
V3)1163.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6325, 1286, 1072
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.08
No. of reflections1286
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11
Absolute structureIndeterminate

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem. 68, 6726–6731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSenanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett. 36, 3993–3996.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds