organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2H-Tetra­zol-2-yl)meth­yl]benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 14 December 2007; accepted 8 January 2008; online 16 January 2008)

The title compound, C9H7N5, was synthesized by reaction of 4-(bromomethyl)benzonitrile and 2H-tetrazole in the presence of KOH. The relative orientation of the planar tetra­zole ring and the methyl­benzonitrile moiety is (−)-anti­clinal. The crystal packing is dominated by van der Waals inter­actions.

Related literature

For the chemisty of tetra­zoles, see: Bethel et al. (1999[Bethel, P. A., Hill, M. S., Mahon, M. F. & Molloy, K. C. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3507-3514.]); Wu et al. (2005[Wu, T., Yi, B. H. & Li, D. (2005). Inorg. Chem. 44, 4130-4132.]); Zhang et al. (2006[Zhang, X. M., Zhao, Y. F., Wu, H. S., Batten, S. R. & Ng, S. W. (2006). Dalton Trans. pp. 3170-3178.]); Jin et al. (1994[Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N5

  • Mr = 185.20

  • Triclinic, [P \overline 1]

  • a = 5.7514 (8) Å

  • b = 7.4029 (10) Å

  • c = 11.3511 (12) Å

  • α = 81.088 (3)°

  • β = 77.844 (3)°

  • γ = 72.600 (5)°

  • V = 448.64 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.12 × 0.02 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.996

  • 4114 measured reflections

  • 1720 independent reflections

  • 923 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.156

  • S = 0.92

  • 1720 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazoles has been the subject of investigations during the last 20 years (Bethel et al., 1999). In recent years, tetrazoles have found a wide range of applications in coordination chemistry due to their role as mono- or bidentate ligands and strong networking ability (Wu et al., 2005; Zhang et al., 2006). Nitrile derivatives have found many industrial applications. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994). The title compound, is a new tetrazole derivative. We now report the synthesis and crystal structure analysis of 4-((2H-tetrazol-2-yl)methyl)benzonitrile (Fig. 1). The overall molecular conformation is defined by the torsion angle N1—N4—C8—C5 of -92.05 (10)°.

Related literature top

For the chemisty of tetrazoles, see: Bethel et al. (1999); Wu et al. (2005); Zhang et al. (2006); Jin et al. (1994).

Experimental top

The ligand 4-((2H-tetrazol-2-yl)methyl)benzonitrile was synthesized by reaction of 4-(bromomethyl)benzonitrile (1.95 g, 0.01 mol) and 2H-tetrazole (0.7 g, 0.01 mol) and KOH (0.56 g, 0.01 mol) in methanol (20 ml) reacted at 353 K with stirring for 24 h. A mixture of 4-((2H-tetrazol-2-yl)methyl)benzonitrile (18.5 mg, 0.1 mmol) and water (15 ml) and ethanol (15 ml) sealed in a glass were maintained at 293 K. Crystals suitable for X-ray ananlysis were obtained after 2 d.

Refinement top

H atoms were included at calculated positions and constrained to an ideal geometry, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
4-[(2H-Tetrazol-2-yl)methyl]benzonitrile top
Crystal data top
C9H7N5Z = 2
Mr = 185.20F(000) = 192
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7514 (8) ÅCell parameters from 655 reflections
b = 7.4029 (10) Åθ = 3.3–27.4°
c = 11.3511 (12) ŵ = 0.09 mm1
α = 81.088 (3)°T = 293 K
β = 77.844 (3)°Block, colourless
γ = 72.600 (5)°0.20 × 0.12 × 0.02 mm
V = 448.64 (10) Å3
Data collection top
Rigaku Mercury2
diffractometer
1720 independent reflections
Radiation source: fine-focus sealed tube923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.3°
CCD_Profile_fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.980, Tmax = 0.996l = 1313
4114 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max < 0.001
S = 0.92Δρmax = 0.17 e Å3
1720 reflectionsΔρmin = 0.16 e Å3
132 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.044 (14)
Secondary atom site location: difference Fourier map
Crystal data top
C9H7N5γ = 72.600 (5)°
Mr = 185.20V = 448.64 (10) Å3
Triclinic, P1Z = 2
a = 5.7514 (8) ÅMo Kα radiation
b = 7.4029 (10) ŵ = 0.09 mm1
c = 11.3511 (12) ÅT = 293 K
α = 81.088 (3)°0.20 × 0.12 × 0.02 mm
β = 77.844 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1720 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
923 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.996Rint = 0.045
4114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.17 e Å3
1720 reflectionsΔρmin = 0.16 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N21.0618 (5)0.2439 (4)0.4265 (2)0.0821 (8)
C10.3315 (4)0.9248 (4)0.9005 (2)0.0554 (6)
C20.4374 (4)0.7403 (3)0.8573 (2)0.0502 (6)
C30.6613 (4)0.6272 (3)0.8855 (2)0.0547 (7)
H30.74450.67030.93240.066*
C40.7606 (4)0.4506 (3)0.8438 (2)0.0560 (7)
H40.91210.37490.86220.067*
C50.6377 (4)0.3841 (3)0.7748 (2)0.0525 (6)
C60.4133 (5)0.4976 (4)0.7479 (2)0.0621 (7)
H60.32920.45410.70180.075*
C70.3128 (5)0.6752 (4)0.7891 (2)0.0606 (7)
H70.16130.75100.77080.073*
C80.7485 (5)0.1932 (3)0.7266 (2)0.0611 (7)
H8A0.83290.10400.78650.073*
H8B0.61760.14600.71240.073*
N10.8605 (4)0.2339 (4)0.5064 (2)0.0764 (7)
C91.2358 (6)0.2213 (5)0.4920 (3)0.0730 (9)
N31.1596 (4)0.1945 (3)0.6083 (2)0.0703 (7)
N40.9239 (4)0.2044 (3)0.61371 (17)0.0550 (6)
N50.2481 (4)1.0719 (3)0.9343 (2)0.0770 (8)
H91.385 (6)0.208 (5)0.462 (3)0.116 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0782 (17)0.103 (2)0.0630 (15)0.0277 (15)0.0037 (14)0.0081 (13)
C10.0509 (14)0.0546 (15)0.0616 (16)0.0117 (13)0.0132 (12)0.0098 (13)
C20.0510 (14)0.0511 (14)0.0485 (13)0.0148 (12)0.0083 (11)0.0038 (11)
C30.0527 (15)0.0602 (16)0.0554 (15)0.0151 (12)0.0162 (12)0.0101 (12)
C40.0481 (14)0.0594 (15)0.0569 (15)0.0083 (12)0.0081 (12)0.0091 (12)
C50.0569 (15)0.0506 (14)0.0493 (14)0.0184 (12)0.0030 (12)0.0045 (11)
C60.0635 (17)0.0629 (17)0.0672 (17)0.0183 (14)0.0200 (13)0.0144 (13)
C70.0489 (14)0.0657 (17)0.0690 (17)0.0118 (12)0.0165 (12)0.0113 (13)
C80.0634 (16)0.0532 (15)0.0625 (15)0.0163 (13)0.0032 (13)0.0118 (12)
N10.0705 (16)0.0940 (18)0.0654 (15)0.0193 (14)0.0167 (13)0.0102 (13)
C90.063 (2)0.087 (2)0.070 (2)0.0270 (17)0.0022 (17)0.0190 (16)
N30.0574 (14)0.0879 (17)0.0730 (16)0.0225 (12)0.0144 (12)0.0204 (13)
N40.0550 (13)0.0549 (12)0.0575 (13)0.0148 (10)0.0104 (10)0.0124 (10)
N50.0703 (16)0.0659 (16)0.0962 (18)0.0046 (13)0.0285 (13)0.0211 (13)
Geometric parameters (Å, º) top
N2—C91.326 (4)C5—C81.502 (3)
N2—N11.325 (3)C6—C71.380 (3)
C1—N51.141 (3)C6—H60.9300
C1—C21.436 (3)C7—H70.9300
C2—C71.379 (3)C8—N41.463 (3)
C2—C31.381 (3)C8—H8A0.9700
C3—C41.375 (3)C8—H8B0.9700
C3—H30.9300N1—N41.312 (3)
C4—C51.384 (3)C9—N31.304 (3)
C4—H40.9300C9—H90.84 (3)
C5—C61.379 (3)N3—N41.324 (3)
C9—N2—N1105.1 (2)C2—C7—C6119.9 (2)
N5—C1—C2179.6 (3)C2—C7—H7120.0
C7—C2—C3120.1 (2)C6—C7—H7120.0
C7—C2—C1119.7 (2)N4—C8—C5111.39 (19)
C3—C2—C1120.2 (2)N4—C8—H8A109.4
C4—C3—C2119.6 (2)C5—C8—H8A109.4
C4—C3—H3120.2N4—C8—H8B109.4
C2—C3—H3120.2C5—C8—H8B109.4
C3—C4—C5120.8 (2)H8A—C8—H8B108.0
C3—C4—H4119.6N4—N1—N2106.5 (2)
C5—C4—H4119.6N3—C9—N2113.6 (3)
C6—C5—C4119.2 (2)N3—C9—H9122 (3)
C6—C5—C8120.0 (2)N2—C9—H9124 (2)
C4—C5—C8120.9 (2)C9—N3—N4102.1 (2)
C5—C6—C7120.5 (2)N1—N4—N3112.7 (2)
C5—C6—H6119.8N1—N4—C8123.1 (2)
C7—C6—H6119.8N3—N4—C8124.1 (2)
C7—C2—C3—C40.8 (4)C4—C5—C8—N483.5 (3)
C1—C2—C3—C4179.9 (2)C9—N2—N1—N40.6 (3)
C2—C3—C4—C50.6 (4)N1—N2—C9—N31.0 (3)
C3—C4—C5—C60.1 (4)N2—C9—N3—N41.0 (3)
C3—C4—C5—C8178.5 (2)N2—N1—N4—N30.0 (3)
C4—C5—C6—C70.1 (4)N2—N1—N4—C8177.3 (2)
C8—C5—C6—C7178.3 (2)C9—N3—N4—N10.6 (3)
C3—C2—C7—C60.6 (4)C9—N3—N4—C8176.6 (2)
C1—C2—C7—C6179.7 (2)C5—C8—N4—N192.0 (3)
C5—C6—C7—C20.1 (4)C5—C8—N4—N384.9 (3)
C6—C5—C8—N494.9 (3)

Experimental details

Crystal data
Chemical formulaC9H7N5
Mr185.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.7514 (8), 7.4029 (10), 11.3511 (12)
α, β, γ (°)81.088 (3), 77.844 (3), 72.600 (5)
V3)448.64 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.12 × 0.02
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.980, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
4114, 1720, 923
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.156, 0.92
No. of reflections1720
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to ZRQ.

References

First citationBethel, P. A., Hill, M. S., Mahon, M. F. & Molloy, K. C. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3507–3514.  Web of Science CSD CrossRef Google Scholar
First citationJin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, T., Yi, B. H. & Li, D. (2005). Inorg. Chem. 44, 4130–4132.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, X. M., Zhao, Y. F., Wu, H. S., Batten, S. R. & Ng, S. W. (2006). Dalton Trans. pp. 3170–3178.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds