organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­benzene­sulfonamido)pyridinium tri­chloro­acetate

aSchool of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, People's Republic of China, and bDepartment of Pharmaceutics, Medical College of Chinese People's Armed Police Force, Tianjin 300162, People's Republic of China
*Correspondence e-mail: zpw0803@gmail.com

(Received 4 January 2008; accepted 8 January 2008; online 16 January 2008)

In the crystal structure of the title compound, C11H10N3O4S·C2Cl3O2, the dihedral angle between the two six-membered rings is 69.2 (1)°. The mol­ecules are connected via inter­molecular N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Talley et al. (2000[Talley, J. J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Perkins, W. E., Rogers, R. S., Shaffer, A. F., Zhang, Y. Y., Zweifel, B. S. & Seibert, K. (2000). J. Med. Chem. 43, 775-777.]); El-Naggar et al. (1981[El-Naggar, A. M., Ahmed, F. S. M. & Badie, M. F. (1981). J. Heterocycl. Chem. 18, 91-94.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N3O4S·C2Cl3O2

  • Mr = 442.65

  • Monoclinic, P 21 /c

  • a = 22.017 (4) Å

  • b = 6.2187 (12) Å

  • c = 12.719 (3) Å

  • β = 97.48 (3)°

  • V = 1726.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 113 (2) K

  • 0.14 × 0.12 × 0.04 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA .]) Tmin = 0.910, Tmax = 0.973

  • 9585 measured reflections

  • 3017 independent reflections

  • 2440 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.162

  • S = 1.16

  • 3017 reflections

  • 243 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.897 (10) 1.755 (13) 2.639 (4) 168 (4)
N2—H2⋯O6ii 0.897 (10) 1.825 (15) 2.707 (4) 167 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA .]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzenesulfonamides are very important intermediates in the organic synthesis and are widely used for the synthesis of pharmaceutical compounds (Talley et al., 2000). In our ongoing investigations on this topic we characterize the the title compound by single-crystal X-ray diffraction. In its crystal structure the dihedral angle between the phenyl and the pyridinyl ring amount to 69.2 (1)°. The 4-nitro-N-(pyridinium-4-yl)benzenesulfonamide cations and the trichloroacetate anions are connected by intermolecular N—H···O hydrogen bonding between the N—H atoms of the cations and the oxygen atoms of the anions.

Related literature top

For related literature, see: Talley et al. (2000); El-Naggar et al. (1981).

Experimental top

0.5 g(1.8 mmol) of 4-nitro-N-(pyridin-4-yl)benzenesulfonamide was dissolved in a mixture of trichloroacetic acid (2.0 mmol,0.33 g) and ethyl acetate (5 ml). Colorless crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement top

The C—H H atoms were positioned with idealized geometry and were refined using a riding model. The N—H H atoms were located in difference map and were refined with varying coordinates and varying isotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
4-(4-Nitrobenzenesulfonamido)pyridinium trichloroacetate top
Crystal data top
C11H10N3O4S·C2Cl3O2F(000) = 896
Mr = 442.65Dx = 1.703 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.017 (4) ÅCell parameters from 4622 reflections
b = 6.2187 (12) Åθ = 1.8–28.1°
c = 12.719 (3) ŵ = 0.69 mm1
β = 97.48 (3)°T = 113 K
V = 1726.6 (6) Å3Lamellar, colorless
Z = 40.14 × 0.12 × 0.04 mm
Data collection top
Rigaku Saturn
diffractometer
3017 independent reflections
Radiation source: rotating anode2440 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.059
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 2626
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 77
Tmin = 0.910, Tmax = 0.973l = 1513
9585 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0873P)2]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.57 e Å3
2 restraintsΔρmin = 0.54 e Å3
Crystal data top
C11H10N3O4S·C2Cl3O2V = 1726.6 (6) Å3
Mr = 442.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.017 (4) ŵ = 0.69 mm1
b = 6.2187 (12) ÅT = 113 K
c = 12.719 (3) Å0.14 × 0.12 × 0.04 mm
β = 97.48 (3)°
Data collection top
Rigaku Saturn
diffractometer
3017 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2440 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.973Rint = 0.059
9585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.57 e Å3
3017 reflectionsΔρmin = 0.54 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18257 (4)1.36555 (14)0.07245 (7)0.0191 (3)
O10.18542 (11)1.5313 (4)0.1516 (2)0.0249 (6)
O20.16464 (11)1.4166 (4)0.03720 (19)0.0246 (6)
O30.04962 (13)0.5416 (5)0.2777 (2)0.0357 (7)
O40.00146 (13)0.5394 (5)0.1197 (2)0.0409 (8)
N10.30157 (14)0.6878 (5)0.0407 (3)0.0231 (7)
N20.25080 (13)1.2586 (5)0.0880 (2)0.0193 (7)
N30.03717 (14)0.6156 (5)0.1877 (3)0.0248 (7)
C10.26602 (16)1.0661 (5)0.0425 (3)0.0182 (8)
C20.31203 (16)0.9400 (6)0.0978 (3)0.0219 (8)
H2A0.33100.98370.16390.026*
C30.32893 (16)0.7525 (6)0.0544 (3)0.0241 (8)
H30.35970.66880.09100.029*
C40.25743 (16)0.8040 (6)0.0958 (3)0.0225 (8)
H40.23950.75540.16180.027*
C50.23811 (16)0.9937 (6)0.0568 (3)0.0209 (8)
H50.20711.07320.09540.025*
C60.13549 (15)1.1534 (5)0.1065 (3)0.0185 (8)
C70.09757 (15)1.0470 (6)0.0274 (3)0.0213 (8)
H70.09441.09340.04260.026*
C80.06426 (16)0.8695 (6)0.0547 (3)0.0216 (8)
H80.03870.79450.00340.026*
C90.07022 (15)0.8085 (6)0.1592 (3)0.0209 (8)
C100.10690 (16)0.9146 (6)0.2399 (3)0.0219 (8)
H100.10880.87060.31010.026*
C110.14059 (16)1.0888 (6)0.2117 (3)0.0232 (8)
H110.16651.16220.26320.028*
Cl10.43685 (4)0.58693 (15)0.39003 (8)0.0283 (3)
Cl20.46462 (5)0.17077 (17)0.30622 (9)0.0365 (3)
Cl30.41727 (4)0.20184 (16)0.50681 (7)0.0291 (3)
O50.31493 (11)0.1505 (4)0.33912 (19)0.0230 (6)
O60.33887 (11)0.4175 (4)0.2360 (2)0.0265 (6)
C120.41404 (16)0.3150 (6)0.3785 (3)0.0212 (8)
C130.34910 (16)0.2939 (5)0.3118 (3)0.0180 (7)
H10.3107 (17)0.568 (4)0.075 (3)0.028 (11)*
H20.2756 (17)1.324 (6)0.140 (3)0.047 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0240 (5)0.0171 (5)0.0161 (5)0.0033 (3)0.0022 (3)0.0002 (3)
O10.0307 (14)0.0182 (13)0.0257 (15)0.0037 (10)0.0031 (11)0.0061 (11)
O20.0322 (15)0.0251 (14)0.0160 (14)0.0029 (11)0.0009 (10)0.0055 (11)
O30.0403 (16)0.0382 (17)0.0280 (17)0.0053 (13)0.0023 (12)0.0112 (14)
O40.0468 (18)0.0483 (19)0.0276 (17)0.0252 (14)0.0044 (13)0.0050 (14)
N10.0314 (18)0.0155 (16)0.0247 (19)0.0008 (13)0.0120 (13)0.0028 (13)
N20.0231 (15)0.0191 (16)0.0148 (17)0.0006 (12)0.0004 (11)0.0027 (13)
N30.0277 (18)0.0256 (17)0.0220 (19)0.0001 (13)0.0067 (13)0.0017 (14)
C10.0256 (19)0.0141 (18)0.017 (2)0.0029 (13)0.0096 (13)0.0001 (14)
C20.030 (2)0.0205 (19)0.015 (2)0.0007 (14)0.0023 (14)0.0000 (15)
C30.032 (2)0.022 (2)0.019 (2)0.0021 (15)0.0053 (15)0.0035 (16)
C40.029 (2)0.0226 (19)0.016 (2)0.0038 (15)0.0052 (14)0.0004 (15)
C50.0251 (19)0.0208 (19)0.0166 (19)0.0009 (14)0.0016 (14)0.0026 (15)
C60.0191 (18)0.0209 (19)0.016 (2)0.0038 (13)0.0030 (13)0.0014 (14)
C70.0237 (19)0.029 (2)0.0108 (18)0.0007 (15)0.0006 (13)0.0008 (15)
C80.0214 (19)0.026 (2)0.016 (2)0.0010 (14)0.0002 (14)0.0045 (15)
C90.0204 (18)0.0223 (19)0.021 (2)0.0028 (14)0.0071 (14)0.0008 (15)
C100.026 (2)0.027 (2)0.0127 (19)0.0015 (15)0.0040 (14)0.0007 (15)
C110.026 (2)0.027 (2)0.017 (2)0.0007 (15)0.0013 (14)0.0041 (15)
Cl10.0313 (5)0.0241 (5)0.0291 (6)0.0098 (4)0.0022 (4)0.0005 (4)
Cl20.0349 (6)0.0404 (6)0.0364 (7)0.0111 (4)0.0135 (4)0.0022 (5)
Cl30.0325 (5)0.0345 (6)0.0187 (5)0.0087 (4)0.0031 (4)0.0073 (4)
O50.0286 (14)0.0216 (14)0.0182 (15)0.0052 (10)0.0010 (10)0.0034 (10)
O60.0330 (15)0.0242 (14)0.0209 (15)0.0064 (11)0.0021 (11)0.0070 (11)
C120.0234 (19)0.0205 (19)0.020 (2)0.0016 (14)0.0040 (14)0.0010 (15)
C130.0238 (18)0.0173 (18)0.0130 (19)0.0004 (14)0.0031 (13)0.0033 (14)
Geometric parameters (Å, º) top
S1—O21.435 (2)C4—H40.9300
S1—O11.436 (3)C5—H50.9300
S1—N21.631 (3)C6—C111.388 (5)
S1—C61.766 (4)C6—C71.388 (5)
O3—N31.231 (4)C7—C81.394 (5)
O4—N31.227 (4)C7—H70.9300
N1—C41.335 (5)C8—C91.372 (5)
N1—C31.341 (5)C8—H80.9300
N1—H10.897 (10)C9—C101.387 (5)
N2—C11.390 (4)C10—C111.386 (5)
N2—H20.897 (10)C10—H100.9300
N3—C91.472 (5)C11—H110.9300
C1—C21.397 (5)Cl1—C121.765 (4)
C1—C51.405 (5)Cl2—C121.777 (4)
C2—C31.362 (5)Cl3—C121.770 (4)
C2—H2A0.9300O5—C131.245 (4)
C3—H30.9300O6—C131.231 (4)
C4—C51.368 (5)C12—C131.570 (4)
O2—S1—O1120.25 (15)C1—C5—H5120.6
O2—S1—N2109.93 (16)C11—C6—C7121.7 (3)
O1—S1—N2104.59 (14)C11—C6—S1118.4 (3)
O2—S1—C6107.91 (16)C7—C6—S1119.7 (3)
O1—S1—C6109.75 (17)C6—C7—C8118.9 (3)
N2—S1—C6103.08 (16)C6—C7—H7120.5
C4—N1—C3121.4 (3)C8—C7—H7120.5
C4—N1—H1113 (2)C9—C8—C7118.2 (3)
C3—N1—H1126 (2)C9—C8—H8120.9
C1—N2—S1124.7 (2)C7—C8—H8120.9
C1—N2—H2123 (3)C8—C9—C10123.9 (3)
S1—N2—H2112 (3)C8—C9—N3118.4 (3)
O4—N3—O3124.1 (3)C10—C9—N3117.7 (3)
O4—N3—C9117.4 (3)C11—C10—C9117.4 (3)
O3—N3—C9118.4 (3)C11—C10—H10121.3
N2—C1—C2118.2 (3)C9—C10—H10121.3
N2—C1—C5123.4 (3)C10—C11—C6119.8 (3)
C2—C1—C5118.4 (3)C10—C11—H11120.1
C3—C2—C1119.7 (3)C6—C11—H11120.1
C3—C2—H2A120.2C13—C12—Cl1110.7 (2)
C1—C2—H2A120.2C13—C12—Cl3112.9 (3)
N1—C3—C2120.5 (3)Cl1—C12—Cl3109.12 (19)
N1—C3—H3119.7C13—C12—Cl2105.4 (2)
C2—C3—H3119.7Cl1—C12—Cl2109.6 (2)
N1—C4—C5121.1 (3)Cl3—C12—Cl2108.90 (19)
N1—C4—H4119.5O6—C13—O5127.6 (3)
C5—C4—H4119.5O6—C13—C12115.6 (3)
C4—C5—C1118.8 (3)O5—C13—C12116.8 (3)
C4—C5—H5120.6
O2—S1—N2—C162.4 (3)S1—C6—C7—C8175.1 (3)
O1—S1—N2—C1167.2 (3)C6—C7—C8—C90.4 (5)
C6—S1—N2—C152.4 (3)C7—C8—C9—C100.8 (6)
S1—N2—C1—C2148.4 (3)C7—C8—C9—N3177.4 (3)
S1—N2—C1—C532.5 (5)O4—N3—C9—C811.3 (5)
N2—C1—C2—C3178.7 (3)O3—N3—C9—C8169.0 (3)
C5—C1—C2—C30.4 (5)O4—N3—C9—C10170.3 (3)
C4—N1—C3—C20.3 (6)O3—N3—C9—C109.4 (5)
C1—C2—C3—N10.3 (6)C8—C9—C10—C111.8 (6)
C3—N1—C4—C50.4 (6)N3—C9—C10—C11176.4 (3)
N1—C4—C5—C10.6 (6)C9—C10—C11—C61.6 (5)
N2—C1—C5—C4178.5 (3)C7—C6—C11—C100.4 (5)
C2—C1—C5—C40.6 (5)S1—C6—C11—C10176.2 (3)
O2—S1—C6—C11174.3 (3)Cl1—C12—C13—O637.9 (4)
O1—S1—C6—C1141.5 (3)Cl3—C12—C13—O6160.6 (3)
N2—S1—C6—C1169.5 (3)Cl2—C12—C13—O680.6 (3)
O2—S1—C6—C79.9 (3)Cl1—C12—C13—O5144.5 (3)
O1—S1—C6—C7142.6 (3)Cl3—C12—C13—O521.8 (4)
N2—S1—C6—C7106.4 (3)Cl2—C12—C13—O597.0 (3)
C11—C6—C7—C80.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.90 (1)1.76 (1)2.639 (4)168 (4)
N2—H2···O6ii0.90 (1)1.83 (2)2.707 (4)167 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H10N3O4S·C2Cl3O2
Mr442.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)22.017 (4), 6.2187 (12), 12.719 (3)
β (°) 97.48 (3)
V3)1726.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.14 × 0.12 × 0.04
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.910, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
9585, 3017, 2440
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.162, 1.16
No. of reflections3017
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.54

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.897 (10)1.755 (13)2.639 (4)168 (4)
N2—H2···O6ii0.897 (10)1.825 (15)2.707 (4)167 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.
 

References

First citationEl-Naggar, A. M., Ahmed, F. S. M. & Badie, M. F. (1981). J. Heterocycl. Chem. 18, 91–94.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA .  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalley, J. J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Perkins, W. E., Rogers, R. S., Shaffer, A. F., Zhang, Y. Y., Zweifel, B. S. & Seibert, K. (2000). J. Med. Chem. 43, 775–777.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds