organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o496-o497

1-Methyl-1-azonia-3,5-di­aza-7-phospha­tri­cyclo­[3.3.1.1]decane 7-oxide triiodide

aCentro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, TU Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal, and bUniversidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Avenida do Campo Grande 376, 1749-024 Lisbon, Portugal
*Correspondence e-mail: fatima.guedes@ist.utl.pt

(Received 7 January 2008; accepted 14 January 2008; online 23 January 2008)

The title compound, C7H15N3OP+·I3, is a derivative of the well known water-soluble amino­phosphine 1,3,5-triaza-7-phosphaadamantane (PTA). The crystal structure is composed of a cage-like 1-methyl-1-azonia-3,5-diaza-7-phospha­tricyclo­[3.3.1.1]decane 7-oxide cation and a triiodide anion. The N-methyl­ation of the PTA cage results in a slight elongation of the corresponding C—N bonds, while the oxidation of the P atom leads to a slight shortening of the C—P bonds in comparison with those of PTA. In general, most of the bonding parameters are comparable with those reported for related compounds bearing the PTA core. Two inter­molecular C—H⋯O hydrogen bonds between methyl­ene groups and the P=O group are responsible for the linkage of neighbouring cations into linear one-dimensional hydrogen-bonded chains.

Related literature

For a comprehensive review of PTA chemistry, see: Phillips et al. (2004[Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955-993.]). For general background, see: Kirillov et al. (2007[Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686-2692.]); Smoleński & Pombeiro (2008[Smoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87-91.]). For synthesis of PTA and its N-methyl­ated derivative, see: Daigle et al. (1974[Daigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem. 11, 407-408.]); Daigle (1998[Daigle, D. J. (1998). Inorg. Synth. 32, 40-45.]). For related structures, see: Forward et al. (1996a[Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996a). Z. Kristallogr. 211, 129-130.],b[Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996b). Z. Kristallogr. 211, 131-132.]); Otto et al. (2005[Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337-4342.]); Frost et al. (2006[Frost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem. pp. 1182-1189.]); Marsh et al. (2002[Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62-77.]).

[Scheme 1]

Experimental

Crystal data
  • C7H15N3OP+·I3

  • Mr = 568.89

  • Monoclinic, P 21 /n

  • a = 7.1570 (8) Å

  • b = 8.2257 (8) Å

  • c = 25.903 (3) Å

  • β = 92.472 (7)°

  • V = 1523.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.24 mm−1

  • T = 150 (2) K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.497, Tmax = 0.574 (expected range = 0.464–0.536)

  • 11526 measured reflections

  • 2789 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 1.12

  • 2789 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.44 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—N1 1.479 (8)
C1—P1 1.821 (8)
C2—N2 1.486 (8)
C2—P1 1.799 (7)
C3—N3 1.495 (9)
C3—P1 1.825 (8)
C4—N3 1.496 (9)
C12—N1 1.462 (9)
C12—N2 1.467 (10)
C23—N2 1.440 (9)
C23—N3 1.550 (9)
C31—N1 1.441 (9)
C31—N3 1.551 (9)
O1—P1 1.483 (5)
I1—I3 2.9067 (8)
I1—I2 2.9127 (7)
I3—I1—I2 172.41 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1i 0.99 (10) 2.26 (11) 3.161 (9) 150 (9)
C31—H31A⋯O1i 0.97 (10) 2.23 (10) 3.160 (9) 161 (8)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: WinGX (Version 1.70.01; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Within our ongoing research (Kirillov et al., 2007; Smoleński & Pombeiro, 2008) on the synthesis of transition metal complexes with PTA or derived ligands, we have attempted the reaction of a copper(II) salt with N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, which resulted in the formation of the title compound, (I), as a by-product. Its crystal structure is reported herein.

The molecular structure of (I) (Fig. 1) bears a cage-like cation [C7H15N3OP]+ and a tri-iodide anion, with the shortest cation···anion separation of ca 4.0 Å. The N-methylation of the PTA cage results in a slight elongation of the C—N bonds around N3 atom [avg. 1.53 (1) Å] in comparison with the C—N bonds around N1 and N2 atoms [avg. 1.46 (1) Å] (Table 1). The oxidation of P1 atom also slightly affects the C—P bonds [avg. 1.82 (1) Å] which are somewhat shorter than those in PTA [avg. 1.86 (1) Å]. The tri-iodide anion with the I2—I1—I3 angle of 172.41 (2)° deviates from the linear geometry. In general, most of the bonding parameters of (I) agree within values reported for the related compound, [C7H15N3OP][BPh4] (Forward et al., 1996a,b), possessing similar cation, as well as for other N-alkylated (Otto et al., 2005; Forward et al., 1996a,b) or P-oxidized (Frost et al., 2006; Marsh et al., 2002) PTA derivatives.

In (I), the neighbouring cationic units are combined into the linear one-dimensional H-bonded chains (Fig. 2) by means of two intermolecular C—H···O hydrogen bonds [C23—H23A···O1i 1.00 (11) Å, 2.26 (11) Å, 3.161 (9) Å, 150 (9)°; C31—-H31A···O1i 0.97 (10) Å, 2.23 (10) Å, 3.160 (9) Å, 161 (8)°; symmetry code: 1 + x, y, z], which link the methylene groups (C23, C31) with the O1 atom of the P=O moiety.

Related literature top

For a comprehensive review of PTA chemistry, see: Phillips et al. (2004). For general background, see: Kirillov et al. (2007); Smoleński & Pombeiro (2008). For synthesis of PTA and its N-methylated derivative, see: Daigle et al. (1974); Daigle (1998). For related structures, see: Forward et al. (1996a,b); Otto et al. (2005); Frost et al. (2006); Marsh et al. (2002).

Experimental top

The aqueous solutions (5 ml each) of Cu(NO3)2.2.5 H2O (116 mg, 0.50 mmol) and N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, [C7H15N3P]I (299 mg, 1.00 mmol) [for the synthesis of this compound, see: Daigle et al. (1974); Daigle (1998)], were combined and left stirring in air at ambient temperature for 1 h. The resulting white suspension containing mainly a CuI aminophosphine compound was filtered off. The colourless filtrate was left to evaporate in a beaker in air for two weeks, leading to the formation of a small crop of red X-ray quality crystals of compound (I) as a by-product (it is typically contaminated by a colourless crystalline material). FT–IR (KBr pellet), cm-1: 2967 w, 2939 w, 1449 m, 1384 s, 1304 m, 1279 w, 1246 w, 1195 s [ν(P=O)], 1108 w, 1091 w, 1066 w, 1019 m, 983 m, 934 m, 900 w, 876 w, 816 m, 792 w, 752 m, 544 w, 441 w, 408 w. FAB-MS+ (m-nitrobenzylicalcohol), m/z: 188 [C7H15N3OP]+.

Refinement top

All hydrogen atoms were located except from H4A, H4B and H4C which were inserted in calculated positions.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: WinGX (Version 1.70.01; Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as grey sticks. C, grey; N, blue; P, orange; O, red; I, purple.
[Figure 2] Fig. 2. Fragment of the crystal packing diagram of (I) showing the generation of a one-dimensional linear chain from the neighbouring cations via intermolecular C—H···O hydrogen bonds (dotted lines). Tri-iodide anions are omitted for clarity. C, grey; N, blue; P, orange; O, red; H, pale grey.
1-Methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.1]decane 7-oxide triiodide top
Crystal data top
C7H15N3OP+·I3F(000) = 1040
Mr = 568.89Dx = 2.480 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P2ynCell parameters from 2835 reflections
a = 7.1570 (8) Åθ = 2.6–27.9°
b = 8.2257 (8) ŵ = 6.24 mm1
c = 25.903 (3) ÅT = 150 K
β = 92.472 (7)°Plate, red
V = 1523.5 (3) Å30.13 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 independent reflections
Radiation source: fine-focus sealed tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.497, Tmax = 0.574k = 99
11526 measured reflectionsl = 2931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.045P)2 + 6.2243P]
where P = (Fo2 + 2Fc2)/3
2789 reflections(Δ/σ)max = 0.017
172 parametersΔρmax = 2.44 e Å3
0 restraintsΔρmin = 1.03 e Å3
0 constraints
Crystal data top
C7H15N3OP+·I3V = 1523.5 (3) Å3
Mr = 568.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1570 (8) ŵ = 6.24 mm1
b = 8.2257 (8) ÅT = 150 K
c = 25.903 (3) Å0.13 × 0.10 × 0.10 mm
β = 92.472 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2214 reflections with I > 2σ(I)
Tmin = 0.497, Tmax = 0.574Rint = 0.040
11526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 2.44 e Å3
2789 reflectionsΔρmin = 1.03 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5522 (9)0.4541 (10)0.1979 (3)0.0186 (16)
C20.5510 (9)0.1132 (8)0.1974 (3)0.0156 (15)
C30.5535 (10)0.2823 (10)0.1042 (3)0.0188 (15)
C40.8586 (11)0.2823 (11)0.0631 (3)0.0294 (18)
H4A0.99420.28190.07010.044*
H4B0.82300.37960.04320.044*
H4C0.82220.18510.04320.044*
C120.8197 (10)0.2815 (10)0.2227 (3)0.0192 (15)
C230.8255 (10)0.1301 (8)0.1442 (3)0.0162 (15)
C310.8255 (10)0.4347 (10)0.1446 (3)0.0192 (16)
N10.7565 (7)0.4292 (7)0.1960 (2)0.0169 (13)
N20.7569 (7)0.1334 (7)0.1956 (2)0.0141 (12)
N30.7614 (8)0.2828 (7)0.1131 (2)0.0168 (12)
O10.2300 (7)0.2825 (7)0.1582 (2)0.0268 (12)
P10.4367 (2)0.2827 (2)0.16547 (7)0.0168 (4)
I10.42016 (7)0.78153 (6)0.088953 (18)0.02270 (15)
I20.14227 (7)0.78170 (6)0.16786 (2)0.02691 (16)
I30.73414 (8)0.78543 (8)0.02143 (2)0.03606 (18)
H1A0.517 (12)0.452 (11)0.232 (4)0.043*
H1B0.498 (12)0.558 (11)0.183 (3)0.043*
H2A0.501 (12)0.108 (11)0.232 (4)0.043*
H2B0.521 (12)0.008 (12)0.182 (3)0.050*
H3A0.512 (14)0.190 (12)0.084 (4)0.060*
H3B0.522 (14)0.380 (13)0.085 (4)0.060*
H12A0.948 (16)0.286 (12)0.225 (4)0.060*
H12B0.793 (14)0.282 (11)0.256 (4)0.050*
H23A0.964 (15)0.135 (13)0.147 (4)0.060*
H23B0.769 (13)0.034 (13)0.127 (4)0.060*
H31A0.959 (14)0.414 (12)0.147 (4)0.060*
H31B0.768 (13)0.538 (13)0.126 (4)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.010 (3)0.026 (5)0.020 (4)0.005 (3)0.001 (3)0.003 (3)
C20.014 (3)0.011 (4)0.022 (4)0.002 (3)0.006 (3)0.000 (3)
C30.013 (3)0.021 (4)0.023 (4)0.002 (3)0.003 (3)0.000 (3)
C40.027 (4)0.041 (5)0.022 (4)0.001 (4)0.017 (3)0.007 (4)
C120.016 (4)0.021 (4)0.020 (4)0.001 (3)0.006 (3)0.000 (3)
C230.018 (4)0.006 (4)0.026 (4)0.004 (3)0.005 (3)0.002 (3)
C310.012 (4)0.027 (5)0.019 (4)0.001 (3)0.002 (3)0.001 (3)
N10.011 (3)0.020 (3)0.019 (3)0.001 (2)0.002 (2)0.000 (3)
N20.009 (3)0.017 (3)0.017 (3)0.001 (2)0.002 (2)0.002 (2)
N30.014 (3)0.020 (3)0.016 (3)0.005 (3)0.002 (2)0.004 (3)
O10.009 (2)0.029 (3)0.042 (3)0.000 (2)0.002 (2)0.002 (3)
P10.0075 (8)0.0187 (9)0.0244 (10)0.0007 (7)0.0003 (7)0.0004 (8)
I10.0282 (3)0.0183 (3)0.0215 (3)0.0009 (2)0.00114 (19)0.0002 (2)
I20.0230 (3)0.0207 (3)0.0376 (3)0.0000 (2)0.0081 (2)0.0000 (2)
I30.0341 (3)0.0527 (4)0.0218 (3)0.0017 (3)0.0054 (2)0.0023 (3)
Geometric parameters (Å, º) top
C1—N11.479 (8)C12—N11.462 (9)
C1—P11.821 (8)C12—N21.467 (10)
C1—H1A0.94 (9)C12—H12A0.92 (11)
C1—H1B1.01 (9)C12—H12B0.90 (11)
C2—N21.486 (8)C23—N21.440 (9)
C2—P11.799 (7)C23—N31.550 (9)
C2—H2A0.98 (9)C23—H23A0.99 (10)
C2—H2B0.97 (10)C23—H23B0.99 (10)
C3—N31.495 (9)C31—N11.441 (9)
C3—P11.825 (8)C31—N31.551 (9)
C3—H3A0.96 (10)C31—H31A0.97 (10)
C3—H3B0.96 (11)C31—H31B1.06 (10)
C4—N31.496 (9)O1—P11.483 (5)
C4—H4A0.9800I1—I32.9067 (8)
C4—H4B0.9800I1—I22.9127 (7)
C4—H4C0.9800
N1—C1—P1107.9 (5)N2—C23—H23A108 (6)
N1—C1—H1A109 (5)N3—C23—H23A106 (6)
P1—C1—H1A107 (6)N2—C23—H23B107 (6)
N1—C1—H1B118 (5)N3—C23—H23B107 (6)
P1—C1—H1B109 (5)H23A—C23—H23B117 (8)
H1A—C1—H1B105 (7)N1—C31—N3110.8 (6)
N2—C2—P1109.3 (5)N1—C31—H31A109 (6)
N2—C2—H2A116 (5)N3—C31—H31A99 (6)
P1—C2—H2A106 (5)N1—C31—H31B108 (5)
N2—C2—H2B107 (5)N3—C31—H31B108 (5)
P1—C2—H2B114 (5)H31A—C31—H31B122 (8)
H2A—C2—H2B104 (7)C31—N1—C12110.7 (6)
N3—C3—P1110.8 (5)C31—N1—C1114.0 (5)
N3—C3—H3A112 (6)C12—N1—C1112.6 (6)
P1—C3—H3A109 (6)C23—N2—C12110.4 (6)
N3—C3—H3B106 (6)C23—N2—C2113.9 (5)
P1—C3—H3B110 (6)C12—N2—C2111.2 (6)
H3A—C3—H3B109 (8)C4—N3—C3111.3 (6)
N3—C4—H4A109.5C4—N3—C31108.6 (5)
N3—C4—H4B109.5C3—N3—C31110.7 (6)
H4A—C4—H4B109.5C4—N3—C23108.0 (6)
N3—C4—H4C109.5C3—N3—C23110.4 (6)
H4A—C4—H4C109.5C31—N3—C23107.8 (5)
H4B—C4—H4C109.5O1—P1—C2119.2 (3)
N1—C12—N2112.4 (5)O1—P1—C1119.3 (3)
N1—C12—H12A107 (6)C2—P1—C1101.5 (3)
N2—C12—H12A111 (6)O1—P1—C3112.4 (3)
N1—C12—H12B112 (6)C2—P1—C3100.5 (4)
N2—C12—H12B113 (6)C1—P1—C3100.8 (4)
H12A—C12—H12B100 (9)I3—I1—I2172.41 (2)
N2—C23—N3111.1 (5)
N3—C31—N1—C1257.7 (7)N1—C31—N3—C4172.0 (6)
N3—C31—N1—C170.5 (8)N1—C31—N3—C365.6 (7)
N2—C12—N1—C3159.3 (8)N1—C31—N3—C2355.2 (7)
N2—C12—N1—C169.6 (8)N2—C23—N3—C4172.4 (6)
P1—C1—N1—C3165.5 (7)N2—C23—N3—C365.7 (7)
P1—C1—N1—C1261.6 (7)N2—C23—N3—C3155.3 (7)
N3—C23—N2—C1257.4 (7)N2—C2—P1—O1174.7 (4)
N3—C23—N2—C268.6 (7)N2—C2—P1—C152.0 (5)
N1—C12—N2—C2359.1 (7)N2—C2—P1—C351.4 (5)
N1—C12—N2—C268.4 (7)N1—C1—P1—O1175.4 (4)
P1—C2—N2—C2364.0 (7)N1—C1—P1—C251.3 (6)
P1—C2—N2—C1261.6 (6)N1—C1—P1—C351.8 (6)
P1—C3—N3—C4179.9 (5)N3—C3—P1—O1179.9 (5)
P1—C3—N3—C3159.2 (7)N3—C3—P1—C252.2 (6)
P1—C3—N3—C2360.0 (7)N3—C3—P1—C151.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O1i0.99 (10)2.26 (11)3.161 (9)150 (9)
C31—H31A···O1i0.97 (10)2.23 (10)3.160 (9)161 (8)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H15N3OP+·I3
Mr568.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.1570 (8), 8.2257 (8), 25.903 (3)
β (°) 92.472 (7)
V3)1523.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.24
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.497, 0.574
No. of measured, independent and
observed [I > 2σ(I)] reflections
11526, 2789, 2214
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.12
No. of reflections2789
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.44, 1.03

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), WinGX (Version 1.70.01; Farrugia, 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
C1—N11.479 (8)C12—N21.467 (10)
C1—P11.821 (8)C23—N21.440 (9)
C2—N21.486 (8)C23—N31.550 (9)
C2—P11.799 (7)C31—N11.441 (9)
C3—N31.495 (9)C31—N31.551 (9)
C3—P11.825 (8)O1—P11.483 (5)
C4—N31.496 (9)I1—I32.9067 (8)
C12—N11.462 (9)I1—I22.9127 (7)
I3—I1—I2172.41 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O1i0.99 (10)2.26 (11)3.161 (9)150 (9)
C31—H31A···O1i0.97 (10)2.23 (10)3.160 (9)161 (8)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Foundation for Science and Technology (FCT), Portugal, and its POCI 2010 programme (FEDER funded).

References

First citationBruker (2004). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaigle, D. J. (1998). Inorg. Synth. 32, 40–45.  CrossRef CAS Google Scholar
First citationDaigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem. 11, 407–408.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996a). Z. Kristallogr. 211, 129–130.  CrossRef CAS Google Scholar
First citationForward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996b). Z. Kristallogr. 211, 131–132.  CrossRef CAS Google Scholar
First citationFrost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem. pp. 1182–1189.  Web of Science CSD CrossRef Google Scholar
First citationKirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.  Web of Science CrossRef CAS Google Scholar
First citationPhillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87–91.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o496-o497
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds