organic compounds
7-Nitroquinazolin-4(3H)-one
aXinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People's Republic of China, and bGraduate School of Chinese Academy of Science, Beijing 100039, People's Republic of China
*Correspondence e-mail: haji@ms.xjb.ac.cn
In the 8H5N3O3, intermolecular N—H⋯O hydrogen bonds link molecules into centrosymmetric dimers. These dimers are, in turn, linked though weak intermolecular C—H⋯O and C—H⋯N hydrogen bonds and π–π stacking interactions, with centroid–centroid distances of 3.678 (3) Å, into a three-dimensional network.
of the title compound, CRelated literature
For related literature on biological activity, see: Masanori et al. (2003); Wolfe et al. (1990). For related structures, see: Chadwick & Easton (1983); Etter (1983).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 2004); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807062666/lh2576sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807062666/lh2576Isup2.hkl
The title compound was synthesized by the reaction of 4-nitro-2-amino-benezic acid 18.2 g (0.1 mol) and formamidine acetate 10.1 g (0.2 mol) in 100 mL andryous EtOH, refulxing for 6 h. The solid filtrated and washed with 20 ml H2O, cool 30 ml EtOH and 30 ml e ther, respectively, dried under vacuum to obtain the title compound 15.8 g, yield: 82.8%. Crystals suitable for X-ray
were obtained by slow evaporation the solution of 7-Nitro-4(3H)-Quinazolinone in EtOH/acetone/THF (1:1:1 V/V/V) at room temperature over a period of one week.The H atoms were placed in calculated positions, with C—H = 0.95 Å, N—H = 0.88Å and included in the final cycles of
using a riding model, with Uiso(H) = 1.2 times Ueq(C, N).Data collection: RAPID-AUTO (Rigaku, 2004); cell
RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).Fig. 1. The molecular structure with displacement ellipsoids drawn at the 35% probability level. | |
Fig. 2. The packing of the title compound with hydrogen bonds shown as dashed lines. |
C8H5N3O3 | F(000) = 392 |
Mr = 191.15 | Dx = 1.662 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6207 reflections |
a = 5.1063 (10) Å | θ = 6.0–55.0° |
b = 11.206 (2) Å | µ = 0.13 mm−1 |
c = 13.528 (3) Å | T = 153 K |
β = 99.19 (3)° | Needle, colorless |
V = 764.1 (3) Å3 | 0.24 × 0.18 × 0.16 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP area-detector diffractometer | 1340 independent reflections |
Radiation source: Rotating Anode | 1215 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω Oscillation scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −6→6 |
Tmin = 0.969, Tmax = 0.979 | k = −13→13 |
5749 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.064P)2 + 0.0923P] where P = (Fo2 + 2Fc2)/3 |
1340 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C8H5N3O3 | V = 764.1 (3) Å3 |
Mr = 191.15 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.1063 (10) Å | µ = 0.13 mm−1 |
b = 11.206 (2) Å | T = 153 K |
c = 13.528 (3) Å | 0.24 × 0.18 × 0.16 mm |
β = 99.19 (3)° |
Rigaku R-AXIS RAPID IP area-detector diffractometer | 1340 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1215 reflections with I > 2σ(I) |
Tmin = 0.969, Tmax = 0.979 | Rint = 0.021 |
5749 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.15 e Å−3 |
1340 reflections | Δρmin = −0.31 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.37255 (17) | 0.37262 (8) | 0.24708 (6) | 0.0228 (3) | |
O2 | −0.1637 (2) | 0.51746 (9) | 0.33145 (8) | 0.0324 (3) | |
O3 | 0.69259 (17) | −0.00398 (7) | 0.41669 (6) | 0.0203 (3) | |
N1 | 0.6334 (2) | 0.33230 (10) | 0.53066 (8) | 0.0214 (3) | |
N2 | 0.8443 (2) | 0.14538 (9) | 0.52489 (7) | 0.0183 (3) | |
H2A | 0.9807 | 0.1015 | 0.5512 | 0.022* | |
C1 | 0.8209 (2) | 0.25752 (11) | 0.56195 (9) | 0.0206 (3) | |
H1B | 0.9536 | 0.2827 | 0.6152 | 0.025* | |
C2 | 0.6655 (2) | 0.09785 (11) | 0.44863 (8) | 0.0163 (3) | |
C3 | 0.4471 (2) | 0.17821 (10) | 0.40975 (8) | 0.0160 (3) | |
C4 | 0.2491 (2) | 0.14293 (11) | 0.33110 (9) | 0.0188 (3) | |
H4A | 0.2557 | 0.0658 | 0.3025 | 0.023* | |
C5 | 0.0451 (2) | 0.21960 (11) | 0.29509 (9) | 0.0194 (3) | |
H5A | −0.0904 | 0.1964 | 0.2421 | 0.023* | |
C6 | 0.0434 (2) | 0.33253 (11) | 0.33893 (9) | 0.0171 (3) | |
C7 | 0.2345 (2) | 0.37169 (11) | 0.41533 (9) | 0.0176 (3) | |
H7A | 0.2274 | 0.4498 | 0.4421 | 0.021* | |
C8 | 0.4409 (2) | 0.29261 (11) | 0.45270 (8) | 0.0166 (3) | |
N3 | −0.17982 (19) | 0.41378 (10) | 0.30265 (7) | 0.0194 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0179 (5) | 0.0261 (6) | 0.0224 (5) | −0.0023 (4) | −0.0028 (3) | 0.0042 (3) |
O2 | 0.0344 (6) | 0.0166 (5) | 0.0416 (6) | 0.0077 (4) | −0.0086 (4) | −0.0043 (4) |
O3 | 0.0219 (5) | 0.0143 (5) | 0.0248 (5) | 0.0033 (4) | 0.0043 (3) | −0.0018 (3) |
N1 | 0.0228 (6) | 0.0167 (6) | 0.0227 (5) | 0.0021 (4) | −0.0023 (4) | −0.0026 (4) |
N2 | 0.0167 (5) | 0.0155 (6) | 0.0219 (5) | 0.0034 (4) | 0.0003 (4) | 0.0017 (4) |
C1 | 0.0225 (7) | 0.0170 (7) | 0.0208 (6) | 0.0016 (5) | −0.0005 (5) | −0.0008 (4) |
C2 | 0.0170 (6) | 0.0146 (7) | 0.0183 (6) | −0.0009 (5) | 0.0062 (4) | 0.0020 (4) |
C3 | 0.0171 (6) | 0.0146 (7) | 0.0174 (6) | −0.0001 (5) | 0.0056 (4) | 0.0017 (4) |
C4 | 0.0208 (7) | 0.0145 (7) | 0.0217 (6) | −0.0011 (5) | 0.0049 (5) | −0.0034 (5) |
C5 | 0.0192 (6) | 0.0196 (7) | 0.0185 (6) | −0.0032 (5) | 0.0010 (4) | −0.0011 (5) |
C6 | 0.0165 (6) | 0.0156 (6) | 0.0195 (6) | 0.0014 (5) | 0.0036 (4) | 0.0033 (5) |
C7 | 0.0201 (7) | 0.0127 (6) | 0.0199 (6) | 0.0010 (5) | 0.0033 (5) | −0.0006 (4) |
C8 | 0.0182 (6) | 0.0150 (6) | 0.0168 (6) | −0.0016 (5) | 0.0034 (4) | 0.0009 (5) |
N3 | 0.0192 (6) | 0.0191 (6) | 0.0197 (5) | 0.0013 (4) | 0.0020 (4) | 0.0037 (4) |
O1—N3 | 1.2289 (14) | C3—C4 | 1.4023 (17) |
O2—N3 | 1.2240 (15) | C3—C8 | 1.4099 (17) |
O3—C2 | 1.2358 (15) | C4—C5 | 1.3779 (18) |
N1—C1 | 1.2916 (17) | C4—H4A | 0.9500 |
N1—C8 | 1.3946 (16) | C5—C6 | 1.3982 (18) |
N2—C1 | 1.3652 (16) | C5—H5A | 0.9500 |
N2—C2 | 1.3713 (16) | C6—C7 | 1.3750 (17) |
N2—H2A | 0.8800 | C6—N3 | 1.4799 (16) |
C1—H1B | 0.9500 | C7—C8 | 1.4076 (18) |
C2—C3 | 1.4644 (17) | C7—H7A | 0.9500 |
C1—N1—C8 | 115.91 (11) | C4—C5—C6 | 118.03 (11) |
C1—N2—C2 | 123.16 (10) | C4—C5—H5A | 121.0 |
C1—N2—H2A | 118.4 | C6—C5—H5A | 121.0 |
C2—N2—H2A | 118.4 | C7—C6—C5 | 123.78 (11) |
N1—C1—N2 | 125.49 (11) | C7—C6—N3 | 118.00 (11) |
N1—C1—H1B | 117.3 | C5—C6—N3 | 118.21 (11) |
N2—C1—H1B | 117.3 | C6—C7—C8 | 118.02 (11) |
O3—C2—N2 | 121.57 (11) | C6—C7—H7A | 121.0 |
O3—C2—C3 | 124.30 (11) | C8—C7—H7A | 121.0 |
N2—C2—C3 | 114.12 (11) | N1—C8—C7 | 117.89 (11) |
C4—C3—C8 | 120.54 (11) | N1—C8—C3 | 122.83 (11) |
C4—C3—C2 | 120.97 (11) | C7—C8—C3 | 119.28 (11) |
C8—C3—C2 | 118.49 (11) | O2—N3—O1 | 123.89 (10) |
C5—C4—C3 | 120.34 (11) | O2—N3—C6 | 117.99 (10) |
C5—C4—H4A | 119.8 | O1—N3—C6 | 118.10 (10) |
C3—C4—H4A | 119.8 | ||
C8—N1—C1—N2 | 0.28 (19) | N3—C6—C7—C8 | 177.39 (10) |
C2—N2—C1—N1 | −0.5 (2) | C1—N1—C8—C7 | −179.22 (11) |
C1—N2—C2—O3 | 179.92 (11) | C1—N1—C8—C3 | 0.03 (18) |
C1—N2—C2—C3 | 0.33 (16) | C6—C7—C8—N1 | −179.57 (10) |
O3—C2—C3—C4 | −0.08 (19) | C6—C7—C8—C3 | 1.15 (17) |
N2—C2—C3—C4 | 179.50 (10) | C4—C3—C8—N1 | −179.68 (11) |
O3—C2—C3—C8 | −179.62 (10) | C2—C3—C8—N1 | −0.14 (17) |
N2—C2—C3—C8 | −0.04 (16) | C4—C3—C8—C7 | −0.44 (18) |
C8—C3—C4—C5 | −0.31 (18) | C2—C3—C8—C7 | 179.10 (10) |
C2—C3—C4—C5 | −179.83 (11) | C7—C6—N3—O2 | 10.75 (16) |
C3—C4—C5—C6 | 0.30 (18) | C5—C6—N3—O2 | −170.57 (11) |
C4—C5—C6—C7 | 0.47 (19) | C7—C6—N3—O1 | −167.81 (10) |
C4—C5—C6—N3 | −178.12 (10) | C5—C6—N3—O1 | 10.87 (16) |
C5—C6—C7—C8 | −1.21 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3i | 0.88 | 1.98 | 2.8514 (14) | 169 |
C1—H1B···O2ii | 0.95 | 2.54 | 3.2703 (17) | 134 |
C1—H1B···O1iii | 0.95 | 2.55 | 3.0978 (17) | 117 |
C5—H5A···O2iv | 0.95 | 2.49 | 3.2846 (16) | 142 |
C7—H7A···N1ii | 0.95 | 2.55 | 3.4402 (18) | 155 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+3/2, −y+1/2, z+1/2; (iv) −x−1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H5N3O3 |
Mr | 191.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 153 |
a, b, c (Å) | 5.1063 (10), 11.206 (2), 13.528 (3) |
β (°) | 99.19 (3) |
V (Å3) | 764.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.24 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP area-detector diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.969, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5749, 1340, 1215 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.096, 1.11 |
No. of reflections | 1340 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.31 |
Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3i | 0.88 | 1.98 | 2.8514 (14) | 168.5 |
C1—H1B···O2ii | 0.95 | 2.54 | 3.2703 (17) | 134.1 |
C1—H1B···O1iii | 0.95 | 2.55 | 3.0978 (17) | 117.1 |
C5—H5A···O2iv | 0.95 | 2.49 | 3.2846 (16) | 141.5 |
C7—H7A···N1ii | 0.95 | 2.55 | 3.4402 (18) | 155.4 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+3/2, −y+1/2, z+1/2; (iv) −x−1/2, y−1/2, −z+1/2. |
Acknowledgements
This work is financially supported the Foundation of Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry (No. 2006–6).
References
Chadwick, D. J. & Easton, I. W. (1983). Acta Cryst. C39, 454–456. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Etter, M. C. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 115–121. CSD CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Masanori, T., Yoshiaki, I., Hideyuki, T., Takahiro, N., Hirotada, T., Tominaga, F. & Hideya, H. (2003). Bioorg. Med. Chem. 11, 383–391. Web of Science PubMed Google Scholar
Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Wolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161–166. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
7-Nitro-4(3H)-Quinazolinone (I), is an important intermediate for drugs synthesis and its derivatives show many biological activities including anti-fungal, anti-convulsant (Masanori et al., 2003), anti-bacterial, anti-cancer, anti-inflammatory, and anti-tumor (Wolfe et al., 1990). We report here the crystal structure of (I) (Fig. 1).
In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Chadwick & Easton, 1983; Etter, 1983). Atoms N3 and O3 lie in the 1,2-dihydroquinazoline ring (C1—C8/N1/N2) plane, and the deviations from the least-squares plane through the ring atoms are all smaller than 0.026 (2) Å. The relatively short distances of 3.678 (3)Å between the centroids of 1,2-dihydropyrimidine (C1/C2/C3/C8/N1/N2) and benzene (C3—C8) rings related by (1 + x, y, x) indicates the presence of weak π-π interactions. In the crystal structure, intermolecular N—H···O hydrogen bonds link molecules into centrosymmetric dimers. These dimers, are in turn, linked though weak intermolecular C—H···O and C—H···N hydrogen bonds and π···π stacking interactions into a three-dimensional network.