metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η5-Cyclo­penta­dien­yl){[3-(2,2-di­cyano­ethen­yl)bi­cyclo­[2.2.1]hepta-2,5-dien-2-yl]ethyn­yl}(tri­phenyl­phosphine)nickel(II)

aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and bDepartment of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: john.gallagher@dcu.ie

(Received 18 January 2008; accepted 22 January 2008; online 25 January 2008)

The title compound, [Ni(C5H5)(C13H7N2)(C18H15P)] or (η5-C5H5)(PPh3)Ni—C≡C—C7H6—C(H)=C(CN)2, contains an unusual disubstituted norbornadienyl (NBD) ligand containing ethynyl (–C≡C–) and dicyano­vinyl [–C(H)=C(CN)2] groups. Disorder is present in the NBD group with site occupancies of 0.636 (10) and 0.364 (10) for two distinct orientations. There are no strong hydrogen bonds and the primary inter­actions are weak C—H⋯π(arene) inter­actions.

Related literature

For related literature, see: Butler et al. (1998[Butler, P., Gallagher, J. F. & Manning, A. R. (1998). Inorg. Chem. Commun. 1, 343-345.], 2005[Butler, P., Gallagher, J. F., Manning, A. R., Mueller-Bunz, H., McAdam, C. J., Simpson, J. & Robinson, B. H. (2005). J. Organomet. Chem. 690, 4545-4556.], 2007[Butler, P., Gallagher, J. F., Lough, A. J. & Manning, A. R. (2007). Acta Cryst. E63, m1415.]); Gallagher et al. (1998[Gallagher, J. F., Butler, P. & Manning, A. R. (1998). Acta Cryst. C54, 342-345.], 2002[Gallagher, J. F., Butler, P., Hudson, R. D. A. & Manning, A. R. (2002). Dalton Trans. pp. 75-82.]); McArdle (1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); Whittal et al. (1998a[Whittal, I. R., Humphrey, M. G. & Hockless, D. C. R. (1998a). Aust. J. Chem. 51, 219-227.],b[Whittal, I. R., McDonagh, A. M., Humphrey, M. G. & Samoc, M. (1998b). Adv. Organomet. Chem. 42, 291-362.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H5)(C13H7N2)(C18H15P)]

  • Mr = 577.28

  • Triclinic, [P \overline 1]

  • a = 10.7972 (16) Å

  • b = 11.8155 (14) Å

  • c = 12.1248 (14) Å

  • α = 73.169 (5)°

  • β = 78.153 (9)°

  • γ = 78.586 (9)°

  • V = 1433.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 (1) K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.716, Tmax = 0.883 (expected range = 0.645–0.796)

  • 7832 measured reflections

  • 6787 independent reflections

  • 4533 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections every 197 reflections intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 1.01

  • 6787 reflections

  • 407 parameters

  • 94 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯Cg1i 0.93 2.98 3.648 (4) 130
Symmetry code: (i) -x, -y+2, -z. Cg1 is the centroid of the cyclo­penta­dienyl ring.

Data collection: XSCANS (Bruker, 1996[Bruker, (1996). XSCANS, Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998[Ferguson, G. (1998). PREP8. University of Guelph, Canada.]).

Supporting information


Comment top

The acetylide linkage in Ni(η5-C5H5)(PPh3)-CC—X complexes allows facile electronic communication between the electron rich Ni(η5-C5H5)(PPh3) moiety and the X group (X = alkyl, arene) thus affecting the characteristic chemistry of both X and the acetylide linkage (Gallagher et al., 2002). However, if X is an electron withdrawing group the molecule is a donor-π-acceptor (D-π-A) system which may have non-linear optical (NLO) properties (Whittal et al., 1998a,b) although the phenyl derivative (X = C6H5) does not appear to be particularly effective.

We have demonstrated that polycylic hydrocarbons containing 1–5 aromatic rings can act as an electron-donor endgroup in D-π-A systems in the presence of suitable acceptors and have examined their behaviour when attached to the Ni(η5-C5H5)(PPh3) donor moiety (Butler et al., 2005, 2007). The spectroscopic and electrochemical evidence suggests limited communication between either end of these Ni(η5-C5H5)(PPh3)-CC—X systems at least in the ground state and is not sufficient to influence significant changes in the geometric data from diffraction measurements. Herein, we present an unusual norbornadiene derivative (I) (η5-C5H5)(PPh3)Ni—CC-NBD-C(H)=C(CN)2 (where NBD is a 2,3-substituted C7H6 group).

Molecule (I) has a half sandwich structure at the NiII centre and contains the σ-bonded ethynyl-2-norbornadienyl(methylidene)propanedinitrile ligand, a η5-C5H5 ring and triphenylphosphine bonded to the NiII atom. A view of the molecule with atomic numbering scheme is depicted (Fig. 1). The principal Ni-ligand dimensions include Ni1—P1 2.1417 (8) Å, Ni1—C1 1.839 (3) Å, Ni···Cg 1.7444 (16) Å (Cg is the cyclopentadienyl ring centroid), P1—Ni1—C1 87.86 (8)° and similar to geometric data in related derivatives (Gallagher et al., 1998, 2002; Butler et al., 1998, 2005). The acetylide –CC– and spC—CNBD bond lengths are 1.214 (4) Å and 1.403 (4) Å and similar to the geometric data reported for the dicyanovinyl derivative (II) (η5-C5H5)(PPh3)Ni—CC—C(H)=C(CN)2 (Gallagher et al., 2002). The two C=C bond lengths of 1.371 (4) Å (C3=C4) and 1.358 (4) Å (C5=C6) can be explained by an increase of delocalization along the conjugated metallo-ligand chain and the increase in bond lengths often observed in strained ring systems i.e. the C3=C4 in the NBD ring system.

The Ni—CC—C chain bond angles deviate slightly from linearity with Ni—CC 173.6 (2)° and CC—C 171.8 (3)°: this is greater than the two corresponding 176.6 (2)°/177.8 (3)° angles reported for (II) but similar to related systems (Butler et al., 1998) and this can be attributed mainly to crystal packing forces.

The η5-C5H5 ring is orthogonal to the P1/Ni1/C1 plane, 88.84 (10)°. Of interest is the relative co-planarity of atoms in the 11-atom chain Ni1—C1C2—C3=C4—C5=C6(CN)2, where the Ni1 and C8 atoms deviate by a maximum of 0.334 (2) Å and 0.269 (2) Å from the 11-atom plane (the next greatest deviation is C2 by 0.159 (3) Å). This highlights the relative co-planarity of atoms along this chain increasing the potential for conjugation effects.

The closest intramolecular contact to Ni1 involves H22 with H22···Ni1 2.94 Å and C22—H22···Ni1 119° (C22 is the closest PPh3 ortho-C to Ni1 at 3.476 (3) Å). The three Ni1—P—C angles vary as 111.28 (9)°, 113.62 (9)° and 118.31 (8)°. There is a small asymmetry in the PPh3 ligand with four P—C—C angles in the range 119.1 (2)° to 122.5 (2)° at C21 and C31. However, at C41 these P—C—C angles are 117.53 (2)° and 124.5 (2)°. The three P—Cipso···Cpara angles are 179.50 (16)°, 177.56 (15)°, 175.90 (16)° and reflecting the greater phenyl asymmetry at C41.

In the absence of strong hydrogen bond donors or acceptors, C—H···π(arene) interactions involving the PPh3 arene rings arise (details in Table) (Fig. 2). The C33···{C11,···,C15} distances are in the range 3.618 (4) Å to 4.023 (4) Å and C—H···C angles (in Cg1) vary from 108° to 147°.

Related literature top

For related literature, see: Butler et al. (1998, 2005, 2007); Gallagher et al. (1998, 2002); McArdle (1995); Sheldrick (2008); Whittal et al. (1998a,b).

Experimental top

Compound (I) was prepared according to literature methods (Butler et al., 1998, 2005, 2007), (Gallagher et al., 2002) and involves hydrolysis of an acetal precursor to an aldehyde and subsequent reaction with malonitrile H2C(CN)2 to give the dicyanovinyl derivative (title compound). Yield 95%. Crystals suitable for X-ray diffraction were grown from Et2O/hexane. 1H NMR (δ, 270 MHz, CDCl3): 7.68 - 7.37 (m, 15H, PPh3), 6.68 (s, 1H, –CH=), 6.63 and 6.29 (d, 2H, –C(H)=C(H)-), 5.26 (s, 5H, Cp), 4.31, 3.04 (s, 2H, bridgehead H), 1.78 (dd, 1JHH = 8 Hz, 2H, µ-CH2). 13C NMR (δ, 270 MHz, CDCl3): 165.81 (s, Ni—CC), 148.59 and 147.43 (s, C3 and C4), 142.61 and 139.89 (s, C52 A/B and C53 A/B), 132.95 (d, 1JCP = 50 Hz, Ni—C), 133.7 - 128.4 (m, PPh3), 119.33 (s, C(CN)2, 116.59 and 115.37 (s, CN), 93.27 (s, Cp), 67.7 (s, µ-CH2), 57.85 and 47.22 (s, bridgehead C). IR (ν CC, cm-1): 2150 (CH2Cl2); 2152 (KBr) and (ν CN, cm-1): 2216 (CH2Cl2); 2216 (KBr). Microanalysis: calculated for C36H21N2PNi: C, 74.9, H, 4.7, N 4.8; found: C, 74.6, H, 5.2, N 4.8.

Refinement top

In the penultimate stages of refinement it was observed that there was disorder within the norbornadienyl (NBD) –C7H6– moiety: this was resolved and successfully modelled into two partial occupancy A/B residues [C51A/B,···,C55A/B] involving the –C5H6– bridgehead group as two A/B components with site occupancies of 0.636 (10):0.364 (10). The C3=C4 atoms were used as 'anchor' atoms for loose DFIX restraints: DELU/ISOR restraints were also used for the anisotropic displacement parameters (McArdle, 1995; Sheldrick, 2008). The orientational disorder is explained by swapping the NBD group –CH2 and –CH=CH– atoms.

All H atoms attached to aromatic C atoms were treated as riding atoms using the SHELXL97 (Sheldrick, 2008) defaults at 296 (1) K, with C—H distances of 0.93 Å (for aromatic H) and in the range 0.93 to 0.98 Å (for aliphatic C—H) and with Uiso(H) = 1.2Ueq(C) for all H atoms.

Structure description top

The acetylide linkage in Ni(η5-C5H5)(PPh3)-CC—X complexes allows facile electronic communication between the electron rich Ni(η5-C5H5)(PPh3) moiety and the X group (X = alkyl, arene) thus affecting the characteristic chemistry of both X and the acetylide linkage (Gallagher et al., 2002). However, if X is an electron withdrawing group the molecule is a donor-π-acceptor (D-π-A) system which may have non-linear optical (NLO) properties (Whittal et al., 1998a,b) although the phenyl derivative (X = C6H5) does not appear to be particularly effective.

We have demonstrated that polycylic hydrocarbons containing 1–5 aromatic rings can act as an electron-donor endgroup in D-π-A systems in the presence of suitable acceptors and have examined their behaviour when attached to the Ni(η5-C5H5)(PPh3) donor moiety (Butler et al., 2005, 2007). The spectroscopic and electrochemical evidence suggests limited communication between either end of these Ni(η5-C5H5)(PPh3)-CC—X systems at least in the ground state and is not sufficient to influence significant changes in the geometric data from diffraction measurements. Herein, we present an unusual norbornadiene derivative (I) (η5-C5H5)(PPh3)Ni—CC-NBD-C(H)=C(CN)2 (where NBD is a 2,3-substituted C7H6 group).

Molecule (I) has a half sandwich structure at the NiII centre and contains the σ-bonded ethynyl-2-norbornadienyl(methylidene)propanedinitrile ligand, a η5-C5H5 ring and triphenylphosphine bonded to the NiII atom. A view of the molecule with atomic numbering scheme is depicted (Fig. 1). The principal Ni-ligand dimensions include Ni1—P1 2.1417 (8) Å, Ni1—C1 1.839 (3) Å, Ni···Cg 1.7444 (16) Å (Cg is the cyclopentadienyl ring centroid), P1—Ni1—C1 87.86 (8)° and similar to geometric data in related derivatives (Gallagher et al., 1998, 2002; Butler et al., 1998, 2005). The acetylide –CC– and spC—CNBD bond lengths are 1.214 (4) Å and 1.403 (4) Å and similar to the geometric data reported for the dicyanovinyl derivative (II) (η5-C5H5)(PPh3)Ni—CC—C(H)=C(CN)2 (Gallagher et al., 2002). The two C=C bond lengths of 1.371 (4) Å (C3=C4) and 1.358 (4) Å (C5=C6) can be explained by an increase of delocalization along the conjugated metallo-ligand chain and the increase in bond lengths often observed in strained ring systems i.e. the C3=C4 in the NBD ring system.

The Ni—CC—C chain bond angles deviate slightly from linearity with Ni—CC 173.6 (2)° and CC—C 171.8 (3)°: this is greater than the two corresponding 176.6 (2)°/177.8 (3)° angles reported for (II) but similar to related systems (Butler et al., 1998) and this can be attributed mainly to crystal packing forces.

The η5-C5H5 ring is orthogonal to the P1/Ni1/C1 plane, 88.84 (10)°. Of interest is the relative co-planarity of atoms in the 11-atom chain Ni1—C1C2—C3=C4—C5=C6(CN)2, where the Ni1 and C8 atoms deviate by a maximum of 0.334 (2) Å and 0.269 (2) Å from the 11-atom plane (the next greatest deviation is C2 by 0.159 (3) Å). This highlights the relative co-planarity of atoms along this chain increasing the potential for conjugation effects.

The closest intramolecular contact to Ni1 involves H22 with H22···Ni1 2.94 Å and C22—H22···Ni1 119° (C22 is the closest PPh3 ortho-C to Ni1 at 3.476 (3) Å). The three Ni1—P—C angles vary as 111.28 (9)°, 113.62 (9)° and 118.31 (8)°. There is a small asymmetry in the PPh3 ligand with four P—C—C angles in the range 119.1 (2)° to 122.5 (2)° at C21 and C31. However, at C41 these P—C—C angles are 117.53 (2)° and 124.5 (2)°. The three P—Cipso···Cpara angles are 179.50 (16)°, 177.56 (15)°, 175.90 (16)° and reflecting the greater phenyl asymmetry at C41.

In the absence of strong hydrogen bond donors or acceptors, C—H···π(arene) interactions involving the PPh3 arene rings arise (details in Table) (Fig. 2). The C33···{C11,···,C15} distances are in the range 3.618 (4) Å to 4.023 (4) Å and C—H···C angles (in Cg1) vary from 108° to 147°.

For related literature, see: Butler et al. (1998, 2005, 2007); Gallagher et al. (1998, 2002); McArdle (1995); Sheldrick (2008); Whittal et al. (1998a,b).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of the major conformation of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. A view of the NBD disorder in (I): the (cp)(PPh3)Ni—C atoms are omitted for clarity. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 3] Fig. 3. A view of the principal C—H···π(arene) interaction and unit cell in (I) with atoms depicted as their van der Waals spheres. The atom labels C33—H33 and # (cp ring) signify the interaction listed in Table 1.
(η5-Cyclopentadienyl){[3-(2,2-dicyanoethenyl)bicyclo[2.2.1]hepta-2,5- dien-2-yl]ethynyl}(triphenylphosphine)nickel(II) top
Crystal data top
[Ni(C5H5)(C13H7N2)(C18H15P)]Z = 2
Mr = 577.28F(000) = 600
Triclinic, P1Dx = 1.338 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7972 (16) ÅCell parameters from 40 reflections
b = 11.8155 (14) Åθ = 3.6–14.9°
c = 12.1248 (14) ŵ = 0.76 mm1
α = 73.169 (5)°T = 296 K
β = 78.153 (9)°Block, green
γ = 78.586 (9)°0.50 × 0.40 × 0.30 mm
V = 1433.1 (3) Å3
Data collection top
Bruker P4
diffractometer
4533 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.029
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
ω scansh = 114
Absorption correction: ψ scan
(North et al., 1968)
k = 1415
Tmin = 0.716, Tmax = 0.883l = 1516
7832 measured reflections3 standard reflections every 197 reflections
6787 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.2761P]
where P = (Fo2 + 2Fc2)/3
6787 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.33 e Å3
94 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C5H5)(C13H7N2)(C18H15P)]γ = 78.586 (9)°
Mr = 577.28V = 1433.1 (3) Å3
Triclinic, P1Z = 2
a = 10.7972 (16) ÅMo Kα radiation
b = 11.8155 (14) ŵ = 0.76 mm1
c = 12.1248 (14) ÅT = 296 K
α = 73.169 (5)°0.50 × 0.40 × 0.30 mm
β = 78.153 (9)°
Data collection top
Bruker P4
diffractometer
4533 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.716, Tmax = 0.8833 standard reflections every 197 reflections
7832 measured reflections intensity decay: 5%
6787 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04794 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
6787 reflectionsΔρmin = 0.25 e Å3
407 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.27893 (3)0.93823 (3)0.16592 (3)0.04182 (11)
P10.25181 (6)0.75680 (6)0.25072 (6)0.03890 (16)
C70.3069 (4)0.8014 (3)0.7760 (3)0.0742 (10)
N70.2068 (4)0.8081 (4)0.8281 (3)0.1087 (13)
C80.5323 (3)0.7390 (3)0.7788 (3)0.0656 (9)
N80.6099 (3)0.6948 (3)0.8358 (3)0.0900 (10)
C110.3133 (4)1.0983 (3)0.0448 (3)0.0775 (11)
C120.1960 (4)1.1199 (3)0.1177 (3)0.0754 (10)
C130.1155 (3)1.0515 (3)0.1036 (3)0.0673 (9)
C140.1824 (3)0.9861 (3)0.0235 (3)0.0630 (9)
C150.3020 (3)1.0210 (3)0.0173 (3)0.0713 (10)
C210.1743 (2)0.7343 (2)0.4027 (2)0.0411 (6)
C220.1526 (3)0.8261 (3)0.4567 (2)0.0525 (7)
C230.0924 (3)0.8097 (3)0.5709 (3)0.0641 (8)
C240.0546 (3)0.7015 (3)0.6334 (3)0.0654 (9)
C250.0729 (3)0.6103 (3)0.5809 (3)0.0628 (8)
C260.1314 (3)0.6267 (3)0.4661 (2)0.0538 (7)
C310.1525 (2)0.6869 (2)0.1912 (2)0.0404 (6)
C320.0282 (3)0.7414 (3)0.1783 (2)0.0510 (7)
C330.0502 (3)0.6905 (3)0.1360 (3)0.0564 (8)
C340.0066 (3)0.5840 (3)0.1077 (3)0.0621 (8)
C350.1157 (3)0.5280 (3)0.1206 (3)0.0638 (8)
C360.1958 (3)0.5797 (3)0.1611 (2)0.0537 (7)
C410.4038 (2)0.6565 (2)0.2487 (2)0.0416 (6)
C420.4416 (3)0.5703 (3)0.3439 (3)0.0588 (8)
C430.5589 (3)0.4972 (3)0.3331 (3)0.0739 (10)
C440.6380 (3)0.5098 (3)0.2283 (3)0.0677 (9)
C450.6005 (3)0.5934 (3)0.1337 (3)0.0832 (12)
C460.4849 (3)0.6665 (3)0.1434 (3)0.0703 (10)
C10.3981 (2)0.9205 (2)0.2607 (2)0.0437 (6)
C20.4765 (3)0.8968 (2)0.3259 (2)0.0474 (6)
C30.5745 (2)0.8557 (3)0.3944 (2)0.0521 (7)
C40.5668 (3)0.8212 (3)0.5134 (3)0.0717 (10)
C50.4523 (3)0.8275 (3)0.5920 (3)0.0650 (9)
C60.4332 (3)0.7919 (3)0.7104 (3)0.0607 (8)
C51A0.7154 (7)0.8267 (12)0.3422 (11)0.055 (3)0.636 (10)
C52A0.7821 (10)0.9071 (9)0.3796 (7)0.067 (2)0.636 (10)
C53A0.7758 (7)0.8686 (6)0.4953 (7)0.067 (2)0.636 (10)
C55A0.7544 (17)0.7069 (12)0.4307 (8)0.055 (2)0.636 (10)
C54A0.7055 (5)0.7614 (7)0.5348 (6)0.0548 (19)0.636 (10)
C51B0.7190 (9)0.841 (2)0.3499 (18)0.055 (6)0.364 (10)
C52B0.754 (3)0.709 (2)0.4038 (14)0.070 (6)0.364 (10)
C53B0.7446 (10)0.6940 (10)0.5189 (12)0.065 (3)0.364 (10)
C55B0.7770 (16)0.8884 (15)0.4301 (11)0.056 (4)0.364 (10)
C54B0.7028 (9)0.8154 (11)0.5398 (10)0.064 (4)0.364 (10)
H110.38661.13100.03950.093*
H120.17721.17120.16630.090*
H130.03121.04850.14040.081*
H140.15130.92910.00170.076*
H150.36300.99680.07550.086*
H220.17870.89940.41580.063*
H230.07720.87240.60600.077*
H240.01660.69050.71120.078*
H250.04620.53750.62240.075*
H260.14240.56480.43040.065*
H320.00260.81310.19860.061*
H330.13280.72860.12670.068*
H340.05990.54950.07980.074*
H350.14480.45520.10210.077*
H360.27910.54230.16810.064*
H420.38860.56070.41590.071*
H430.58380.43900.39800.089*
H440.71700.46150.22200.081*
H450.65330.60150.06170.100*
H460.46070.72380.07760.084*
H50.37900.86080.55820.078*
H51A0.73380.82740.25950.066*0.636 (10)
H52A0.82060.97160.33100.081*0.636 (10)
H53A0.80840.90130.54250.080*0.636 (10)
H55A0.70840.64380.43180.066*0.636 (10)
H55B0.84590.68000.42100.066*0.636 (10)
H54A0.71470.70830.61230.066*0.636 (10)
H51B0.74620.87000.26570.066*0.364 (10)
H52B0.77670.64900.36460.085*0.364 (10)
H53B0.76120.62240.57470.078*0.364 (10)
H55C0.86900.86560.42470.067*0.364 (10)
H55D0.75390.97400.41990.067*0.364 (10)
H54B0.71050.82560.61540.077*0.364 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03662 (18)0.0448 (2)0.04238 (19)0.00811 (14)0.01386 (14)0.00215 (14)
P10.0332 (3)0.0436 (4)0.0394 (3)0.0066 (3)0.0086 (3)0.0073 (3)
C70.077 (3)0.086 (3)0.0514 (19)0.006 (2)0.0049 (18)0.0218 (18)
N70.084 (3)0.150 (4)0.079 (2)0.007 (2)0.006 (2)0.039 (2)
C80.079 (2)0.068 (2)0.0507 (18)0.0046 (18)0.0169 (17)0.0155 (16)
N80.105 (3)0.099 (2)0.0661 (19)0.004 (2)0.0413 (19)0.0155 (17)
C110.071 (2)0.061 (2)0.088 (3)0.0264 (18)0.039 (2)0.0289 (19)
C120.096 (3)0.0448 (18)0.084 (3)0.0104 (18)0.044 (2)0.0085 (17)
C130.0409 (16)0.077 (2)0.069 (2)0.0022 (16)0.0194 (15)0.0032 (18)
C140.067 (2)0.065 (2)0.0586 (19)0.0101 (17)0.0347 (17)0.0017 (16)
C150.067 (2)0.084 (2)0.0422 (17)0.0023 (19)0.0077 (16)0.0097 (16)
C210.0331 (13)0.0500 (15)0.0407 (14)0.0073 (11)0.0073 (11)0.0105 (12)
C220.0447 (15)0.0619 (18)0.0533 (17)0.0163 (13)0.0014 (13)0.0192 (14)
C230.0578 (19)0.084 (2)0.0586 (19)0.0153 (17)0.0001 (15)0.0341 (18)
C240.0547 (19)0.092 (3)0.0448 (17)0.0148 (17)0.0003 (14)0.0126 (17)
C250.065 (2)0.065 (2)0.0507 (18)0.0206 (16)0.0039 (15)0.0004 (15)
C260.0585 (18)0.0542 (17)0.0488 (16)0.0136 (14)0.0090 (14)0.0095 (13)
C310.0359 (13)0.0494 (15)0.0358 (13)0.0089 (11)0.0054 (10)0.0092 (11)
C320.0391 (14)0.0566 (17)0.0605 (18)0.0020 (12)0.0106 (13)0.0216 (14)
C330.0375 (15)0.077 (2)0.0587 (18)0.0057 (14)0.0137 (13)0.0209 (16)
C340.0533 (18)0.091 (2)0.0549 (18)0.0209 (17)0.0097 (14)0.0317 (17)
C350.062 (2)0.072 (2)0.072 (2)0.0083 (16)0.0144 (16)0.0401 (18)
C360.0434 (15)0.0634 (19)0.0574 (18)0.0028 (13)0.0097 (13)0.0228 (15)
C410.0357 (13)0.0417 (14)0.0466 (15)0.0057 (11)0.0092 (11)0.0084 (11)
C420.0584 (18)0.070 (2)0.0435 (16)0.0057 (15)0.0153 (14)0.0132 (14)
C430.070 (2)0.078 (2)0.068 (2)0.0182 (18)0.0344 (19)0.0136 (18)
C440.0469 (17)0.062 (2)0.091 (3)0.0065 (15)0.0169 (18)0.0219 (19)
C450.0493 (19)0.088 (3)0.078 (2)0.0088 (18)0.0132 (17)0.002 (2)
C460.0476 (17)0.073 (2)0.061 (2)0.0035 (16)0.0039 (15)0.0104 (16)
C10.0410 (14)0.0420 (14)0.0462 (15)0.0084 (11)0.0094 (12)0.0051 (12)
C20.0438 (15)0.0529 (16)0.0435 (15)0.0095 (12)0.0107 (12)0.0050 (12)
C30.0402 (15)0.0603 (18)0.0513 (16)0.0047 (13)0.0125 (13)0.0055 (14)
C40.0404 (16)0.111 (3)0.0523 (18)0.0029 (17)0.0173 (14)0.0063 (18)
C50.0476 (17)0.088 (2)0.0522 (18)0.0031 (16)0.0150 (14)0.0107 (17)
C60.0596 (19)0.067 (2)0.0518 (18)0.0048 (15)0.0122 (15)0.0176 (15)
C51A0.045 (6)0.068 (6)0.049 (5)0.012 (4)0.009 (4)0.007 (4)
C52A0.041 (3)0.067 (4)0.086 (6)0.011 (3)0.016 (5)0.001 (5)
C53A0.048 (4)0.076 (4)0.090 (6)0.008 (3)0.037 (4)0.025 (4)
C55A0.046 (4)0.051 (4)0.060 (5)0.008 (3)0.018 (4)0.007 (3)
C54A0.044 (3)0.054 (5)0.060 (3)0.018 (3)0.024 (3)0.012 (3)
C51B0.035 (9)0.061 (9)0.060 (9)0.009 (7)0.014 (7)0.010 (7)
C52B0.059 (9)0.070 (10)0.081 (10)0.008 (7)0.010 (9)0.019 (8)
C53B0.047 (6)0.061 (6)0.077 (7)0.005 (5)0.023 (5)0.005 (6)
C55B0.048 (6)0.070 (8)0.057 (9)0.019 (5)0.024 (8)0.007 (8)
C54B0.068 (8)0.061 (8)0.056 (6)0.014 (7)0.017 (5)0.016 (6)
Geometric parameters (Å, º) top
Ni1—C11.839 (3)C23—H230.9300
Ni1—C112.078 (3)C24—C251.366 (5)
Ni1—C122.116 (3)C24—H240.9300
Ni1—C132.122 (3)C25—C261.380 (4)
Ni1—C142.081 (3)C25—H250.9300
Ni1—C152.136 (3)C26—H260.9300
Ni1—P12.1417 (8)C31—C361.385 (4)
P1—C211.827 (3)C31—C321.388 (3)
P1—C311.835 (3)C32—C331.378 (4)
P1—C411.824 (3)C32—H320.9300
C1—C21.214 (3)C33—C341.368 (4)
C2—C31.403 (4)C33—H330.9300
C3—C41.371 (4)C34—C351.373 (4)
C3—C51A1.535 (7)C34—H340.9300
C3—C51B1.535 (9)C35—C361.385 (4)
C4—C51.400 (4)C35—H350.9300
C4—C54B1.550 (9)C36—H360.9300
C4—C54A1.563 (6)C41—C421.373 (4)
C5—C61.358 (4)C41—C461.380 (4)
C5—H50.9300C42—C431.390 (4)
C7—N71.135 (5)C42—H420.9300
C7—C61.432 (5)C43—C441.364 (5)
C8—N81.144 (4)C43—H430.9300
C8—C61.423 (4)C44—C451.354 (5)
C11—C151.377 (5)C44—H440.9300
C11—C121.412 (5)C45—C461.375 (4)
C11—H110.9300C45—H450.9300
C12—C131.363 (5)C46—H460.9300
C12—H120.9300C51A—C52A1.510 (8)
C13—C141.410 (5)C51A—C55A1.550 (7)
C13—H130.9300C52A—C53A1.335 (7)
C14—C151.382 (5)C53A—C54A1.514 (7)
C14—H140.9300C55A—C54A1.532 (8)
C15—H150.9300C51B—C52B1.510 (10)
C21—C221.381 (4)C51B—C55B1.536 (9)
C21—C261.394 (4)C52B—C53B1.340 (9)
C22—C231.379 (4)C53B—C54B1.493 (9)
C22—H220.9300C55B—C54B1.525 (9)
C23—C241.377 (5)
C1—Ni1—C11100.90 (12)C25—C26—H26119.4
C1—Ni1—C14163.39 (12)C21—C26—H26119.4
C11—Ni1—C1464.40 (14)C36—C31—C32118.4 (2)
C1—Ni1—C12109.61 (13)C36—C31—P1122.5 (2)
C11—Ni1—C1239.34 (14)C32—C31—P1119.1 (2)
C14—Ni1—C1264.61 (14)C33—C32—C31120.8 (3)
C1—Ni1—C13143.35 (14)C33—C32—H32119.6
C11—Ni1—C1364.26 (13)C31—C32—H32119.6
C14—Ni1—C1339.18 (13)C34—C33—C32120.1 (3)
C12—Ni1—C1337.52 (13)C34—C33—H33119.9
C1—Ni1—C15125.25 (13)C32—C33—H33119.9
C11—Ni1—C1538.10 (14)C33—C34—C35120.0 (3)
C14—Ni1—C1538.24 (13)C33—C34—H34120.0
C12—Ni1—C1564.59 (15)C35—C34—H34120.0
C13—Ni1—C1564.33 (13)C34—C35—C36120.1 (3)
C1—Ni1—P187.86 (8)C34—C35—H35119.9
C11—Ni1—P1165.01 (13)C36—C35—H35119.9
C14—Ni1—P1104.95 (10)C35—C36—C31120.4 (3)
C12—Ni1—P1147.85 (12)C35—C36—H36119.8
C13—Ni1—P1114.96 (10)C31—C36—H36119.8
C15—Ni1—P1127.08 (12)C42—C41—C46117.9 (3)
C41—P1—C21107.44 (12)C42—C41—P1124.5 (2)
C41—P1—C31103.20 (12)C46—C41—P1117.5 (2)
C21—P1—C31101.86 (11)C41—C42—C43120.2 (3)
C41—P1—Ni1111.28 (9)C41—C42—H42119.9
C21—P1—Ni1113.62 (9)C43—C42—H42119.9
C31—P1—Ni1118.31 (8)C44—C43—C42120.8 (3)
N7—C7—C6179.5 (4)C44—C43—H43119.6
N8—C8—C6178.3 (4)C42—C43—H43119.6
C15—C11—C12109.1 (3)C45—C44—C43119.4 (3)
C15—C11—Ni173.25 (19)C45—C44—H44120.3
C12—C11—Ni171.79 (19)C43—C44—H44120.3
C15—C11—H11125.5C44—C45—C46120.4 (3)
C12—C11—H11125.5C44—C45—H45119.8
Ni1—C11—H11121.2C46—C45—H45119.8
C13—C12—C11107.2 (3)C45—C46—C41121.4 (3)
C13—C12—Ni171.49 (19)C45—C46—H46119.3
C11—C12—Ni168.86 (18)C41—C46—H46119.3
C13—C12—H12126.4C2—C1—Ni1173.6 (2)
C11—C12—H12126.4C1—C2—C3171.8 (3)
Ni1—C12—H12124.9C4—C3—C2129.7 (3)
C12—C13—C14108.0 (3)C4—C3—C51A107.3 (5)
C12—C13—Ni170.99 (18)C2—C3—C51A122.6 (5)
C14—C13—Ni168.82 (16)C4—C3—C51B103.7 (8)
C12—C13—H13126.0C2—C3—C51B126.6 (8)
C14—C13—H13126.0C3—C4—C5124.3 (3)
Ni1—C13—H13125.7C3—C4—C54B106.7 (5)
C15—C14—C13108.5 (3)C5—C4—C54B126.2 (5)
C15—C14—Ni173.05 (18)C3—C4—C54A104.6 (3)
C13—C14—Ni172.00 (17)C5—C4—C54A130.6 (3)
C15—C14—H14125.7C6—C5—C4129.2 (3)
C13—C14—H14125.7C6—C5—H5115.4
Ni1—C14—H14121.0C4—C5—H5115.4
C11—C15—C14106.9 (3)C5—C6—C8124.3 (3)
C11—C15—Ni168.65 (18)C5—C6—C7120.9 (3)
C14—C15—Ni168.71 (17)C8—C6—C7114.7 (3)
C11—C15—H15126.6C52A—C51A—C3103.7 (8)
C14—C15—H15126.6C52A—C51A—C55A99.1 (10)
Ni1—C15—H15127.6C3—C51A—C55A100.3 (9)
C22—C21—C26118.1 (2)C52A—C51A—H51A117.0
C22—C21—P1120.3 (2)C53A—C52A—C51A107.5 (9)
C26—C21—P1121.5 (2)C52A—C53A—C54A106.7 (7)
C23—C22—C21120.3 (3)C54A—C55A—C51A92.3 (8)
C23—C22—H22119.8C53A—C54A—C55A99.9 (8)
C21—C22—H22119.8C53A—C54A—C4101.6 (5)
C24—C23—C22120.8 (3)C55A—C54A—C4102.2 (7)
C24—C23—H23119.6C52B—C51B—C399.6 (17)
C22—C23—H23119.6C52B—C51B—C55B98.2 (18)
C25—C24—C23119.8 (3)C3—C51B—C55B105.0 (11)
C25—C24—H24120.1C53B—C52B—C51B107.1 (19)
C23—C24—H24120.1C52B—C53B—C54B106.5 (15)
C24—C25—C26119.7 (3)C54B—C55B—C51B92.3 (12)
C24—C25—H25120.1C53B—C54B—C55B99.2 (11)
C26—C25—H25120.1C53B—C54B—C492.1 (8)
C25—C26—C21121.2 (3)C55B—C54B—C4107.0 (9)
C1—Ni1—P1—C4152.45 (12)C41—P1—C21—C2666.4 (2)
C11—Ni1—P1—C4173.8 (4)C31—P1—C21—C2641.7 (2)
C14—Ni1—P1—C41116.83 (14)Ni1—P1—C21—C26170.08 (19)
C12—Ni1—P1—C41177.3 (2)C26—C21—C22—C231.3 (4)
C13—Ni1—P1—C41157.32 (14)P1—C21—C22—C23179.0 (2)
C15—Ni1—P1—C4181.63 (15)C21—C22—C23—C240.9 (5)
C1—Ni1—P1—C2168.98 (12)C22—C23—C24—C252.1 (5)
C11—Ni1—P1—C21164.7 (4)C23—C24—C25—C261.2 (5)
C14—Ni1—P1—C21121.74 (14)C24—C25—C26—C211.1 (5)
C12—Ni1—P1—C2155.9 (2)C22—C21—C26—C252.3 (4)
C13—Ni1—P1—C2181.26 (14)P1—C21—C26—C25180.0 (2)
C15—Ni1—P1—C21156.95 (14)C41—P1—C31—C362.6 (3)
C1—Ni1—P1—C31171.65 (13)C21—P1—C31—C36108.7 (2)
C11—Ni1—P1—C3145.4 (4)Ni1—P1—C31—C36125.9 (2)
C14—Ni1—P1—C312.38 (14)C41—P1—C31—C32179.1 (2)
C12—Ni1—P1—C3163.5 (2)C21—P1—C31—C3269.6 (2)
C13—Ni1—P1—C3138.11 (15)Ni1—P1—C31—C3255.8 (2)
C15—Ni1—P1—C3137.58 (15)C36—C31—C32—C330.4 (4)
C1—Ni1—C11—C15135.0 (2)P1—C31—C32—C33178.7 (2)
C14—Ni1—C11—C1536.8 (2)C31—C32—C33—C341.0 (5)
C12—Ni1—C11—C15117.3 (3)C32—C33—C34—C350.5 (5)
C13—Ni1—C11—C1580.5 (2)C33—C34—C35—C360.7 (5)
P1—Ni1—C11—C1510.1 (5)C34—C35—C36—C311.3 (5)
C1—Ni1—C11—C12107.7 (2)C32—C31—C36—C350.8 (4)
C14—Ni1—C11—C1280.5 (2)P1—C31—C36—C35177.5 (2)
C13—Ni1—C11—C1236.8 (2)C21—P1—C41—C427.7 (3)
C15—Ni1—C11—C12117.3 (3)C31—P1—C41—C4299.5 (3)
P1—Ni1—C11—C12127.4 (4)Ni1—P1—C41—C42132.6 (2)
C15—C11—C12—C132.6 (4)C21—P1—C41—C46173.8 (2)
Ni1—C11—C12—C1361.6 (2)C31—P1—C41—C4679.0 (3)
C15—C11—C12—Ni164.2 (2)Ni1—P1—C41—C4648.9 (3)
C1—Ni1—C12—C13159.1 (2)C46—C41—C42—C430.8 (5)
C11—Ni1—C12—C13117.7 (3)P1—C41—C42—C43179.3 (2)
C14—Ni1—C12—C1337.8 (2)C41—C42—C43—C440.0 (5)
C15—Ni1—C12—C1380.3 (2)C42—C43—C44—C451.0 (6)
P1—Ni1—C12—C1339.6 (3)C43—C44—C45—C461.2 (6)
C1—Ni1—C12—C1183.2 (2)C44—C45—C46—C410.4 (6)
C14—Ni1—C12—C1179.9 (2)C42—C41—C46—C450.6 (5)
C13—Ni1—C12—C11117.7 (3)C2—C3—C4—C53.8 (6)
C15—Ni1—C12—C1137.4 (2)C51A—C3—C4—C5176.5 (6)
P1—Ni1—C12—C11157.29 (19)C51B—C3—C4—C5175.5 (9)
C11—C12—C13—C140.8 (4)C2—C3—C4—C54B166.0 (6)
Ni1—C12—C13—C1459.1 (2)C51A—C3—C4—C54B21.2 (8)
C11—C12—C13—Ni159.9 (2)C51B—C3—C4—C54B13.3 (10)
C1—Ni1—C13—C1234.2 (3)C2—C3—C4—C54A168.9 (4)
C11—Ni1—C13—C1238.6 (2)C51A—C3—C4—C54A3.8 (7)
C14—Ni1—C13—C12118.9 (3)C51B—C3—C4—C54A11.8 (10)
C15—Ni1—C13—C1281.0 (2)C3—C4—C5—C6177.3 (4)
P1—Ni1—C13—C12158.0 (2)C54B—C4—C5—C624.0 (8)
C1—Ni1—C13—C14153.1 (2)C54A—C4—C5—C66.6 (8)
C11—Ni1—C13—C1480.3 (2)C4—C5—C6—C80.0 (6)
C12—Ni1—C13—C14118.9 (3)C4—C5—C6—C7177.4 (4)
C15—Ni1—C13—C1437.9 (2)C4—C3—C51A—C52A64.5 (9)
P1—Ni1—C13—C1483.1 (2)C2—C3—C51A—C52A122.1 (7)
C12—C13—C14—C153.9 (3)C4—C3—C51A—C55A37.6 (8)
Ni1—C13—C14—C1564.4 (2)C2—C3—C51A—C55A135.8 (7)
C12—C13—C14—Ni160.5 (2)C3—C51A—C52A—C53A67.7 (11)
C1—Ni1—C14—C157.4 (6)C55A—C51A—C52A—C53A35.4 (11)
C11—Ni1—C14—C1536.7 (2)C51A—C52A—C53A—C54A0.5 (11)
C12—Ni1—C14—C1580.5 (2)C52A—C51A—C55A—C54A52.8 (10)
C13—Ni1—C14—C15116.7 (3)C3—C51A—C55A—C54A53.0 (10)
P1—Ni1—C14—C15132.0 (2)C52A—C53A—C54A—C55A35.2 (10)
C1—Ni1—C14—C13109.2 (5)C52A—C53A—C54A—C469.6 (9)
C11—Ni1—C14—C1380.0 (2)C51A—C55A—C54A—C53A52.8 (9)
C12—Ni1—C14—C1336.2 (2)C51A—C55A—C54A—C451.4 (10)
C15—Ni1—C14—C13116.7 (3)C3—C4—C54A—C53A71.0 (6)
P1—Ni1—C14—C13111.32 (19)C5—C4—C54A—C53A116.9 (6)
C12—C11—C15—C145.0 (3)C3—C4—C54A—C55A31.8 (8)
Ni1—C11—C15—C1458.3 (2)C5—C4—C54A—C55A140.2 (8)
C12—C11—C15—Ni163.3 (2)C4—C3—C51B—C52B59.8 (12)
C13—C14—C15—C115.5 (3)C2—C3—C51B—C52B120.9 (13)
Ni1—C14—C15—C1158.2 (2)C4—C3—C51B—C55B41.5 (15)
C13—C14—C15—Ni163.7 (2)C2—C3—C51B—C55B137.8 (10)
C1—Ni1—C15—C1158.3 (3)C3—C51B—C52B—C53B72 (2)
C14—Ni1—C15—C11119.1 (3)C55B—C51B—C52B—C53B35 (2)
C12—Ni1—C15—C1138.6 (2)C51B—C52B—C53B—C54B1 (3)
C13—Ni1—C15—C1180.3 (2)C52B—C51B—C55B—C54B53.8 (15)
P1—Ni1—C15—C11176.74 (18)C3—C51B—C55B—C54B48.5 (15)
C1—Ni1—C15—C14177.4 (2)C52B—C53B—C54B—C55B36.9 (19)
C11—Ni1—C15—C14119.1 (3)C52B—C53B—C54B—C470.7 (18)
C12—Ni1—C15—C1480.5 (2)C51B—C55B—C54B—C53B55.0 (12)
C13—Ni1—C15—C1438.8 (2)C51B—C55B—C54B—C440.0 (12)
P1—Ni1—C15—C1464.1 (2)C3—C4—C54B—C53B81.7 (8)
C41—P1—C21—C22116.0 (2)C5—C4—C54B—C53B116.5 (7)
C31—P1—C21—C22135.9 (2)C3—C4—C54B—C55B18.6 (11)
Ni1—P1—C21—C227.6 (2)C5—C4—C54B—C55B143.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···Cg1i0.932.983.648 (4)130
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Ni(C5H5)(C13H7N2)(C18H15P)]
Mr577.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.7972 (16), 11.8155 (14), 12.1248 (14)
α, β, γ (°)73.169 (5), 78.153 (9), 78.586 (9)
V3)1433.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker P4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.716, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
7832, 6787, 4533
Rint0.029
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 1.01
No. of reflections6787
No. of parameters407
No. of restraints94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···Cg1i0.932.983.648 (4)130
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

JFG thanks Dublin City University for the purchase of a Bruker P4 diffractometer and computer system in 1998.

References

First citationBruker, (1996). XSCANS, Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, P., Gallagher, J. F., Lough, A. J. & Manning, A. R. (2007). Acta Cryst. E63, m1415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButler, P., Gallagher, J. F. & Manning, A. R. (1998). Inorg. Chem. Commun. 1, 343–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationButler, P., Gallagher, J. F., Manning, A. R., Mueller-Bunz, H., McAdam, C. J., Simpson, J. & Robinson, B. H. (2005). J. Organomet. Chem. 690, 4545–4556.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, G. (1998). PREP8. University of Guelph, Canada.  Google Scholar
First citationGallagher, J. F., Butler, P., Hudson, R. D. A. & Manning, A. R. (2002). Dalton Trans. pp. 75–82.  CSD CrossRef Google Scholar
First citationGallagher, J. F., Butler, P. & Manning, A. R. (1998). Acta Cryst. C54, 342–345.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhittal, I. R., Humphrey, M. G. & Hockless, D. C. R. (1998a). Aust. J. Chem. 51, 219–227.  Web of Science CSD CrossRef Google Scholar
First citationWhittal, I. R., McDonagh, A. M., Humphrey, M. G. & Samoc, M. (1998b). Adv. Organomet. Chem. 42, 291–362.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds