organic compounds
1-Methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.1]decane 7-oxide triiodide
aCentro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, TU Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal, and bUniversidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Avenida do Campo Grande 376, 1749-024 Lisbon, Portugal
*Correspondence e-mail: fatima.guedes@ist.utl.pt
The title compound, C7H15N3OP+·I3−, is a derivative of the well known water-soluble aminophosphine 1,3,5-triaza-7-phosphaadamantane (PTA). The is composed of a cage-like 1-methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.1]decane 7-oxide cation and a triiodide anion. The N-methylation of the PTA cage results in a slight elongation of the corresponding C—N bonds, while the oxidation of the P atom leads to a slight shortening of the C—P bonds in comparison with those of PTA. In general, most of the bonding parameters are comparable with those reported for related compounds bearing the PTA core. Two intermolecular C—H⋯O hydrogen bonds between methylene groups and the P=O group are responsible for the linkage of neighbouring cations into linear one-dimensional hydrogen-bonded chains.
Related literature
For a comprehensive review of PTA chemistry, see: Phillips et al. (2004). For general background, see: Kirillov et al. (2007); Smoleński & Pombeiro (2008). For synthesis of PTA and its N-methylated derivative, see: Daigle et al. (1974); Daigle (1998). For related structures, see: Forward et al. (1996a,b); Otto et al. (2005); Frost et al. (2006); Marsh et al. (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: WinGX (Version 1.70.01; Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808001426/kp2159sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001426/kp2159Isup2.hkl
The aqueous solutions (5 ml each) of Cu(NO3)2.2.5 H2O (116 mg, 0.50 mmol) and N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, [C7H15N3P]I (299 mg, 1.00 mmol) [for the synthesis of this compound, see: Daigle et al. (1974); Daigle (1998)], were combined and left stirring in air at ambient temperature for 1 h. The resulting white suspension containing mainly a CuI aminophosphine compound was filtered off. The colourless filtrate was left to evaporate in a beaker in air for two weeks, leading to the formation of a small crop of red X-ray quality crystals of compound (I) as a by-product (it is typically contaminated by a colourless crystalline material). FT–IR (KBr pellet), cm-1: 2967 w, 2939 w, 1449 m, 1384 s, 1304 m, 1279 w, 1246 w, 1195 s [ν(P=O)], 1108 w, 1091 w, 1066 w, 1019 m, 983 m, 934 m, 900 w, 876 w, 816 m, 792 w, 752 m, 544 w, 441 w, 408 w. FAB-MS+ (m-nitrobenzylicalcohol), m/z: 188 [C7H15N3OP]+.
All hydrogen atoms were located except from H4A, H4B and H4C which were inserted in calculated positions.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: WinGX (Version 1.70.01; Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H15N3OP+·I3− | F(000) = 1040 |
Mr = 568.89 | Dx = 2.480 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P2yn | Cell parameters from 2835 reflections |
a = 7.1570 (8) Å | θ = 2.6–27.9° |
b = 8.2257 (8) Å | µ = 6.24 mm−1 |
c = 25.903 (3) Å | T = 150 K |
β = 92.472 (7)° | Plate, red |
V = 1523.5 (3) Å3 | 0.13 × 0.10 × 0.10 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2789 independent reflections |
Radiation source: fine-focus sealed tube | 2214 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ϕ and ω scans | θmax = 25.4°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.497, Tmax = 0.574 | k = −9→9 |
11526 measured reflections | l = −29→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.045P)2 + 6.2243P] where P = (Fo2 + 2Fc2)/3 |
2789 reflections | (Δ/σ)max = 0.017 |
172 parameters | Δρmax = 2.44 e Å−3 |
0 restraints | Δρmin = −1.03 e Å−3 |
0 constraints |
C7H15N3OP+·I3− | V = 1523.5 (3) Å3 |
Mr = 568.89 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1570 (8) Å | µ = 6.24 mm−1 |
b = 8.2257 (8) Å | T = 150 K |
c = 25.903 (3) Å | 0.13 × 0.10 × 0.10 mm |
β = 92.472 (7)° |
Bruker SMART CCD area-detector diffractometer | 2789 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2214 reflections with I > 2σ(I) |
Tmin = 0.497, Tmax = 0.574 | Rint = 0.040 |
11526 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 2.44 e Å−3 |
2789 reflections | Δρmin = −1.03 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5522 (9) | 0.4541 (10) | 0.1979 (3) | 0.0186 (16) | |
C2 | 0.5510 (9) | 0.1132 (8) | 0.1974 (3) | 0.0156 (15) | |
C3 | 0.5535 (10) | 0.2823 (10) | 0.1042 (3) | 0.0188 (15) | |
C4 | 0.8586 (11) | 0.2823 (11) | 0.0631 (3) | 0.0294 (18) | |
H4A | 0.9942 | 0.2819 | 0.0701 | 0.044* | |
H4B | 0.8230 | 0.3796 | 0.0432 | 0.044* | |
H4C | 0.8222 | 0.1851 | 0.0432 | 0.044* | |
C12 | 0.8197 (10) | 0.2815 (10) | 0.2227 (3) | 0.0192 (15) | |
C23 | 0.8255 (10) | 0.1301 (8) | 0.1442 (3) | 0.0162 (15) | |
C31 | 0.8255 (10) | 0.4347 (10) | 0.1446 (3) | 0.0192 (16) | |
N1 | 0.7565 (7) | 0.4292 (7) | 0.1960 (2) | 0.0169 (13) | |
N2 | 0.7569 (7) | 0.1334 (7) | 0.1956 (2) | 0.0141 (12) | |
N3 | 0.7614 (8) | 0.2828 (7) | 0.1131 (2) | 0.0168 (12) | |
O1 | 0.2300 (7) | 0.2825 (7) | 0.1582 (2) | 0.0268 (12) | |
P1 | 0.4367 (2) | 0.2827 (2) | 0.16547 (7) | 0.0168 (4) | |
I1 | 0.42016 (7) | 0.78153 (6) | 0.088953 (18) | 0.02270 (15) | |
I2 | 0.14227 (7) | 0.78170 (6) | 0.16786 (2) | 0.02691 (16) | |
I3 | 0.73414 (8) | 0.78543 (8) | 0.02143 (2) | 0.03606 (18) | |
H1A | 0.517 (12) | 0.452 (11) | 0.232 (4) | 0.043* | |
H1B | 0.498 (12) | 0.558 (11) | 0.183 (3) | 0.043* | |
H2A | 0.501 (12) | 0.108 (11) | 0.232 (4) | 0.043* | |
H2B | 0.521 (12) | 0.008 (12) | 0.182 (3) | 0.050* | |
H3A | 0.512 (14) | 0.190 (12) | 0.084 (4) | 0.060* | |
H3B | 0.522 (14) | 0.380 (13) | 0.085 (4) | 0.060* | |
H12A | 0.948 (16) | 0.286 (12) | 0.225 (4) | 0.060* | |
H12B | 0.793 (14) | 0.282 (11) | 0.256 (4) | 0.050* | |
H23A | 0.964 (15) | 0.135 (13) | 0.147 (4) | 0.060* | |
H23B | 0.769 (13) | 0.034 (13) | 0.127 (4) | 0.060* | |
H31A | 0.959 (14) | 0.414 (12) | 0.147 (4) | 0.060* | |
H31B | 0.768 (13) | 0.538 (13) | 0.126 (4) | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.010 (3) | 0.026 (5) | 0.020 (4) | 0.005 (3) | 0.001 (3) | −0.003 (3) |
C2 | 0.014 (3) | 0.011 (4) | 0.022 (4) | −0.002 (3) | 0.006 (3) | 0.000 (3) |
C3 | 0.013 (3) | 0.021 (4) | 0.023 (4) | 0.002 (3) | −0.003 (3) | 0.000 (3) |
C4 | 0.027 (4) | 0.041 (5) | 0.022 (4) | −0.001 (4) | 0.017 (3) | −0.007 (4) |
C12 | 0.016 (4) | 0.021 (4) | 0.020 (4) | −0.001 (3) | −0.006 (3) | 0.000 (3) |
C23 | 0.018 (4) | 0.006 (4) | 0.026 (4) | 0.004 (3) | 0.005 (3) | 0.002 (3) |
C31 | 0.012 (4) | 0.027 (5) | 0.019 (4) | 0.001 (3) | 0.002 (3) | 0.001 (3) |
N1 | 0.011 (3) | 0.020 (3) | 0.019 (3) | −0.001 (2) | −0.002 (2) | 0.000 (3) |
N2 | 0.009 (3) | 0.017 (3) | 0.017 (3) | 0.001 (2) | 0.002 (2) | 0.002 (2) |
N3 | 0.014 (3) | 0.020 (3) | 0.016 (3) | −0.005 (3) | 0.002 (2) | −0.004 (3) |
O1 | 0.009 (2) | 0.029 (3) | 0.042 (3) | 0.000 (2) | −0.002 (2) | 0.002 (3) |
P1 | 0.0075 (8) | 0.0187 (9) | 0.0244 (10) | 0.0007 (7) | 0.0003 (7) | −0.0004 (8) |
I1 | 0.0282 (3) | 0.0183 (3) | 0.0215 (3) | 0.0009 (2) | −0.00114 (19) | −0.0002 (2) |
I2 | 0.0230 (3) | 0.0207 (3) | 0.0376 (3) | 0.0000 (2) | 0.0081 (2) | 0.0000 (2) |
I3 | 0.0341 (3) | 0.0527 (4) | 0.0218 (3) | 0.0017 (3) | 0.0054 (2) | −0.0023 (3) |
C1—N1 | 1.479 (8) | C12—N1 | 1.462 (9) |
C1—P1 | 1.821 (8) | C12—N2 | 1.467 (10) |
C1—H1A | 0.94 (9) | C12—H12A | 0.92 (11) |
C1—H1B | 1.01 (9) | C12—H12B | 0.90 (11) |
C2—N2 | 1.486 (8) | C23—N2 | 1.440 (9) |
C2—P1 | 1.799 (7) | C23—N3 | 1.550 (9) |
C2—H2A | 0.98 (9) | C23—H23A | 0.99 (10) |
C2—H2B | 0.97 (10) | C23—H23B | 0.99 (10) |
C3—N3 | 1.495 (9) | C31—N1 | 1.441 (9) |
C3—P1 | 1.825 (8) | C31—N3 | 1.551 (9) |
C3—H3A | 0.96 (10) | C31—H31A | 0.97 (10) |
C3—H3B | 0.96 (11) | C31—H31B | 1.06 (10) |
C4—N3 | 1.496 (9) | O1—P1 | 1.483 (5) |
C4—H4A | 0.9800 | I1—I3 | 2.9067 (8) |
C4—H4B | 0.9800 | I1—I2 | 2.9127 (7) |
C4—H4C | 0.9800 | ||
N1—C1—P1 | 107.9 (5) | N2—C23—H23A | 108 (6) |
N1—C1—H1A | 109 (5) | N3—C23—H23A | 106 (6) |
P1—C1—H1A | 107 (6) | N2—C23—H23B | 107 (6) |
N1—C1—H1B | 118 (5) | N3—C23—H23B | 107 (6) |
P1—C1—H1B | 109 (5) | H23A—C23—H23B | 117 (8) |
H1A—C1—H1B | 105 (7) | N1—C31—N3 | 110.8 (6) |
N2—C2—P1 | 109.3 (5) | N1—C31—H31A | 109 (6) |
N2—C2—H2A | 116 (5) | N3—C31—H31A | 99 (6) |
P1—C2—H2A | 106 (5) | N1—C31—H31B | 108 (5) |
N2—C2—H2B | 107 (5) | N3—C31—H31B | 108 (5) |
P1—C2—H2B | 114 (5) | H31A—C31—H31B | 122 (8) |
H2A—C2—H2B | 104 (7) | C31—N1—C12 | 110.7 (6) |
N3—C3—P1 | 110.8 (5) | C31—N1—C1 | 114.0 (5) |
N3—C3—H3A | 112 (6) | C12—N1—C1 | 112.6 (6) |
P1—C3—H3A | 109 (6) | C23—N2—C12 | 110.4 (6) |
N3—C3—H3B | 106 (6) | C23—N2—C2 | 113.9 (5) |
P1—C3—H3B | 110 (6) | C12—N2—C2 | 111.2 (6) |
H3A—C3—H3B | 109 (8) | C4—N3—C3 | 111.3 (6) |
N3—C4—H4A | 109.5 | C4—N3—C31 | 108.6 (5) |
N3—C4—H4B | 109.5 | C3—N3—C31 | 110.7 (6) |
H4A—C4—H4B | 109.5 | C4—N3—C23 | 108.0 (6) |
N3—C4—H4C | 109.5 | C3—N3—C23 | 110.4 (6) |
H4A—C4—H4C | 109.5 | C31—N3—C23 | 107.8 (5) |
H4B—C4—H4C | 109.5 | O1—P1—C2 | 119.2 (3) |
N1—C12—N2 | 112.4 (5) | O1—P1—C1 | 119.3 (3) |
N1—C12—H12A | 107 (6) | C2—P1—C1 | 101.5 (3) |
N2—C12—H12A | 111 (6) | O1—P1—C3 | 112.4 (3) |
N1—C12—H12B | 112 (6) | C2—P1—C3 | 100.5 (4) |
N2—C12—H12B | 113 (6) | C1—P1—C3 | 100.8 (4) |
H12A—C12—H12B | 100 (9) | I3—I1—I2 | 172.41 (2) |
N2—C23—N3 | 111.1 (5) | ||
N3—C31—N1—C12 | 57.7 (7) | N1—C31—N3—C4 | −172.0 (6) |
N3—C31—N1—C1 | −70.5 (8) | N1—C31—N3—C3 | 65.6 (7) |
N2—C12—N1—C31 | −59.3 (8) | N1—C31—N3—C23 | −55.2 (7) |
N2—C12—N1—C1 | 69.6 (8) | N2—C23—N3—C4 | 172.4 (6) |
P1—C1—N1—C31 | 65.5 (7) | N2—C23—N3—C3 | −65.7 (7) |
P1—C1—N1—C12 | −61.6 (7) | N2—C23—N3—C31 | 55.3 (7) |
N3—C23—N2—C12 | −57.4 (7) | N2—C2—P1—O1 | 174.7 (4) |
N3—C23—N2—C2 | 68.6 (7) | N2—C2—P1—C1 | −52.0 (5) |
N1—C12—N2—C23 | 59.1 (7) | N2—C2—P1—C3 | 51.4 (5) |
N1—C12—N2—C2 | −68.4 (7) | N1—C1—P1—O1 | −175.4 (4) |
P1—C2—N2—C23 | −64.0 (7) | N1—C1—P1—C2 | 51.3 (6) |
P1—C2—N2—C12 | 61.6 (6) | N1—C1—P1—C3 | −51.8 (6) |
P1—C3—N3—C4 | 179.9 (5) | N3—C3—P1—O1 | 179.9 (5) |
P1—C3—N3—C31 | −59.2 (7) | N3—C3—P1—C2 | −52.2 (6) |
P1—C3—N3—C23 | 60.0 (7) | N3—C3—P1—C1 | 51.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C23—H23A···O1i | 0.99 (10) | 2.26 (11) | 3.161 (9) | 150 (9) |
C31—H31A···O1i | 0.97 (10) | 2.23 (10) | 3.160 (9) | 161 (8) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C7H15N3OP+·I3− |
Mr | 568.89 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 7.1570 (8), 8.2257 (8), 25.903 (3) |
β (°) | 92.472 (7) |
V (Å3) | 1523.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.24 |
Crystal size (mm) | 0.13 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.497, 0.574 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11526, 2789, 2214 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.102, 1.12 |
No. of reflections | 2789 |
No. of parameters | 172 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.44, −1.03 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), WinGX (Version 1.70.01; Farrugia, 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).
C1—N1 | 1.479 (8) | C12—N2 | 1.467 (10) |
C1—P1 | 1.821 (8) | C23—N2 | 1.440 (9) |
C2—N2 | 1.486 (8) | C23—N3 | 1.550 (9) |
C2—P1 | 1.799 (7) | C31—N1 | 1.441 (9) |
C3—N3 | 1.495 (9) | C31—N3 | 1.551 (9) |
C3—P1 | 1.825 (8) | O1—P1 | 1.483 (5) |
C4—N3 | 1.496 (9) | I1—I3 | 2.9067 (8) |
C12—N1 | 1.462 (9) | I1—I2 | 2.9127 (7) |
I3—I1—I2 | 172.41 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C23—H23A···O1i | 0.99 (10) | 2.26 (11) | 3.161 (9) | 150 (9) |
C31—H31A···O1i | 0.97 (10) | 2.23 (10) | 3.160 (9) | 161 (8) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
This work was supported by the Foundation for Science and Technology (FCT), Portugal, and its POCI 2010 programme (FEDER funded).
References
Bruker (2004). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daigle, D. J. (1998). Inorg. Synth. 32, 40–45. CrossRef CAS Google Scholar
Daigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem. 11, 407–408. CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996a). Z. Kristallogr. 211, 129–130. CrossRef CAS Google Scholar
Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996b). Z. Kristallogr. 211, 131–132. CrossRef CAS Google Scholar
Frost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem. pp. 1182–1189. Web of Science CSD CrossRef Google Scholar
Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77. CSD CrossRef CAS IUCr Journals Google Scholar
Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342. Web of Science CrossRef CAS Google Scholar
Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87–91. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Within our ongoing research (Kirillov et al., 2007; Smoleński & Pombeiro, 2008) on the synthesis of transition metal complexes with PTA or derived ligands, we have attempted the reaction of a copper(II) salt with N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, which resulted in the formation of the title compound, (I), as a by-product. Its crystal structure is reported herein.
The molecular structure of (I) (Fig. 1) bears a cage-like cation [C7H15N3OP]+ and a tri-iodide anion, with the shortest cation···anion separation of ca 4.0 Å. The N-methylation of the PTA cage results in a slight elongation of the C—N bonds around N3 atom [avg. 1.53 (1) Å] in comparison with the C—N bonds around N1 and N2 atoms [avg. 1.46 (1) Å] (Table 1). The oxidation of P1 atom also slightly affects the C—P bonds [avg. 1.82 (1) Å] which are somewhat shorter than those in PTA [avg. 1.86 (1) Å]. The tri-iodide anion with the I2—I1—I3 angle of 172.41 (2)° deviates from the linear geometry. In general, most of the bonding parameters of (I) agree within values reported for the related compound, [C7H15N3OP][BPh4] (Forward et al., 1996a,b), possessing similar cation, as well as for other N-alkylated (Otto et al., 2005; Forward et al., 1996a,b) or P-oxidized (Frost et al., 2006; Marsh et al., 2002) PTA derivatives.
In (I), the neighbouring cationic units are combined into the linear one-dimensional H-bonded chains (Fig. 2) by means of two intermolecular C—H···O hydrogen bonds [C23—H23A···O1i 1.00 (11) Å, 2.26 (11) Å, 3.161 (9) Å, 150 (9)°; C31—-H31A···O1i 0.97 (10) Å, 2.23 (10) Å, 3.160 (9) Å, 161 (8)°; symmetry code: 1 + x, y, z], which link the methylene groups (C23, C31) with the O1 atom of the P=O moiety.