metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-benzene-1,3-di­carboxyl­ato-κ2O:O′-μ2-1,3-di-4-pyridylpropane-κ2N:N′-zinc(II)]

aCollege of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China, bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and cConjugate and Medicinal Chemistry Laboratory, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
*Correspondence e-mail: dym@fjnu.edu.cn

(Received 13 December 2007; accepted 16 January 2008; online 23 January 2008)

The title compound, [Zn(C8H4O4)(C13H14N2)]n, was obtained by the hydro­thermal reaction of Zn(OAc)2·H2O with 1,3-di-4-pyridylpropane (bpp) and isophthalic acid (H2ip). The ZnII ion is coordinated by two bpp and two ip ligands in a distorted tetra­hedral environment. Each ligand coordinates in a bridging mode to connect ZnII ions into a three-dimensional diamondoid-type structure.

Related literature

For related literature, see: Dai et al. (2005[Dai, Y. M., Tang, E. Ma. E., Zhang, J., Li, Z. J. & Yao, Y. G. (2005). Cryst. Growth Des. 5, 1313-1315.]); Evans et al. (1999[Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536-538.]); Tang et al. (2004[Tang, E., Dai, Y.-M. & Lin, S. (2004). Acta Cryst. C60, m433-m434.]); Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O4)(C13H14N2)]

  • Mr = 427.76

  • Monoclinic, P 21 /c

  • a = 11.0418 (13) Å

  • b = 11.1924 (14) Å

  • c = 16.8687 (17) Å

  • β = 115.249 (7)°

  • V = 1885.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.733, Tmax = 0.875

  • 14111 measured reflections

  • 4328 independent reflections

  • 3887 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.04

  • 4328 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O2 1.9511 (17)
Zn1—O4i 1.9621 (17)
Zn1—N2 2.041 (2)
Zn1—N1 2.051 (2)
O2—Zn1—O4i 101.92 (7)
O2—Zn1—N2 114.19 (8)
O4i—Zn1—N2 122.01 (8)
O2—Zn1—N1 109.01 (8)
O4i—Zn1—N1 100.98 (8)
N2—Zn1—N1 107.55 (8)
Symmetry code: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1997[Siemens (1997). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large family of coordination polymers has been developed recently owing to their potential applications as functional solid materials and their intriguing architectures or topologies (Evans et al., 1999; Fujita et al., 1994). It is now well understood that the hydrothermal crystallization of metal centers with multidentate N– or O-donor ligands, which possess more rich coordination sites and a wide variety of shapes to facilitate the formation of various networks, is one of the useful approaches to assembly desired new materials. An impressive literature of one-, two- and three-dimensional frameworks based on these ligands (Dai et al., 2005,Tang et al., 2004) with various structural motifs, such as helical, brick wall, ladder, honeycomb, square grid, parquet, and diamondoid, have been reported to date. Here we report the synthesis and crystal structure of the title compound (I).

In (I) [Fig. 1] each ZnII ion coordinates to two pyridine N atoms of two bpp ligands and two carboxylate groups of two ip ligands, in monodentate modes, giving a distorted tetrahedral coordination environment. Both bpp and ip ligands coordinate in bridging modes to for a three-dimensional diamondoid structure with Zn···Zn separations of 9.425 and 12.745Å and formimg cavities within the structure (Fig. 2).

Related literature top

For related literature, see: Dai et al. (2005); Evans et al. (1999); Tang et al. (2004); Fujita et al. (1994).

Experimental top

A mixture of Zn(Ac)2 H2O (1.00 mmol, 0.22 g), bpp (1.00 mmol, 0.19 g), H2ip (1.00 mmol, 0.16 g) and H2O (15 ml) was vigorous stirring until the pH was adjusted to 6 by adding 10% NaOH. This mixture was heated at 433 K for 3 days in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at 50 K h-1, orange prism-shaped crystals were isolated, which were washed with ethanol and dried in air.

Refinement top

H atoms were positioned geometrically and refined using a riding model [C—H 0.93–0.97Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1997); data reduction: SAINT (Siemens, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing 30% probability displacement ellipsoids. A symmetry related O atom is shown to complete the tetrahedral coordination [symmetry code: (A) x, 5/2 - y, 1/2 + z]. H atoms are not shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound.
Poly[µ2-benzene-1,3-dicarboxylato-κ2O:O'-µ2-1,3-di-4-πyridylpropane-κ2N:N'-zinc(II)] top
Crystal data top
[Zn(C8H4O4)(C13H14N2)]F(000) = 880
Mr = 427.76Dx = 1.507 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4994 reflections
a = 11.0418 (13) Åθ = 3.2–27.5°
b = 11.1924 (14) ŵ = 1.33 mm1
c = 16.8687 (17) ÅT = 293 K
β = 115.249 (7)°Prism, orange
V = 1885.5 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4328 independent reflections
Radiation source: fine-focus sealed tube3887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.733, Tmax = 0.875k = 1114
14111 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0695P)2 + 1.1112P]
where P = (Fo2 + 2Fc2)/3
4328 reflections(Δ/σ)max = 0.002
254 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Zn(C8H4O4)(C13H14N2)]V = 1885.5 (4) Å3
Mr = 427.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0418 (13) ŵ = 1.33 mm1
b = 11.1924 (14) ÅT = 293 K
c = 16.8687 (17) Å0.30 × 0.20 × 0.10 mm
β = 115.249 (7)°
Data collection top
Bruker SMART CCD
diffractometer
4328 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3887 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.875Rint = 0.020
14111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
4328 reflectionsΔρmin = 0.76 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.21026 (3)1.06213 (2)0.850451 (16)0.03187 (11)
O10.1788 (2)0.88899 (17)0.71665 (12)0.0485 (5)
O20.2385 (2)1.07900 (15)0.74443 (11)0.0405 (4)
O30.2086 (3)1.3428 (2)0.50730 (17)0.0828 (9)
O40.22045 (18)1.27148 (16)0.38941 (11)0.0412 (4)
N10.0122 (2)1.02485 (18)0.81573 (13)0.0346 (4)
N20.3207 (2)0.92958 (18)0.93261 (13)0.0379 (5)
C10.1641 (2)1.0385 (2)0.43263 (15)0.0375 (5)
H1A0.15591.04900.37590.045*
C20.1551 (2)0.9102 (2)0.54416 (16)0.0354 (5)
H2A0.13870.83540.56160.042*
C30.0341 (3)0.9129 (2)0.81017 (17)0.0388 (5)
H3A0.02550.84980.82010.047*
C40.4016 (3)0.9562 (3)0.7578 (2)0.0491 (7)
H4A0.40540.94420.81370.059*
H4B0.45331.02720.73130.059*
C50.1657 (3)0.8869 (2)0.79050 (16)0.0410 (5)
H5A0.19310.80780.78750.049*
C60.2578 (2)0.9791 (2)0.77504 (15)0.0370 (5)
C70.1420 (3)0.9271 (2)0.45968 (17)0.0407 (6)
H7A0.11820.86320.42070.049*
C80.2136 (2)1.1160 (2)0.57552 (14)0.0333 (5)
H8A0.23801.17980.61460.040*
C90.1985 (2)1.1341 (2)0.49008 (14)0.0332 (5)
C100.2109 (3)1.2590 (2)0.46194 (16)0.0403 (5)
C110.2035 (2)0.9872 (2)0.69431 (14)0.0322 (5)
C120.4479 (2)0.7383 (2)1.04535 (15)0.0353 (5)
C130.1929 (2)1.0050 (2)0.60318 (14)0.0302 (4)
C140.3843 (5)0.8270 (3)1.0680 (2)0.0765 (12)
H14A0.38290.82521.12270.092*
C150.3220 (5)0.9198 (3)1.0112 (2)0.0780 (13)
H15A0.27900.97821.02900.094*
C160.3822 (3)0.8432 (3)0.91049 (19)0.0596 (9)
H16A0.38290.84690.85560.072*
C170.4451 (3)0.7481 (3)0.96411 (18)0.0575 (8)
H17A0.48620.69000.94460.069*
C180.0769 (3)1.1138 (2)0.79964 (17)0.0413 (5)
H18A0.04721.19210.80270.050*
C190.4686 (3)0.8497 (2)0.69901 (16)0.0424 (6)
H19A0.41470.77900.72310.051*
H19B0.55540.83650.69900.051*
C200.5127 (2)0.6335 (2)1.10512 (16)0.0393 (5)
H20A0.59960.61901.10550.047*
H20B0.45820.56301.08110.047*
C210.2100 (3)1.0941 (2)0.77886 (18)0.0429 (6)
H21A0.26821.15860.76730.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03897 (18)0.03055 (17)0.02643 (16)0.00058 (10)0.01427 (12)0.00286 (9)
O10.0735 (13)0.0335 (9)0.0400 (9)0.0039 (9)0.0257 (9)0.0072 (8)
O20.0602 (11)0.0360 (9)0.0325 (8)0.0046 (8)0.0266 (8)0.0023 (7)
O30.166 (3)0.0358 (11)0.0722 (15)0.0180 (14)0.0749 (18)0.0039 (11)
O40.0501 (10)0.0401 (9)0.0381 (9)0.0086 (8)0.0233 (8)0.0138 (7)
N10.0386 (10)0.0289 (9)0.0346 (9)0.0028 (8)0.0139 (8)0.0002 (8)
N20.0436 (11)0.0367 (11)0.0306 (10)0.0021 (8)0.0131 (9)0.0055 (8)
C10.0402 (12)0.0450 (13)0.0271 (10)0.0023 (10)0.0143 (9)0.0005 (10)
C20.0417 (12)0.0290 (11)0.0362 (11)0.0001 (9)0.0173 (10)0.0000 (9)
C30.0459 (13)0.0282 (11)0.0433 (13)0.0008 (10)0.0198 (11)0.0017 (10)
C40.0458 (14)0.0557 (17)0.0506 (15)0.0129 (12)0.0250 (13)0.0232 (13)
C50.0525 (14)0.0300 (12)0.0417 (13)0.0090 (10)0.0213 (11)0.0047 (10)
C60.0410 (12)0.0406 (13)0.0301 (10)0.0072 (10)0.0160 (9)0.0095 (10)
C70.0514 (15)0.0356 (13)0.0346 (12)0.0032 (10)0.0180 (11)0.0090 (10)
C80.0411 (12)0.0304 (11)0.0301 (10)0.0019 (9)0.0167 (9)0.0020 (9)
C90.0369 (11)0.0338 (12)0.0306 (10)0.0009 (9)0.0160 (9)0.0043 (9)
C100.0510 (14)0.0363 (13)0.0370 (12)0.0009 (10)0.0221 (11)0.0055 (10)
C110.0365 (11)0.0316 (11)0.0301 (10)0.0039 (9)0.0157 (9)0.0031 (9)
C120.0342 (11)0.0348 (12)0.0343 (11)0.0005 (9)0.0121 (9)0.0042 (9)
C130.0324 (10)0.0300 (11)0.0296 (10)0.0029 (8)0.0146 (8)0.0019 (8)
C140.145 (4)0.0503 (18)0.0402 (15)0.042 (2)0.046 (2)0.0145 (13)
C150.148 (4)0.0481 (17)0.0414 (16)0.046 (2)0.044 (2)0.0115 (13)
C160.0671 (19)0.078 (2)0.0407 (14)0.0318 (17)0.0300 (14)0.0196 (14)
C170.0651 (18)0.069 (2)0.0436 (14)0.0355 (16)0.0278 (14)0.0143 (14)
C180.0454 (13)0.0274 (12)0.0484 (14)0.0035 (10)0.0175 (11)0.0010 (10)
C190.0398 (13)0.0458 (14)0.0429 (13)0.0119 (11)0.0190 (11)0.0146 (11)
C200.0399 (13)0.0367 (13)0.0417 (12)0.0067 (10)0.0179 (10)0.0076 (10)
C210.0429 (14)0.0339 (12)0.0493 (14)0.0026 (11)0.0172 (12)0.0044 (11)
Geometric parameters (Å, º) top
Zn1—O21.9511 (17)C5—H5A0.9300
Zn1—O4i1.9621 (17)C6—C211.383 (4)
Zn1—N22.041 (2)C7—H7A0.9300
Zn1—N12.051 (2)C8—C91.393 (3)
O1—C111.230 (3)C8—C131.381 (3)
O2—C111.281 (3)C8—H8A0.9300
O3—C101.218 (3)C9—C101.501 (3)
O4—C101.279 (3)C11—C131.504 (3)
O4—Zn1ii1.9621 (17)C12—C141.361 (4)
N1—C181.343 (3)C12—C171.362 (3)
N1—C31.342 (3)C12—C201.513 (3)
N2—C161.323 (4)C14—C151.381 (4)
N2—C151.324 (4)C14—H14A0.9300
C1—C91.384 (3)C15—H15A0.9300
C1—C71.384 (4)C16—C171.377 (4)
C1—H1A0.9300C16—H16A0.9300
C2—C71.383 (3)C17—H17A0.9300
C2—C131.392 (3)C18—C211.376 (4)
C2—H2A0.9300C18—H18A0.9300
C3—C51.376 (4)C19—C20iii1.519 (3)
C3—H3A0.9300C19—H19A0.9700
C4—C191.524 (3)C19—H19B0.9700
C4—C61.509 (4)C20—C19iv1.519 (3)
C4—H4A0.9700C20—H20A0.9700
C4—H4B0.9700C20—H20B0.9700
C5—C61.393 (4)C21—H21A0.9300
O2—Zn1—O4i101.92 (7)C1—C9—C10122.2 (2)
O2—Zn1—N2114.19 (8)O3—C10—O4123.3 (2)
O4i—Zn1—N2122.01 (8)O3—C10—C9119.3 (2)
O2—Zn1—N1109.01 (8)O4—C10—C9117.4 (2)
O4i—Zn1—N1100.98 (8)O1—C11—O2123.9 (2)
N2—Zn1—N1107.55 (8)O1—C11—C13120.0 (2)
C11—O2—Zn1113.99 (14)O2—C11—C13116.04 (19)
C10—O4—Zn1ii114.07 (17)C14—C12—C17115.5 (2)
C18—N1—C3117.0 (2)C14—C12—C20122.2 (2)
C18—N1—Zn1120.43 (17)C17—C12—C20122.3 (2)
C3—N1—Zn1122.55 (17)C8—C13—C2119.1 (2)
C16—N2—C15115.7 (2)C8—C13—C11120.8 (2)
C16—N2—Zn1124.72 (18)C2—C13—C11120.0 (2)
C15—N2—Zn1119.2 (2)C12—C14—C15121.2 (3)
C9—C1—C7120.0 (2)C12—C14—H14A119.4
C9—C1—H1A120.0C15—C14—H14A119.4
C7—C1—H1A120.0N2—C15—C14123.1 (3)
C7—C2—C13120.1 (2)N2—C15—H15A118.4
C7—C2—H2A120.0C14—C15—H15A118.4
C13—C2—H2A120.0N2—C16—C17123.7 (2)
N1—C3—C5123.1 (2)N2—C16—H16A118.1
N1—C3—H3A118.5C17—C16—H16A118.1
C5—C3—H3A118.5C16—C17—C12120.8 (3)
C19—C4—C6115.9 (2)C16—C17—H17A119.6
C19—C4—H4A108.3C12—C17—H17A119.6
C6—C4—H4A108.3N1—C18—C21122.9 (2)
C19—C4—H4B108.3N1—C18—H18A118.5
C6—C4—H4B108.3C21—C18—H18A118.5
H4A—C4—H4B107.4C20iii—C19—C4113.2 (2)
C3—C5—C6120.0 (2)C20iii—C19—H19A108.9
C3—C5—H5A120.0C4—C19—H19A108.9
C6—C5—H5A120.0C20iii—C19—H19B108.9
C5—C6—C21116.6 (2)C4—C19—H19B108.9
C5—C6—C4122.3 (2)H19A—C19—H19B107.7
C21—C6—C4121.1 (2)C12—C20—C19iv114.5 (2)
C2—C7—C1120.5 (2)C12—C20—H20A108.6
C2—C7—H7A119.8C19iv—C20—H20A108.6
C1—C7—H7A119.8C12—C20—H20B108.6
C9—C8—C13121.1 (2)C19iv—C20—H20B108.6
C9—C8—H8A119.5H20A—C20—H20B107.6
C13—C8—H8A119.5C18—C21—C6120.4 (2)
C8—C9—C1119.2 (2)C18—C21—H21A119.8
C8—C9—C10118.4 (2)C6—C21—H21A119.8
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+5/2, z1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O4)(C13H14N2)]
Mr427.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0418 (13), 11.1924 (14), 16.8687 (17)
β (°) 115.249 (7)
V3)1885.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.733, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
14111, 4328, 3887
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.04
No. of reflections4328
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.76

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O21.9511 (17)Zn1—N22.041 (2)
Zn1—O4i1.9621 (17)Zn1—N12.051 (2)
O2—Zn1—O4i101.92 (7)O2—Zn1—N1109.01 (8)
O2—Zn1—N2114.19 (8)O4i—Zn1—N1100.98 (8)
O4i—Zn1—N2122.01 (8)N2—Zn1—N1107.55 (8)
Symmetry code: (i) x, y+5/2, z+1/2.
 

Acknowledgements

This work was financially supported by the Youth Talent Foundation of Fujian Province (2006F3010330083).

References

First citationDai, Y. M., Tang, E. Ma. E., Zhang, J., Li, Z. J. & Yao, Y. G. (2005). Cryst. Growth Des. 5, 1313–1315.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536–538.  CrossRef CAS Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1997). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTang, E., Dai, Y.-M. & Lin, S. (2004). Acta Cryst. C60, m433–m434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds