metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nitrato(1,10-phenanthroline)(1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 13 January 2008; accepted 17 January 2008; online 23 January 2008)

In the title complex, [Cu(C3H2N3O2)(NO3)(C12H8N2)], the CuII ion is coordinated by an N and an O atom from a bidentate 1H-1,2,4-triazole-3-carboxyl­ate (TRIA) ligand, two N atoms from a 1,10-phenanthroline (phen) ligand, and an O atom from a nitrate ligand in a slightly distorted square-pyramidal environment. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into one-dimensional chains propagating along the b axis direction.

Related literature

For related literature, see: Guo & Wang (2005[Guo, X.-H. & Wang, Q.-X. (2005). Acta Cryst. E61, o3217-o3218.]); Zhu et al. (2007[Zhu, J., Yin, X.-H., Feng, Y., Su, Z.-X. & Lin, C.-W. (2007). Acta Cryst. E63, m3167.]); Zhu, Yin, Feng, Zhang et al. (2008[Zhu, J., Yin, X.-H., Feng, Y., Zhang, S.-S., Zhao, K. & Lin, C.-W. (2008). Acta Cryst. E64, m71.]); Zhu, Yin, Feng, Hu et al. (2008[Zhu, J., Yin, X.-H., Feng, Y., Hu, F.-L., Zhuang, Y. & Lin, C.-W. (2008). Acta Cryst. E64, m119.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3H2N3O2)(NO3)(C12H8N2)]

  • Mr = 417.83

  • Monoclinic, P 21 /c

  • a = 12.3779 (14) Å

  • b = 12.6444 (15) Å

  • c = 10.0196 (10) Å

  • β = 107.416 (2)°

  • V = 1496.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 298 (2) K

  • 0.34 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.628, Tmax = 0.704

  • 7489 measured reflections

  • 2601 independent reflections

  • 2102 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.086

  • S = 1.06

  • 2601 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9540 (19)
Cu1—N4 1.988 (2)
Cu1—N3 2.005 (2)
Cu1—N5 2.015 (2)
Cu1—O3 2.315 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.92 2.775 (3) 172
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In connection with our on-going studies in coordination chemistry (Zhu et al., 2007; Zhu, Yin, Feng, Hu et al., 2008; Zhu, Yin, Feng, Zhang et al., 2008) and the biological importance of triazole molecules (Guo et al., 2005), the crystal structure of a new ternary Cu(II) complex with 1H-1,2,4-triazole-3-carboxylate (TRIA), 1,10-phenanthroline (phen) and NO3 ligands is described. The molecular structure of the title compound is shown in Fig. 1. The CuII ion is bis-chelated by an N and an O atom, from a TRIA ligand, two N atoms from the chelating phen ligand, and the coordination geometry is completed by a O atom from an NO3 ligand. The atom O3 from the NO3 ligand occupies the apical site in a slightly distorted square-pyramidal ON3O coordination environment. The primary intermolecular contacts in the crystal structure are of the type N—H···O and involve the non-coordinating O atom of the carbonyl group and the N—H group of the TRIA ligand.

Related literature top

For related literature, see: Guo & Wang (2005); Zhu et al. (2007); Zhu, Yin, Feng, Zhang et al. (2008); Zhu, Yin, Feng, Hu et al. (2008).

Experimental top

CuNO3.3H2O (0.5 mmol, 120.8 mg) dissolved in distilled water (5 ml) was added with stirring at 323 K to 1H-1,2,4-triazole-3-carboxylic acid (0.5 mmol, 56.5 mg) also dissolved in distilled water (15 ml). The resulting blue solution was allowed to react for 30 min and 1,10-phenanthroline (0.5 mmol, 99.1 mg) dissolved in ethanol (5 ml) was added. Dark-blue crystals suitable for X-ray analysis were obtained by slow evaporation over a period of one month (yield 55%). Analysis. Found: C 43.28, H 2.22, N 20.33, O 19.01%. C15H10CuN6O5 requires: C 43.12, H 2.41, N 20.11, O 19.15%.

Refinement top

H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N–H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.
Nitrato(1,10-phenanthroline)(1H-1,2,4-triazole-3-carboxylato)copper(II) top
Crystal data top
[Cu(C3H2N3O2)(NO3)(C12H8N2)]F(000) = 844
Mr = 417.83Dx = 1.855 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3888 reflections
a = 12.3779 (14) Åθ = 2.7–27.7°
b = 12.6444 (15) ŵ = 1.51 mm1
c = 10.0196 (10) ÅT = 298 K
β = 107.416 (2)°Block, dark-blue
V = 1496.3 (3) Å30.34 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2601 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 148
Tmin = 0.628, Tmax = 0.704k = 1415
7489 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.8762P]
where P = (Fo2 + 2Fc2)/3
2601 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C3H2N3O2)(NO3)(C12H8N2)]V = 1496.3 (3) Å3
Mr = 417.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3779 (14) ŵ = 1.51 mm1
b = 12.6444 (15) ÅT = 298 K
c = 10.0196 (10) Å0.34 × 0.30 × 0.25 mm
β = 107.416 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2601 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2102 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.704Rint = 0.033
7489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
2601 reflectionsΔρmin = 0.29 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.67882 (3)1.02713 (2)0.58353 (3)0.02944 (14)
N10.57639 (19)1.32426 (17)0.6760 (2)0.0321 (5)
H10.57041.39180.68150.039*
N20.52709 (19)1.25284 (17)0.7412 (2)0.0309 (5)
N30.62666 (18)1.17198 (17)0.6177 (2)0.0279 (5)
N40.69970 (18)0.87706 (17)0.5374 (2)0.0277 (5)
N50.78098 (19)1.05325 (17)0.4636 (2)0.0298 (5)
N60.8485 (2)1.07924 (19)0.8885 (2)0.0360 (6)
O10.56644 (17)0.98205 (14)0.6733 (2)0.0369 (5)
O20.46508 (19)1.03880 (15)0.8074 (2)0.0449 (6)
O30.83942 (18)1.03049 (17)0.7753 (2)0.0451 (5)
O40.76459 (19)1.08825 (19)0.9301 (2)0.0512 (6)
O50.9405 (2)1.1152 (2)0.9554 (3)0.0639 (7)
C10.5273 (2)1.0534 (2)0.7344 (3)0.0304 (6)
C20.5598 (2)1.1626 (2)0.7031 (3)0.0268 (6)
C30.6344 (2)1.2759 (2)0.6036 (3)0.0315 (6)
H30.67461.30930.55070.038*
C40.6555 (2)0.7905 (2)0.5753 (3)0.0312 (6)
H4A0.60630.79720.62900.037*
C50.6811 (2)0.6898 (2)0.5364 (3)0.0355 (7)
H5A0.64790.63060.56290.043*
C60.7544 (2)0.6778 (2)0.4597 (3)0.0367 (7)
H60.77140.61070.43360.044*
C70.8041 (2)0.7676 (2)0.4206 (3)0.0300 (6)
C80.7725 (2)0.8658 (2)0.4602 (3)0.0255 (6)
C90.8155 (2)0.9609 (2)0.4195 (2)0.0261 (6)
C100.8887 (2)0.9563 (2)0.3374 (3)0.0314 (6)
C110.9255 (3)1.0523 (3)0.2966 (3)0.0403 (7)
H110.97181.05340.23870.048*
C120.8919 (3)1.1448 (2)0.3435 (3)0.0427 (8)
H120.91691.20920.31900.051*
C130.8209 (2)1.1429 (2)0.4275 (3)0.0375 (7)
H130.80051.20660.45970.045*
C140.8817 (2)0.7653 (2)0.3406 (3)0.0371 (7)
H140.90510.70040.31530.044*
C150.9220 (2)0.8549 (2)0.3007 (3)0.0368 (7)
H150.97250.85080.24830.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0405 (2)0.01967 (19)0.0373 (2)0.00062 (14)0.02555 (16)0.00268 (14)
N10.0420 (14)0.0163 (11)0.0440 (13)0.0013 (10)0.0220 (12)0.0007 (10)
N20.0386 (13)0.0201 (11)0.0407 (13)0.0001 (10)0.0221 (11)0.0015 (10)
N30.0353 (13)0.0223 (11)0.0327 (12)0.0008 (9)0.0202 (10)0.0008 (9)
N40.0314 (12)0.0261 (12)0.0292 (11)0.0020 (10)0.0146 (10)0.0007 (10)
N50.0370 (13)0.0252 (12)0.0329 (12)0.0017 (10)0.0190 (11)0.0019 (10)
N60.0483 (16)0.0258 (12)0.0368 (14)0.0026 (11)0.0172 (13)0.0039 (11)
O10.0511 (13)0.0207 (10)0.0525 (12)0.0022 (8)0.0361 (11)0.0036 (9)
O20.0627 (15)0.0243 (11)0.0683 (14)0.0007 (9)0.0509 (12)0.0013 (10)
O30.0444 (13)0.0571 (15)0.0368 (11)0.0069 (10)0.0165 (10)0.0106 (10)
O40.0593 (15)0.0496 (14)0.0559 (14)0.0053 (11)0.0343 (12)0.0101 (11)
O50.0640 (17)0.0648 (17)0.0596 (15)0.0248 (14)0.0132 (13)0.0089 (13)
C10.0362 (16)0.0225 (13)0.0379 (15)0.0015 (11)0.0194 (13)0.0012 (12)
C20.0298 (14)0.0226 (14)0.0310 (14)0.0013 (11)0.0140 (12)0.0009 (11)
C30.0387 (16)0.0241 (14)0.0367 (15)0.0015 (12)0.0189 (13)0.0011 (12)
C40.0370 (16)0.0276 (14)0.0306 (14)0.0006 (12)0.0129 (13)0.0009 (11)
C50.0420 (17)0.0244 (14)0.0406 (16)0.0032 (12)0.0134 (14)0.0017 (12)
C60.0425 (18)0.0239 (14)0.0427 (16)0.0052 (12)0.0109 (14)0.0039 (12)
C70.0340 (15)0.0281 (15)0.0292 (14)0.0029 (12)0.0112 (12)0.0035 (11)
C80.0267 (14)0.0271 (14)0.0237 (13)0.0011 (11)0.0090 (11)0.0028 (11)
C90.0290 (14)0.0270 (14)0.0243 (13)0.0001 (11)0.0109 (11)0.0019 (11)
C100.0284 (15)0.0396 (17)0.0291 (14)0.0008 (12)0.0130 (12)0.0023 (12)
C110.0413 (18)0.0448 (19)0.0421 (17)0.0041 (14)0.0237 (15)0.0021 (14)
C120.0499 (19)0.0366 (17)0.0524 (19)0.0053 (14)0.0319 (16)0.0055 (14)
C130.0464 (18)0.0246 (15)0.0483 (18)0.0022 (12)0.0245 (15)0.0018 (13)
C140.0417 (17)0.0338 (16)0.0390 (16)0.0071 (13)0.0169 (14)0.0092 (13)
C150.0340 (16)0.0440 (18)0.0389 (16)0.0040 (13)0.0207 (13)0.0072 (13)
Geometric parameters (Å, º) top
Cu1—O11.9540 (19)C3—H30.9300
Cu1—N41.988 (2)C4—C51.396 (4)
Cu1—N32.005 (2)C4—H4A0.9300
Cu1—N52.015 (2)C5—C61.362 (4)
Cu1—O32.315 (2)C5—H5A0.9300
N1—C31.314 (3)C6—C71.402 (4)
N1—N21.361 (3)C6—H60.9300
N1—H10.8600C7—C81.395 (4)
N2—C21.305 (3)C7—C141.424 (4)
N3—C31.329 (3)C8—C91.423 (4)
N3—C21.363 (3)C9—C101.396 (4)
N4—C41.329 (3)C10—C111.401 (4)
N4—C81.359 (3)C10—C151.427 (4)
N5—C131.329 (4)C11—C121.371 (4)
N5—C91.362 (3)C11—H110.9300
N6—O51.223 (3)C12—C131.387 (4)
N6—O41.234 (3)C12—H120.9300
N6—O31.267 (3)C13—H130.9300
O1—C11.266 (3)C14—C151.347 (4)
O2—C11.225 (3)C14—H140.9300
C1—C21.497 (4)C15—H150.9300
O1—Cu1—N489.34 (8)N4—C4—C5121.7 (3)
O1—Cu1—N382.99 (8)N4—C4—H4A119.2
N4—Cu1—N3169.22 (9)C5—C4—H4A119.2
O1—Cu1—N5169.26 (8)C6—C5—C4120.3 (3)
N4—Cu1—N582.50 (9)C6—C5—H5A119.9
N3—Cu1—N5104.10 (9)C4—C5—H5A119.9
O1—Cu1—O3100.15 (8)C5—C6—C7119.3 (3)
N4—Cu1—O394.09 (8)C5—C6—H6120.3
N3—Cu1—O394.71 (8)C7—C6—H6120.3
N5—Cu1—O387.45 (8)C8—C7—C6117.2 (2)
C3—N1—N2110.7 (2)C8—C7—C14118.2 (3)
C3—N1—H1124.6C6—C7—C14124.5 (3)
N2—N1—H1124.6N4—C8—C7123.0 (2)
C2—N2—N1102.5 (2)N4—C8—C9116.3 (2)
C3—N3—C2103.2 (2)C7—C8—C9120.6 (2)
C3—N3—Cu1148.06 (19)N5—C9—C10123.3 (2)
C2—N3—Cu1108.37 (16)N5—C9—C8116.8 (2)
C4—N4—C8118.4 (2)C10—C9—C8119.9 (2)
C4—N4—Cu1128.81 (18)C9—C10—C11117.4 (3)
C8—N4—Cu1112.74 (17)C9—C10—C15118.6 (3)
C13—N5—C9117.7 (2)C11—C10—C15124.0 (3)
C13—N5—Cu1130.77 (19)C12—C11—C10118.8 (3)
C9—N5—Cu1111.51 (17)C12—C11—H11120.6
O5—N6—O4121.3 (3)C10—C11—H11120.6
O5—N6—O3119.4 (3)C11—C12—C13120.3 (3)
O4—N6—O3119.3 (2)C11—C12—H12119.8
C1—O1—Cu1116.28 (17)C13—C12—H12119.8
N6—O3—Cu1125.19 (17)N5—C13—C12122.4 (3)
O2—C1—O1125.5 (2)N5—C13—H13118.8
O2—C1—C2121.4 (2)C12—C13—H13118.8
O1—C1—C2113.0 (2)C15—C14—C7121.5 (3)
N2—C2—N3114.1 (2)C15—C14—H14119.3
N2—C2—C1128.3 (2)C7—C14—H14119.3
N3—C2—C1117.6 (2)C14—C15—C10121.2 (3)
N1—C3—N3109.4 (2)C14—C15—H15119.4
N1—C3—H3125.3C10—C15—H15119.4
N3—C3—H3125.3
C3—N1—N2—C20.2 (3)O1—C1—C2—N2174.8 (3)
O1—Cu1—N3—C3178.1 (4)O2—C1—C2—N3178.1 (3)
N4—Cu1—N3—C3133.1 (5)O1—C1—C2—N31.0 (4)
N5—Cu1—N3—C36.3 (4)N2—N1—C3—N30.2 (3)
O3—Cu1—N3—C382.3 (4)C2—N3—C3—N10.2 (3)
O1—Cu1—N3—C210.49 (17)Cu1—N3—C3—N1171.5 (3)
N4—Cu1—N3—C255.4 (5)C8—N4—C4—C50.7 (4)
N5—Cu1—N3—C2177.73 (17)Cu1—N4—C4—C5178.4 (2)
O3—Cu1—N3—C289.18 (18)N4—C4—C5—C61.1 (4)
O1—Cu1—N4—C45.8 (2)C4—C5—C6—C70.1 (4)
N3—Cu1—N4—C450.4 (6)C5—C6—C7—C81.7 (4)
N5—Cu1—N4—C4178.8 (2)C5—C6—C7—C14179.9 (3)
O3—Cu1—N4—C494.3 (2)C4—N4—C8—C70.9 (4)
O1—Cu1—N4—C8176.37 (18)Cu1—N4—C8—C7177.13 (19)
N3—Cu1—N4—C8131.8 (4)C4—N4—C8—C9178.6 (2)
N5—Cu1—N4—C83.38 (17)Cu1—N4—C8—C93.4 (3)
O3—Cu1—N4—C883.50 (18)C6—C7—C8—N42.1 (4)
O1—Cu1—N5—C13139.0 (4)C14—C7—C8—N4179.5 (2)
N4—Cu1—N5—C13179.9 (3)C6—C7—C8—C9177.4 (2)
N3—Cu1—N5—C138.6 (3)C14—C7—C8—C91.0 (4)
O3—Cu1—N5—C1385.6 (3)C13—N5—C9—C100.9 (4)
O1—Cu1—N5—C943.7 (5)Cu1—N5—C9—C10178.6 (2)
N4—Cu1—N5—C92.82 (17)C13—N5—C9—C8179.5 (2)
N3—Cu1—N5—C9174.14 (17)Cu1—N5—C9—C81.8 (3)
O3—Cu1—N5—C991.65 (18)N4—C8—C9—N51.0 (3)
N4—Cu1—O1—C1175.3 (2)C7—C8—C9—N5179.5 (2)
N3—Cu1—O1—C112.3 (2)N4—C8—C9—C10178.6 (2)
N5—Cu1—O1—C1144.3 (4)C7—C8—C9—C100.9 (4)
O3—Cu1—O1—C181.2 (2)N5—C9—C10—C111.6 (4)
O5—N6—O3—Cu1148.4 (2)C8—C9—C10—C11178.0 (2)
O4—N6—O3—Cu132.6 (3)N5—C9—C10—C15178.1 (2)
O1—Cu1—O3—N652.7 (2)C8—C9—C10—C152.3 (4)
N4—Cu1—O3—N6142.7 (2)C9—C10—C11—C122.6 (4)
N3—Cu1—O3—N631.0 (2)C15—C10—C11—C12177.0 (3)
N5—Cu1—O3—N6135.0 (2)C10—C11—C12—C131.3 (5)
Cu1—O1—C1—O2172.5 (2)C9—N5—C13—C122.4 (4)
Cu1—O1—C1—C210.6 (3)Cu1—N5—C13—C12179.5 (2)
N1—N2—C2—N30.1 (3)C11—C12—C13—N51.3 (5)
N1—N2—C2—C1176.0 (3)C8—C7—C14—C151.6 (4)
C3—N3—C2—N20.0 (3)C6—C7—C14—C15176.7 (3)
Cu1—N3—C2—N2175.33 (18)C7—C14—C15—C100.2 (4)
C3—N3—C2—C1176.3 (2)C9—C10—C15—C141.8 (4)
Cu1—N3—C2—C18.3 (3)C11—C10—C15—C14178.5 (3)
O2—C1—C2—N22.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.922.775 (3)172
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C3H2N3O2)(NO3)(C12H8N2)]
Mr417.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3779 (14), 12.6444 (15), 10.0196 (10)
β (°) 107.416 (2)
V3)1496.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.34 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
7489, 2601, 2102
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.06
No. of reflections2601
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.9540 (19)Cu1—N52.015 (2)
Cu1—N41.988 (2)Cu1—O32.315 (2)
Cu1—N32.005 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.922.775 (3)171.8
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was also sponsored by the Talented Highland Research Programme of Guangxi University, the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation Guangxi Research Institute of Chemical Industry, the Ministry of Education, Science and Technology Key Projects (grant No. 205121), and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012, 0509ZD047), People's Republic of China.

References

First citationGuo, X.-H. & Wang, Q.-X. (2005). Acta Cryst. E61, o3217–o3218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, J., Yin, X.-H., Feng, Y., Hu, F.-L., Zhuang, Y. & Lin, C.-W. (2008). Acta Cryst. E64, m119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, J., Yin, X.-H., Feng, Y., Su, Z.-X. & Lin, C.-W. (2007). Acta Cryst. E63, m3167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, J., Yin, X.-H., Feng, Y., Zhang, S.-S., Zhao, K. & Lin, C.-W. (2008). Acta Cryst. E64, m71.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds