metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-N′-[1-(5-bromo-2-oxidophen­yl)ethyl­­idene]benzene­sulfono­hydrazidato}-κ3O2,N′:N;κ3N:O2,N′-bis­­[(di­methyl sulfoxide-κO)copper(II)]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 January 2008; accepted 21 January 2008; online 25 January 2008)

In the title centrosymmetric dinuclear complex, [Cu2(C15H11BrN2O3S)2(C2H6OS)2], the CuII ion is N,O-chelated by a dianionic ligand, monocoordinated by the sulfonamide N atom of a symmetry-related ligand and coordinated by an O atom from a dimethyl sulfoxide ligand, forming a distorted square-planar coordination geometry.

Related literature

For the structure of 2′-[1-(2-hydroxy­phen­yl)ethyl­idene]benzene­sulfonohydrazide, see: Ali et al. (2007[Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617-o1618.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C15H11BrN2O3S)2(C2H6OS)2]

  • Mr = 1017.77

  • Triclinic, [P \overline 1]

  • a = 8.0831 (1) Å

  • b = 10.4972 (2) Å

  • c = 12.9481 (2) Å

  • α = 68.157 (1)°

  • β = 74.928 (1)°

  • γ = 70.691 (1)°

  • V = 950.56 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 123 (2) K

  • 0.40 × 0.31 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.335, Tmax = 0.542 (expected range = 0.308–0.497)

  • 12330 measured reflections

  • 4318 independent reflections

  • 3788 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.151

  • S = 1.21

  • 4318 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.894 (3)
Cu1—O4 1.986 (3)
Cu1—N1 1.967 (3)
Cu1—N2i 2.026 (3)
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of 2'-[1-(2-hydroxyphenyl)ethylidene]benzenesulfonohydrazide, see: Ali et al. (2007).

Experimental top

The Schiff base ligand was synthesized by refluxing 5-bromo-2-hydroxyacetophenone (0.6 g, 2.8 mmol) with benzene sulfonohydrazide (0.48 g,2.8 mmol)in ethanol for 2 h. The ligand then was refluxed with Copper (II) acetate for 5 h. The brown crystal were obtained by recrystalization the product from DMSO.

Refinement top

All H atoms were placed in calculated positions (C–H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation with Uiso(H) set to 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level, and H atoms shown as spheres of arbitrary radii [symmetry code: (i) -x + 2, -y + 1, -z].
Bis{µ-N'-[1-(5-bromo-2- oxidophenyl)ethylidene]benzenesulfonohydrazidato}- κ3O2,N':N;κ3N:N',O2-bis[(dimethyl sulfoxide-κO)copper(II)] top
Crystal data top
[Cu2(C15H11BrN2O3S)2(C2H6OS)2]Z = 1
Mr = 1017.77F(000) = 510
Triclinic, P1Dx = 1.778 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0831 (1) ÅCell parameters from 7546 reflections
b = 10.4972 (2) Åθ = 2.7–31.0°
c = 12.9481 (2) ŵ = 3.49 mm1
α = 68.157 (1)°T = 123 K
β = 74.928 (1)°Block, green
γ = 70.691 (1)°0.40 × 0.31 × 0.20 mm
V = 950.56 (3) Å3
Data collection top
Bruker APEXII
diffractometer
4318 independent reflections
Radiation source: medium-focus sealed tube3788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.335, Tmax = 0.542k = 1313
12330 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0827P)2 + 1.8365P]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 1.75 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Cu2(C15H11BrN2O3S)2(C2H6OS)2]γ = 70.691 (1)°
Mr = 1017.77V = 950.56 (3) Å3
Triclinic, P1Z = 1
a = 8.0831 (1) ÅMo Kα radiation
b = 10.4972 (2) ŵ = 3.49 mm1
c = 12.9481 (2) ÅT = 123 K
α = 68.157 (1)°0.40 × 0.31 × 0.20 mm
β = 74.928 (1)°
Data collection top
Bruker APEXII
diffractometer
4318 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3788 reflections with I > 2σ(I)
Tmin = 0.335, Tmax = 0.542Rint = 0.027
12330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.21Δρmax = 1.75 e Å3
4318 reflectionsΔρmin = 0.89 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33316 (6)0.23924 (5)0.54963 (4)0.03789 (17)
Cu11.09563 (6)0.32031 (5)0.10740 (4)0.02020 (15)
S11.13219 (13)0.63204 (10)0.05283 (8)0.0213 (2)
S21.41379 (13)0.06832 (10)0.18255 (8)0.0230 (2)
O11.0528 (4)0.2167 (3)0.2622 (3)0.0285 (6)
O21.2628 (4)0.4956 (3)0.0677 (3)0.0278 (6)
O31.1615 (4)0.7489 (3)0.0472 (3)0.0292 (7)
O41.3150 (4)0.1704 (3)0.0840 (2)0.0253 (6)
N10.9142 (4)0.4879 (3)0.1354 (3)0.0195 (6)
N20.9352 (4)0.6205 (3)0.0558 (3)0.0198 (6)
C10.8917 (5)0.2298 (4)0.3191 (3)0.0219 (8)
C20.8558 (6)0.1098 (5)0.4082 (3)0.0269 (9)
H20.94720.02360.42120.032*
C30.6946 (6)0.1120 (5)0.4770 (3)0.0274 (9)
H30.67590.02940.53700.033*
C40.5591 (6)0.2368 (5)0.4575 (3)0.0249 (8)
C50.5843 (5)0.3557 (4)0.3695 (4)0.0243 (8)
H50.48890.43930.35690.029*
C60.7481 (5)0.3565 (4)0.2975 (3)0.0208 (7)
C70.7691 (5)0.4889 (4)0.2075 (3)0.0217 (8)
C80.6221 (7)0.6230 (5)0.1999 (5)0.0392 (12)
H8A0.66310.70330.14280.059*
H8B0.58750.63960.27310.059*
H8C0.51980.61350.17880.059*
C101.1190 (5)0.6831 (4)0.1713 (3)0.0220 (8)
C111.1381 (6)0.5793 (5)0.2752 (4)0.0269 (8)
H111.15580.48220.28330.032*
C121.1307 (6)0.6200 (5)0.3673 (4)0.0318 (9)
H121.14180.55050.43930.038*
C131.1072 (6)0.7618 (5)0.3547 (4)0.0327 (10)
H131.10640.78840.41740.039*
C141.0849 (6)0.8649 (5)0.2507 (4)0.0304 (9)
H141.06560.96220.24290.036*
C151.0910 (6)0.8258 (4)0.1583 (4)0.0249 (8)
H151.07610.89570.08690.030*
C161.6285 (6)0.0005 (5)0.1132 (4)0.0294 (9)
H16A1.61900.05420.06900.044*
H16B1.70600.06130.16940.044*
H16C1.67860.07970.06310.044*
C171.4719 (6)0.1775 (5)0.2371 (4)0.0310 (9)
H17A1.36690.22150.28230.046*
H17B1.51680.25190.17460.046*
H17C1.56400.11930.28440.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0284 (3)0.0359 (3)0.0357 (3)0.01063 (19)0.00829 (19)0.0030 (2)
Cu10.0171 (3)0.0210 (3)0.0222 (3)0.00342 (18)0.00075 (18)0.00929 (19)
S10.0190 (5)0.0249 (5)0.0240 (5)0.0098 (4)0.0014 (3)0.0118 (4)
S20.0192 (5)0.0238 (5)0.0253 (5)0.0066 (4)0.0020 (4)0.0070 (4)
O10.0205 (14)0.0309 (15)0.0248 (14)0.0000 (12)0.0005 (11)0.0063 (12)
O20.0179 (14)0.0312 (16)0.0391 (17)0.0064 (12)0.0007 (12)0.0200 (13)
O30.0320 (17)0.0352 (16)0.0255 (15)0.0200 (14)0.0015 (13)0.0095 (13)
O40.0220 (14)0.0278 (14)0.0245 (14)0.0011 (11)0.0040 (11)0.0130 (12)
N10.0206 (16)0.0187 (15)0.0205 (15)0.0074 (12)0.0020 (12)0.0063 (12)
N20.0201 (16)0.0205 (15)0.0214 (15)0.0094 (12)0.0014 (12)0.0074 (12)
C10.0202 (18)0.0271 (19)0.0204 (18)0.0047 (15)0.0025 (14)0.0113 (15)
C20.030 (2)0.0246 (19)0.0213 (19)0.0012 (16)0.0058 (16)0.0085 (15)
C30.036 (2)0.0252 (19)0.0199 (18)0.0089 (17)0.0040 (17)0.0047 (15)
C40.024 (2)0.029 (2)0.0213 (18)0.0088 (16)0.0002 (15)0.0081 (16)
C50.0196 (18)0.0247 (19)0.028 (2)0.0055 (15)0.0014 (15)0.0090 (16)
C60.0190 (18)0.0193 (17)0.0245 (18)0.0061 (14)0.0008 (15)0.0081 (14)
C70.0190 (18)0.0202 (18)0.0255 (19)0.0070 (14)0.0012 (15)0.0084 (15)
C80.030 (2)0.021 (2)0.046 (3)0.0012 (18)0.011 (2)0.0033 (19)
C100.0177 (18)0.0252 (19)0.0275 (19)0.0056 (15)0.0009 (15)0.0149 (16)
C110.025 (2)0.026 (2)0.029 (2)0.0045 (16)0.0016 (16)0.0115 (16)
C120.029 (2)0.038 (2)0.027 (2)0.0038 (19)0.0042 (17)0.0122 (18)
C130.030 (2)0.044 (3)0.032 (2)0.0112 (19)0.0001 (18)0.023 (2)
C140.030 (2)0.030 (2)0.037 (2)0.0118 (18)0.0038 (18)0.0194 (19)
C150.024 (2)0.0241 (19)0.027 (2)0.0099 (16)0.0023 (16)0.0099 (16)
C160.023 (2)0.027 (2)0.038 (2)0.0021 (16)0.0020 (17)0.0153 (18)
C170.031 (2)0.038 (2)0.031 (2)0.0086 (19)0.0062 (18)0.0181 (19)
Geometric parameters (Å, º) top
Br1—C41.902 (4)C5—H50.9500
Cu1—O11.894 (3)C6—C71.472 (5)
Cu1—O41.986 (3)C7—C81.501 (6)
Cu1—N11.967 (3)C8—H8A0.9800
Cu1—N2i2.026 (3)C8—H8B0.9800
S1—O31.445 (3)C8—H8C0.9800
S1—O21.450 (3)C10—C111.388 (6)
S1—N21.626 (3)C10—C151.390 (6)
S1—C101.772 (4)C11—C121.391 (6)
S2—O41.537 (3)C11—H110.9500
S2—C171.779 (4)C12—C131.387 (7)
S2—C161.781 (4)C12—H120.9500
O1—C11.310 (5)C13—C141.389 (7)
N1—C71.295 (5)C13—H130.9500
N1—N21.423 (4)C14—C151.388 (6)
N2—Cu1i2.026 (3)C14—H140.9500
C1—C21.410 (6)C15—H150.9500
C1—C61.438 (5)C16—H16A0.9800
C2—C31.372 (6)C16—H16B0.9800
C2—H20.9500C16—H16C0.9800
C3—C41.388 (6)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—C51.374 (6)C17—H17C0.9800
C5—C61.407 (6)
O1—Cu1—N189.77 (13)C1—C6—C7122.5 (4)
O1—Cu1—O491.02 (13)N1—C7—C6119.4 (3)
N1—Cu1—O4167.44 (13)N1—C7—C8120.8 (4)
O1—Cu1—N2i153.28 (14)C6—C7—C8119.7 (4)
N1—Cu1—N2i93.89 (13)C7—C8—H8A109.5
O4—Cu1—N2i91.03 (13)C7—C8—H8B109.5
O3—S1—O2118.67 (19)H8A—C8—H8B109.5
O3—S1—N2105.18 (18)C7—C8—H8C109.5
O2—S1—N2112.07 (17)H8A—C8—H8C109.5
O3—S1—C10107.86 (19)H8B—C8—H8C109.5
O2—S1—C10106.05 (19)C11—C10—C15121.3 (4)
N2—S1—C10106.37 (18)C11—C10—S1119.2 (3)
O4—S2—C17105.9 (2)C15—C10—S1119.5 (3)
O4—S2—C16102.9 (2)C10—C11—C12118.8 (4)
C17—S2—C1698.1 (2)C10—C11—H11120.6
C1—O1—Cu1121.3 (3)C12—C11—H11120.6
S2—O4—Cu1120.97 (17)C13—C12—C11120.3 (4)
C7—N1—N2117.5 (3)C13—C12—H12119.8
C7—N1—Cu1127.0 (3)C11—C12—H12119.8
N2—N1—Cu1114.7 (2)C12—C13—C14120.3 (4)
N1—N2—S1108.2 (2)C12—C13—H13119.9
N1—N2—Cu1i122.8 (2)C14—C13—H13119.9
S1—N2—Cu1i105.85 (17)C15—C14—C13119.9 (4)
O1—C1—C2117.5 (4)C15—C14—H14120.0
O1—C1—C6125.2 (4)C13—C14—H14120.0
C2—C1—C6117.3 (4)C14—C15—C10119.3 (4)
C3—C2—C1122.9 (4)C14—C15—H15120.4
C3—C2—H2118.5C10—C15—H15120.4
C1—C2—H2118.5S2—C16—H16A109.5
C2—C3—C4119.0 (4)S2—C16—H16B109.5
C2—C3—H3120.5H16A—C16—H16B109.5
C4—C3—H3120.5S2—C16—H16C109.5
C5—C4—C3120.7 (4)H16A—C16—H16C109.5
C5—C4—Br1119.9 (3)H16B—C16—H16C109.5
C3—C4—Br1119.3 (3)S2—C17—H17A109.5
C4—C5—C6121.5 (4)S2—C17—H17B109.5
C4—C5—H5119.2H17A—C17—H17B109.5
C6—C5—H5119.2S2—C17—H17C109.5
C5—C6—C1118.4 (4)H17A—C17—H17C109.5
C5—C6—C7119.0 (4)H17B—C17—H17C109.5
N1—Cu1—O1—C140.0 (3)C3—C4—C5—C61.3 (7)
O4—Cu1—O1—C1152.5 (3)Br1—C4—C5—C6178.1 (3)
N2i—Cu1—O1—C158.2 (5)C4—C5—C6—C11.1 (6)
C17—S2—O4—Cu158.7 (3)C4—C5—C6—C7177.5 (4)
C16—S2—O4—Cu1161.2 (2)O1—C1—C6—C5177.2 (4)
O1—Cu1—O4—S223.1 (2)C2—C1—C6—C53.2 (6)
N1—Cu1—O4—S270.5 (7)O1—C1—C6—C70.9 (6)
N2i—Cu1—O4—S2176.4 (2)C2—C1—C6—C7179.6 (4)
O1—Cu1—N1—C734.4 (4)N2—N1—C7—C6174.7 (3)
O4—Cu1—N1—C7128.1 (6)Cu1—N1—C7—C615.4 (5)
N2i—Cu1—N1—C7119.1 (3)N2—N1—C7—C85.6 (6)
O1—Cu1—N1—N2155.5 (3)Cu1—N1—C7—C8164.3 (4)
O4—Cu1—N1—N261.8 (7)C5—C6—C7—N1174.6 (4)
N2i—Cu1—N1—N251.0 (3)C1—C6—C7—N19.1 (6)
C7—N1—N2—S1132.6 (3)C5—C6—C7—C85.1 (6)
Cu1—N1—N2—S156.4 (3)C1—C6—C7—C8171.2 (4)
C7—N1—N2—Cu1i103.8 (4)O3—S1—C10—C11163.2 (3)
Cu1—N1—N2—Cu1i67.3 (3)O2—S1—C10—C1135.1 (4)
O3—S1—N2—N1166.0 (2)N2—S1—C10—C1184.4 (4)
O2—S1—N2—N135.8 (3)O3—S1—C10—C1516.4 (4)
C10—S1—N2—N179.7 (3)O2—S1—C10—C15144.5 (3)
O3—S1—N2—Cu1i32.7 (2)N2—S1—C10—C1596.0 (3)
O2—S1—N2—Cu1i97.6 (2)C15—C10—C11—C120.7 (6)
C10—S1—N2—Cu1i146.95 (18)S1—C10—C11—C12178.8 (3)
Cu1—O1—C1—C2148.7 (3)C10—C11—C12—C130.9 (7)
Cu1—O1—C1—C630.8 (5)C11—C12—C13—C142.1 (7)
O1—C1—C2—C3177.1 (4)C12—C13—C14—C151.7 (7)
C6—C1—C2—C33.3 (6)C13—C14—C15—C100.1 (7)
C1—C2—C3—C41.1 (7)C11—C10—C15—C141.1 (6)
C2—C3—C4—C51.3 (7)S1—C10—C15—C14178.5 (3)
C2—C3—C4—Br1178.2 (3)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C15H11BrN2O3S)2(C2H6OS)2]
Mr1017.77
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.0831 (1), 10.4972 (2), 12.9481 (2)
α, β, γ (°)68.157 (1), 74.928 (1), 70.691 (1)
V3)950.56 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.40 × 0.31 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.335, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
12330, 4318, 3788
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.151, 1.21
No. of reflections4318
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 0.89

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Cu1—O11.894 (3)Cu1—N11.967 (3)
Cu1—O41.986 (3)Cu1—N2i2.026 (3)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12–02-03–2031) and the Fundamental Research Grant Scheme (FP064/2006 A) for supporting this study.

References

First citationAli, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds