metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m311-m312

cis-Bis(azido-κN)bis­­(pyridine-2-carbox­amide-κ2N1,O)nickel(II)

aDepartment of Chemistry, Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
*Correspondence e-mail: zpopovic@chem.pmf.hr

(Received 14 December 2007; accepted 4 January 2008; online 9 January 2008)

The title compound, [Ni(N3)2(C6H6N2O)2], was obtained as the first crystalline product from the reaction of Ni(NO3)2·6H2O, picolinamide and NaN3 in aqueous media. After a few days in the mother liquor, crystals of the cis isomer transformed into the trans isomer [Đaković & Popović (2007[Đaković, M. & Popović, Z. (2007). Acta Cryst. C63, m507-m509.]). Acta Cryst. C63, m507–m509]. The Ni atom exhibits a distorted octa­hedral environment and contains two azide ions and two planar N,O-chelating picolinamide ligands, all cis related. The dihedral angle between the two chelate rings is 82.43 (7)°. Pairs of mol­ecules are linked by N—H⋯N hydrogen bonds into cyclic R22(16) dimers, which are further packed into a three-dimensional framework by C(6) and C(8) chains by N—H⋯N hydrogen bonds.

Related literature

For information on the importance of azides in complexation, see Yuwen et al. (2000[Yuwen, L., Yi, L., Songshen, Q. & Fengjiao, D. (2000). Thermochim. Acta, 351, 51-54.]). A trans isomer of the title compound [Ni(N3)2(C6H6N2O)2] has been reported by Đaković & Popović (2007[Đaković, M. & Popović, Z. (2007). Acta Cryst. C63, m507-m509.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(N3)2(C6H6N2O)2]

  • Mr = 387.01

  • Monoclinic, P 21 /c

  • a = 14.3438 (5) Å

  • b = 6.6986 (2) Å

  • c = 18.7969 (10) Å

  • β = 120.738 (3)°

  • V = 1552.34 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro. Version 171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.815, Tmax = 0.938

  • 15901 measured reflections

  • 4516 independent reflections

  • 2692 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.068

  • S = 0.89

  • 4516 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.0701 (13)
Ni1—O2 2.0941 (12)
Ni1—N1 2.0685 (17)
Ni1—N3 2.0559 (17)
Ni1—N5 2.0652 (14)
Ni1—N8 2.0863 (17)
O1—Ni1—O2 93.30 (5)
O1—Ni1—N1 78.45 (6)
O1—Ni1—N3 89.76 (6)
O1—Ni1—N5 88.69 (6)
O1—Ni1—N8 175.91 (6)
O2—Ni1—N1 94.34 (6)
O2—Ni1—N3 78.08 (6)
O2—Ni1—N5 173.44 (7)
O2—Ni1—N8 89.94 (5)
N1—Ni1—N3 165.67 (6)
N1—Ni1—N5 92.18 (6)
N1—Ni1—N8 98.83 (7)
N3—Ni1—N5 95.69 (7)
N3—Ni1—N8 93.36 (7)
N5—Ni1—N8 88.36 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H12⋯N7i 0.86 (3) 2.12 (2) 2.967 (3) 165 (3)
N2—H13⋯N10ii 0.85 (3) 2.31 (3) 3.154 (4) 172 (2)
N4—H14⋯N8iii 0.80 (2) 2.36 (2) 3.136 (3) 164 (2)
N4—H15⋯N10iv 0.94 (3) 2.50 (3) 3.442 (4) 179 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) -x, -y, -z.

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro. Version 171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

This research is a part of our wider interest of the structural role of azide ions and of its metal complexes in metabolic processes of mitohondria (Yuwen et al., 2000).

In the title compound NiIIatom lies in a general position and exhibits distorted octahedral environment (Fig. 1). The coordination sphere is composed by two cis-related N,O-chelating picolinamide and two azide ligands. The picolinamide ligands are bonded more tightly (Table 1) than in its trans-isomer (Đaković & Popović, 2007). All other bond lengths are comparable to the values reported for similar compounds (Allen et al., 1987). The azide ligands are coordinated to the central metal ion in non-linear mode (123.7 (1) and 123.0 (1)°) with the azide bond angles being 178.2 (2) and 176.9 (3)°.

The crystals of the title compound (I) are turquoise-green apart from the crystals of its trans-isomer which are olive-green.

The crystal structure (Fig 2) is stabilized by N—H···N hydrogen bond network between carboxamide groups and azide ligands. Typical amide N—H···O carboxamide dimers of R22(8) found in trans-isomer are not observed in the cis-isomer. Instead, the amide N atoms, N2 and N4, are involved in two hydrogen bonds, forming R22(16) rings, between two neighbouring molecules whereas C(8) chains along the axis c and C(6) chains along the axis b complete the network (Bernstein et al., 1995; Etter, 1990).

The slightly smaller density of (I), and the fact that it is formed first and then transformed into its trans-isomer, suggests that (I) is the thermodinamically less stable isomer.

Related literature top

For information on the importance of azides in complexation, see Yuwen et al. (2000). A trans isomer of the title compound [Ni(N3)2(C6H6N2O)2] has been reported by Đaković & Popović (2007). For related literature see: Allen et al. (1987); Bernstein et al. (1995); Etter (1990).

Experimental top

The title compound was obtained by in situ reaction from NiII nitrate hexahydrate, sodium azide and picolinamide in a 1: 2: 2 molar ratio. All starting substances were dissolved in water. The sodium azide solution was added in small portions with stirring into the solution mixture of the picolinamide and NiII nitrate. In a few h the dark-green crystals of (I) were isolated. If the crystals are left in a mother liquor for a few days the dark-green crystals of (I) were transformed into the olive-green trans-isomer.

Refinement top

Aromatic H atoms were fixed in geometrically idealized positions and refined using a riding model with [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The amide H atoms were placed in the positions indicated by difference electron-density maps and their positions were allowed to refine together with individual isotropic displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The ORTEP-3 drawing of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) showing the hydrogen bonds as dashed lines.
cis-Bis(azido-κN)bis(pyridine-2-carboxamide- κ2N1,O)nickel(II) top
Crystal data top
[Ni(N3)2(C6H6N2O)2]F(000) = 792
Mr = 387.01Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5015 reflections
a = 14.3438 (5) Åθ = 3.8–32.4°
b = 6.6986 (2) ŵ = 1.28 mm1
c = 18.7969 (10) ÅT = 296 K
β = 120.738 (3)°Plate, blue
V = 1552.34 (12) Å30.22 × 0.18 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire3 detector
4516 independent reflections
Radiation source: Enhance (Mo) X-ray Source2692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.3426 pixels mm-1θmax = 30.0°, θmin = 3.8°
CCD scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 99
Tmin = 0.815, Tmax = 0.938l = 2626
15901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0323P)2]
where P = (Fo2 + 2Fc2)/3
4516 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(N3)2(C6H6N2O)2]V = 1552.34 (12) Å3
Mr = 387.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3438 (5) ŵ = 1.28 mm1
b = 6.6986 (2) ÅT = 296 K
c = 18.7969 (10) Å0.22 × 0.18 × 0.05 mm
β = 120.738 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire3 detector
4516 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2692 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.938Rint = 0.034
15901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.43 e Å3
4516 reflectionsΔρmin = 0.30 e Å3
242 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.23220 (2)0.37068 (3)0.22317 (1)0.0317 (1)
O10.26131 (9)0.2742 (2)0.33739 (8)0.0434 (4)
O20.20315 (9)0.08148 (18)0.17407 (8)0.0398 (4)
N10.39913 (11)0.3396 (2)0.28785 (9)0.0334 (4)
N20.38916 (17)0.2368 (3)0.47094 (11)0.0477 (6)
N30.06825 (11)0.3406 (2)0.17609 (8)0.0323 (4)
N40.07207 (16)0.1400 (3)0.09546 (11)0.0461 (6)
N50.24200 (12)0.6613 (2)0.26310 (10)0.0428 (5)
N60.31950 (13)0.7291 (2)0.32014 (10)0.0385 (5)
N70.39487 (16)0.8009 (3)0.37649 (12)0.0648 (7)
N80.21165 (13)0.4829 (2)0.11250 (10)0.0447 (6)
N90.20157 (13)0.3801 (2)0.05837 (10)0.0423 (5)
N100.1963 (2)0.2815 (3)0.00574 (13)0.0815 (9)
C10.44295 (14)0.2970 (3)0.36860 (11)0.0342 (6)
C20.55345 (15)0.2892 (3)0.42221 (13)0.0468 (7)
C30.62099 (16)0.3289 (3)0.39169 (14)0.0531 (8)
C40.57737 (15)0.3711 (3)0.30972 (13)0.0482 (7)
C50.46602 (15)0.3750 (3)0.25924 (12)0.0403 (6)
C60.35865 (14)0.2657 (3)0.39230 (11)0.0352 (6)
C70.02452 (13)0.1678 (3)0.13675 (10)0.0341 (5)
C80.08351 (14)0.1241 (3)0.10454 (12)0.0467 (6)
C90.14833 (16)0.2628 (4)0.11367 (13)0.0573 (8)
C100.10408 (16)0.4361 (4)0.15429 (12)0.0512 (7)
C110.00463 (15)0.4720 (3)0.18414 (11)0.0426 (6)
C120.10687 (14)0.0314 (3)0.13626 (10)0.0340 (6)
H20.581900.257900.477800.0560*
H30.695900.326800.426900.0640*
H40.621900.396800.288200.0580*
H50.436300.403300.203300.0480*
H80.112400.004000.077200.0560*
H90.221700.237200.092100.0690*
H100.146200.529300.161900.0610*
H110.034400.592400.210800.0510*
H120.4567 (19)0.229 (3)0.5093 (14)0.060 (7)*
H130.3411 (17)0.224 (3)0.4844 (12)0.049 (6)*
H140.1179 (17)0.220 (3)0.1030 (13)0.048 (7)*
H150.001 (2)0.180 (3)0.0684 (15)0.076 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0266 (1)0.0335 (1)0.0333 (1)0.0016 (1)0.0141 (1)0.0003 (1)
O10.0295 (7)0.0589 (9)0.0385 (7)0.0032 (6)0.0149 (6)0.0086 (6)
O20.0307 (7)0.0327 (7)0.0541 (8)0.0009 (5)0.0203 (6)0.0001 (6)
N10.0283 (7)0.0316 (8)0.0397 (8)0.0026 (6)0.0170 (6)0.0001 (7)
N20.0427 (11)0.0594 (12)0.0359 (10)0.0036 (9)0.0164 (9)0.0035 (9)
N30.0282 (7)0.0349 (9)0.0314 (7)0.0022 (6)0.0136 (6)0.0001 (7)
N40.0430 (10)0.0347 (10)0.0493 (10)0.0040 (9)0.0154 (8)0.0012 (8)
N50.0387 (9)0.0392 (10)0.0429 (9)0.0012 (7)0.0154 (8)0.0075 (8)
N60.0427 (9)0.0333 (9)0.0391 (9)0.0023 (8)0.0206 (8)0.0010 (8)
N70.0520 (12)0.0594 (12)0.0527 (11)0.0042 (9)0.0048 (9)0.0122 (10)
N80.0602 (10)0.0388 (10)0.0398 (9)0.0011 (8)0.0290 (8)0.0004 (8)
N90.0484 (9)0.0424 (10)0.0381 (9)0.0028 (8)0.0236 (8)0.0049 (9)
N100.138 (2)0.0638 (14)0.0597 (13)0.0046 (14)0.0629 (15)0.0130 (11)
C10.0309 (9)0.0304 (10)0.0373 (10)0.0016 (8)0.0145 (8)0.0022 (8)
C20.0319 (10)0.0545 (13)0.0433 (11)0.0021 (9)0.0114 (9)0.0047 (10)
C30.0271 (10)0.0607 (15)0.0608 (14)0.0003 (9)0.0147 (10)0.0090 (11)
C40.0366 (10)0.0476 (12)0.0687 (14)0.0008 (10)0.0329 (10)0.0020 (11)
C50.0390 (10)0.0381 (11)0.0501 (11)0.0008 (9)0.0274 (9)0.0006 (10)
C60.0341 (10)0.0321 (11)0.0351 (10)0.0031 (8)0.0146 (8)0.0016 (8)
C70.0283 (8)0.0435 (11)0.0275 (8)0.0007 (8)0.0121 (7)0.0025 (8)
C80.0320 (10)0.0598 (13)0.0411 (10)0.0076 (10)0.0134 (8)0.0059 (10)
C90.0258 (10)0.097 (2)0.0460 (12)0.0026 (11)0.0162 (9)0.0008 (12)
C100.0369 (11)0.0722 (16)0.0451 (11)0.0160 (11)0.0214 (10)0.0006 (11)
C110.0411 (10)0.0473 (12)0.0392 (10)0.0116 (9)0.0204 (9)0.0022 (9)
C120.0360 (10)0.0320 (10)0.0317 (9)0.0003 (8)0.0157 (8)0.0024 (8)
Geometric parameters (Å, º) top
Ni1—O12.0701 (13)N4—H140.80 (2)
Ni1—O22.0941 (12)N4—H150.94 (3)
Ni1—N12.0685 (17)C1—C61.502 (3)
Ni1—N32.0559 (17)C1—C21.378 (3)
Ni1—N52.0652 (14)C2—C31.381 (4)
Ni1—N82.0863 (17)C3—C41.364 (3)
O1—C61.243 (2)C4—C51.379 (3)
O2—C121.234 (3)C7—C81.376 (3)
N1—C11.344 (2)C7—C121.497 (3)
N1—C51.339 (3)C8—C91.386 (3)
N2—C61.324 (3)C9—C101.356 (4)
N3—C71.344 (2)C10—C111.382 (3)
N3—C111.331 (3)C2—H20.9300
N4—C121.328 (3)C3—H30.9300
N5—N61.172 (2)C4—H40.9300
N6—N71.163 (3)C5—H50.9300
N8—N91.175 (2)C8—H80.9300
N9—N101.159 (3)C9—H90.9300
N2—H120.86 (3)C10—H100.9300
N2—H130.85 (3)C11—H110.9300
O1—Ni1—O293.30 (5)C2—C1—C6125.28 (17)
O1—Ni1—N178.45 (6)C1—C2—C3118.6 (2)
O1—Ni1—N389.76 (6)C2—C3—C4119.7 (2)
O1—Ni1—N588.69 (6)C3—C4—C5118.8 (2)
O1—Ni1—N8175.91 (6)N1—C5—C4122.39 (18)
O2—Ni1—N194.34 (6)O1—C6—N2121.6 (2)
O2—Ni1—N378.08 (6)N2—C6—C1119.7 (2)
O2—Ni1—N5173.44 (7)O1—C6—C1118.71 (16)
O2—Ni1—N889.94 (5)C8—C7—C12125.59 (18)
N1—Ni1—N3165.67 (6)N3—C7—C12112.41 (17)
N1—Ni1—N592.18 (6)N3—C7—C8121.95 (19)
N1—Ni1—N898.83 (7)C7—C8—C9118.6 (2)
N3—Ni1—N595.69 (7)C8—C9—C10119.6 (2)
N3—Ni1—N893.36 (7)C9—C10—C11118.9 (2)
N5—Ni1—N888.36 (6)N3—C11—C10122.39 (19)
Ni1—O1—C6114.90 (13)N4—C12—C7117.8 (2)
Ni1—O2—C12114.68 (13)O2—C12—N4123.2 (2)
Ni1—N1—C1114.71 (14)O2—C12—C7119.01 (17)
Ni1—N1—C5126.71 (13)C1—C2—H2121.00
C1—N1—C5118.28 (18)C3—C2—H2121.00
Ni1—N3—C7115.52 (13)C2—C3—H3120.00
Ni1—N3—C11125.88 (13)C4—C3—H3120.00
C7—N3—C11118.55 (18)C3—C4—H4121.00
Ni1—N5—N6123.67 (13)C5—C4—H4121.00
N5—N6—N7178.2 (2)N1—C5—H5119.00
Ni1—N8—N9122.99 (12)C4—C5—H5119.00
N8—N9—N10176.9 (3)C7—C8—H8121.00
H12—N2—H13119 (2)C9—C8—H8121.00
C6—N2—H12122.0 (18)C8—C9—H9120.00
C6—N2—H13119.4 (14)C10—C9—H9120.00
C12—N4—H14116.3 (16)C9—C10—H10121.00
C12—N4—H15123.0 (15)C11—C10—H10121.00
H14—N4—H15119 (2)N3—C11—H11119.00
N1—C1—C2122.2 (2)C10—C11—H11119.00
N1—C1—C6112.46 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12···N7i0.86 (3)2.12 (2)2.967 (3)165 (3)
N2—H13···N10ii0.85 (3)2.31 (3)3.154 (4)172 (2)
N4—H14···N8iii0.80 (2)2.36 (2)3.136 (3)164 (2)
N4—H15···N10iv0.94 (3)2.50 (3)3.442 (4)179 (3)
C2—H2···N7i0.932.613.516 (3)163
C4—H4···O2v0.932.553.318 (3)140
C8—H8···N10iv0.932.373.297 (3)174
C10—H10···O1vi0.932.333.256 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y, z; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(N3)2(C6H6N2O)2]
Mr387.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.3438 (5), 6.6986 (2), 18.7969 (10)
β (°) 120.738 (3)
V3)1552.34 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.22 × 0.18 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire3 detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.815, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
15901, 4516, 2692
Rint0.034
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 0.89
No. of reflections4516
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ni1—O12.0701 (13)Ni1—N32.0559 (17)
Ni1—O22.0941 (12)Ni1—N52.0652 (14)
Ni1—N12.0685 (17)Ni1—N82.0863 (17)
O1—Ni1—O293.30 (5)O2—Ni1—N889.94 (5)
O1—Ni1—N178.45 (6)N1—Ni1—N3165.67 (6)
O1—Ni1—N389.76 (6)N1—Ni1—N592.18 (6)
O1—Ni1—N588.69 (6)N1—Ni1—N898.83 (7)
O1—Ni1—N8175.91 (6)N3—Ni1—N595.69 (7)
O2—Ni1—N194.34 (6)N3—Ni1—N893.36 (7)
O2—Ni1—N378.08 (6)N5—Ni1—N888.36 (6)
O2—Ni1—N5173.44 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12···N7i0.86 (3)2.12 (2)2.967 (3)165 (3)
N2—H13···N10ii0.85 (3)2.31 (3)3.154 (4)172 (2)
N4—H14···N8iii0.80 (2)2.36 (2)3.136 (3)164 (2)
N4—H15···N10iv0.94 (3)2.50 (3)3.442 (4)179 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y, z.
 

Acknowledgements

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Zagreb (grant No. 119-1193079-1332).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationĐaković, M. & Popović, Z. (2007). Acta Cryst. C63, m507–m509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro. Version 171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuwen, L., Yi, L., Songshen, Q. & Fengjiao, D. (2000). Thermochim. Acta, 351, 51–54.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m311-m312
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds