metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[propane-1,3-diyl­bis­(nitrilo­methyl­­idyne)]­diphenolato}­trinitratocopper(II)samarium(III) acetone solvate

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli@hlju.edu.cn

(Received 21 November 2007; accepted 21 November 2007; online 16 January 2008)

In the title complex, [CuSm(C19H20N2O4)(NO3)3]·CH3CO-CH3, the CuII atom is four-coordinated in a square-planar geometry by two O atoms and two N atoms of the deprotonated Schiff base. The SmIII atom is ten-coordinate, chelated by three nitrate groups and linked to the four O atoms of the deprotonated Schiff base.

Related literature

See Elmali & Elerman (2003[Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639-643.], 2004[Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535-540.]) for similar copper–lanthanum complexes of the same Schiff base.

[Scheme 1]

Experimental

Crystal data
  • [CuSm(C19H20N2O4)(NO3)3]·C3H6O

  • Mr = 798.37

  • Triclinic, [P \overline 1]

  • a = 9.384 (5) Å

  • b = 12.111 (5) Å

  • c = 13.529 (6) Å

  • α = 73.071 (18)°

  • β = 86.984 (19)°

  • γ = 72.346 (18)°

  • V = 1400.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 295 (2) K

  • 0.33 × 0.30 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.446, Tmax = 0.610 (expected range = 0.420–0.575)

  • 13938 measured reflections

  • 6381 independent reflections

  • 5692 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.09

  • 6381 reflections

  • 392 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: RAPID-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As shown in Fig. 1, the octodentate Schiff base ligand links Cu and Sm atoms into a dinuclear complex through two phenolate O atoms, which is similar with the bonding reported for another copper-lanthanum complex of the same ligand (Elmali & Elerman, 2003, 2004). The SmIII centre in (I) is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The CuII center is four-coordinate by two nitrogen atoms and two oxygen atoms from the ligand. And one molecular acetone is dissociative in the complex.

Related literature top

See Elmali & Elerman (2003, 2004) for similar copper–lanthanum complexes of the same Schiff base.

Experimental top

The title complex was obtained by the treatment of copper(II) acetate monohydrate with the Schiff base in methanol/acetone (4:1) at room temperature. Then the mixture was refluxed for 3 h after the addition of samarium (III) nitrate hexahydrate. The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for C22H26CuN5O14Sm: C, 33.28; H, 3.12; Cu, 7.91; N, 8.88; Sm, 18.86; found: C, 33.10; H, 3.28; Cu, 7.96; N, 8.77; Sm, 18.83%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), C—H = 0.98 Å (methine C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). In complex (I), the diaminopropane is disordered and was refined with a split model over two positions, and with an occupancy of 0.289 (11) for C8, C9, C10, and 0.711 (11) for C8', C9', C10'.

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997a).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. All H atoms and actone molecule have been omitted for clarity.
{µ-6,6'-Dimethoxy-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato}τrinitratocopper(II)samarium(III) acetone solvate top
Crystal data top
[CuSm(C19H20N2O4)(NO3)3]·C3H6OZ = 2
Mr = 798.37F(000) = 792
Triclinic, P1Dx = 1.893 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.384 (5) ÅCell parameters from 12555 reflections
b = 12.111 (5) Åθ = 6.3–55.0°
c = 13.529 (6) ŵ = 2.91 mm1
α = 73.071 (18)°T = 295 K
β = 86.984 (19)°Block, green
γ = 72.346 (18)°0.33 × 0.30 × 0.19 mm
V = 1400.5 (11) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6381 independent reflections
Radiation source: fine-focus sealed tube5692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 27.7°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.446, Tmax = 0.610k = 1515
13938 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.9589P]
where P = (Fo2 + 2Fc2)/3
6381 reflections(Δ/σ)max = 0.001
392 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[CuSm(C19H20N2O4)(NO3)3]·C3H6Oγ = 72.346 (18)°
Mr = 798.37V = 1400.5 (11) Å3
Triclinic, P1Z = 2
a = 9.384 (5) ÅMo Kα radiation
b = 12.111 (5) ŵ = 2.91 mm1
c = 13.529 (6) ÅT = 295 K
α = 73.071 (18)°0.33 × 0.30 × 0.19 mm
β = 86.984 (19)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6381 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5692 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.610Rint = 0.023
13938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.09Δρmax = 0.57 e Å3
6381 reflectionsΔρmin = 0.41 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5501 (3)0.7332 (2)0.4170 (2)0.0360 (6)
C20.6420 (3)0.7711 (2)0.3375 (2)0.0380 (6)
C30.7936 (3)0.7349 (3)0.3504 (3)0.0465 (7)
H10.85220.76220.29690.056*
C40.8598 (4)0.6566 (3)0.4449 (3)0.0537 (9)
H20.96340.63100.45460.064*
C50.7740 (4)0.6175 (3)0.5226 (3)0.0527 (8)
H30.81950.56480.58520.063*
C60.6162 (3)0.6554 (3)0.5105 (2)0.0422 (7)
C70.5318 (4)0.6060 (3)0.5936 (2)0.0490 (8)
H40.58790.54780.65040.059*
C80.3395 (5)0.5602 (4)0.6970 (3)0.0819 (14)
H50.34550.59530.75200.098*
H60.40670.47800.71620.098*
C90.1820 (5)0.5565 (3)0.6872 (3)0.0663 (11)
H70.17180.53280.62600.080*
H80.16270.49600.74680.080*
C100.0698 (4)0.6750 (3)0.6799 (2)0.0538 (8)
H90.02810.66360.69330.065*
H100.09370.70710.73260.065*
C110.0655 (3)0.8406 (3)0.5481 (2)0.0424 (7)
H110.14030.83590.59560.051*
C120.1089 (3)0.9324 (3)0.4522 (2)0.0384 (6)
C130.2583 (4)1.0074 (3)0.4383 (3)0.0497 (8)
H120.32210.99990.49320.060*
C140.3108 (4)1.0906 (3)0.3460 (3)0.0533 (8)
H130.40981.13940.33810.064*
C150.2161 (3)1.1026 (3)0.2633 (3)0.0470 (7)
H140.25191.15880.19980.056*
C160.0682 (3)1.0303 (2)0.2762 (2)0.0376 (6)
C170.0128 (3)0.9440 (2)0.3701 (2)0.0340 (6)
C180.0188 (4)1.1099 (3)0.0970 (3)0.0576 (9)
H150.08581.07720.07180.086*
H160.06401.11070.05230.086*
H170.07091.19090.09830.086*
C190.6504 (4)0.8849 (4)0.1599 (3)0.0568 (9)
H180.71680.92180.18020.085*
H190.58430.94270.10420.085*
H200.70780.81670.13760.085*
C200.1935 (7)0.3884 (5)0.0090 (5)0.1100 (19)
H210.12010.40990.06360.165*
H220.15250.35810.05620.165*
H230.28050.32700.01970.165*
C210.2360 (6)0.4971 (4)0.0088 (4)0.0800 (13)
C220.3365 (7)0.4818 (5)0.0816 (4)0.1022 (18)
H240.36320.55470.07220.153*
H250.42560.41540.08520.153*
H260.28440.46580.14470.153*
Cu20.24465 (4)0.75758 (3)0.49629 (3)0.03670 (8)
N10.3895 (3)0.6310 (2)0.60036 (19)0.0498 (7)
N20.0646 (3)0.7631 (2)0.57760 (18)0.0402 (5)
N30.3263 (3)1.1105 (2)0.2284 (2)0.0510 (7)
N40.3808 (3)0.8126 (3)0.0426 (2)0.0478 (6)
N50.1427 (3)0.6889 (3)0.2369 (2)0.0528 (7)
O10.4021 (2)0.77107 (19)0.39863 (15)0.0439 (5)
O20.5643 (2)0.84507 (19)0.24634 (16)0.0447 (5)
O30.1281 (2)0.87450 (18)0.37652 (15)0.0411 (5)
O40.0358 (2)1.03583 (18)0.20020 (16)0.0436 (5)
O50.3167 (3)1.0333 (2)0.31093 (18)0.0543 (6)
O60.3339 (4)1.2091 (2)0.2275 (2)0.0787 (9)
O70.3255 (3)1.0798 (2)0.14667 (18)0.0535 (6)
O80.3018 (3)0.9182 (2)0.04383 (17)0.0524 (5)
O90.4101 (3)0.7863 (3)0.0366 (2)0.0736 (8)
O100.4267 (3)0.7385 (2)0.12933 (19)0.0545 (6)
O110.0985 (3)0.7954 (2)0.1774 (2)0.0568 (6)
O120.0852 (4)0.6118 (3)0.2345 (3)0.0822 (9)
O130.2480 (3)0.6667 (2)0.2982 (2)0.0590 (6)
O140.2011 (5)0.5883 (3)0.0775 (3)0.1208 (15)
Sm10.286846 (16)0.877380 (13)0.233252 (11)0.03533 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (14)0.0327 (13)0.0389 (14)0.0044 (11)0.0040 (11)0.0115 (12)
C20.0372 (15)0.0340 (13)0.0426 (15)0.0094 (11)0.0013 (12)0.0117 (12)
C30.0372 (16)0.0438 (16)0.063 (2)0.0129 (13)0.0002 (14)0.0205 (16)
C40.0359 (16)0.0490 (18)0.075 (2)0.0042 (14)0.0133 (16)0.0223 (18)
C50.0488 (19)0.0469 (17)0.055 (2)0.0011 (14)0.0207 (16)0.0163 (16)
C60.0437 (16)0.0355 (14)0.0418 (16)0.0010 (12)0.0114 (13)0.0120 (13)
C70.054 (2)0.0409 (15)0.0349 (15)0.0064 (14)0.0118 (14)0.0049 (13)
C80.084 (3)0.067 (2)0.045 (2)0.009 (2)0.012 (2)0.0240 (18)
C90.112 (4)0.0417 (17)0.0437 (19)0.033 (2)0.014 (2)0.0017 (15)
C100.060 (2)0.065 (2)0.0346 (16)0.0272 (17)0.0042 (14)0.0029 (15)
C110.0416 (16)0.0494 (16)0.0441 (16)0.0206 (13)0.0115 (13)0.0198 (14)
C120.0362 (15)0.0393 (14)0.0442 (16)0.0129 (12)0.0015 (12)0.0174 (13)
C130.0403 (17)0.0566 (19)0.059 (2)0.0135 (14)0.0077 (15)0.0286 (17)
C140.0332 (16)0.0585 (19)0.067 (2)0.0022 (14)0.0076 (15)0.0275 (18)
C150.0414 (17)0.0416 (15)0.0527 (18)0.0004 (13)0.0143 (14)0.0164 (14)
C160.0365 (15)0.0346 (13)0.0420 (15)0.0074 (11)0.0021 (12)0.0144 (12)
C170.0315 (13)0.0328 (13)0.0378 (14)0.0079 (10)0.0037 (11)0.0115 (11)
C180.061 (2)0.0499 (18)0.0401 (17)0.0023 (16)0.0113 (15)0.0023 (15)
C190.051 (2)0.070 (2)0.052 (2)0.0303 (17)0.0147 (16)0.0114 (18)
C200.117 (5)0.084 (3)0.109 (4)0.019 (3)0.038 (4)0.003 (3)
C210.099 (4)0.056 (2)0.063 (3)0.003 (2)0.019 (2)0.010 (2)
C220.153 (6)0.071 (3)0.081 (3)0.034 (3)0.015 (3)0.022 (3)
Cu20.03880 (19)0.03451 (16)0.02912 (16)0.00780 (14)0.00024 (14)0.00084 (14)
N10.0625 (18)0.0373 (13)0.0317 (13)0.0001 (12)0.0018 (12)0.0014 (11)
N20.0490 (15)0.0431 (13)0.0323 (12)0.0213 (11)0.0042 (11)0.0092 (11)
N30.0517 (16)0.0426 (14)0.0546 (17)0.0123 (12)0.0041 (13)0.0090 (13)
N40.0424 (15)0.0607 (17)0.0417 (15)0.0184 (13)0.0044 (12)0.0147 (13)
N50.0500 (17)0.0454 (15)0.0623 (18)0.0177 (13)0.0185 (14)0.0138 (14)
O10.0326 (10)0.0514 (12)0.0324 (10)0.0059 (9)0.0036 (8)0.0044 (9)
O20.0373 (11)0.0522 (12)0.0375 (11)0.0141 (9)0.0013 (9)0.0015 (9)
O30.0360 (11)0.0396 (10)0.0342 (10)0.0018 (8)0.0006 (8)0.0005 (9)
O40.0397 (11)0.0387 (10)0.0376 (11)0.0001 (8)0.0067 (9)0.0004 (9)
O50.0666 (16)0.0520 (13)0.0429 (12)0.0183 (11)0.0025 (11)0.0113 (11)
O60.105 (2)0.0482 (14)0.085 (2)0.0268 (15)0.0138 (18)0.0155 (14)
O70.0694 (16)0.0457 (12)0.0414 (12)0.0210 (11)0.0005 (11)0.0025 (10)
O80.0641 (15)0.0494 (12)0.0365 (11)0.0139 (11)0.0023 (10)0.0052 (10)
O90.0754 (19)0.098 (2)0.0495 (15)0.0150 (16)0.0049 (13)0.0367 (16)
O100.0538 (14)0.0500 (13)0.0507 (14)0.0041 (10)0.0009 (11)0.0126 (11)
O110.0489 (14)0.0500 (13)0.0649 (16)0.0132 (10)0.0024 (11)0.0077 (12)
O120.085 (2)0.0648 (17)0.115 (3)0.0453 (16)0.0311 (19)0.0355 (18)
O130.0676 (17)0.0407 (12)0.0568 (15)0.0125 (11)0.0042 (13)0.0008 (11)
O140.180 (4)0.069 (2)0.076 (2)0.009 (2)0.003 (2)0.0073 (18)
Sm10.03475 (8)0.03416 (8)0.02833 (8)0.00614 (5)0.00093 (5)0.00000 (5)
Geometric parameters (Å, º) top
C1—O11.335 (3)C18—H150.9600
C1—C61.381 (4)C18—H160.9600
C1—C21.402 (4)C18—H170.9600
C2—C31.360 (4)C19—O21.436 (4)
C2—O21.382 (4)C19—H180.9600
C3—C41.393 (5)C19—H190.9600
C3—H10.9300C19—H200.9600
C4—C51.353 (5)C20—C211.488 (7)
C4—H20.9300C20—H210.9600
C5—C61.414 (4)C20—H220.9600
C5—H30.9300C20—H230.9600
C6—C71.433 (5)C21—O141.186 (5)
C7—N11.281 (4)C21—C221.518 (7)
C7—H40.9300C22—H240.9600
C8—N11.481 (4)C22—H250.9600
C8—C91.506 (6)C22—H260.9600
C8—H50.9700Cu2—O31.933 (2)
C8—H60.9700Cu2—O11.942 (2)
C9—C101.479 (5)Cu2—N21.962 (3)
C9—H70.9700Cu2—N11.965 (3)
C9—H80.9700N3—O61.215 (4)
C10—N21.474 (4)N3—O51.249 (4)
C10—H90.9700N3—O71.265 (4)
C10—H100.9700N4—O91.201 (3)
C11—N21.291 (4)N4—O101.254 (3)
C11—C121.424 (4)N4—O81.274 (3)
C11—H110.9300N5—O121.221 (4)
C12—C171.395 (4)N5—O131.238 (4)
C12—C131.407 (4)N5—O111.261 (4)
C13—C141.359 (5)O1—Sm12.359 (2)
C13—H120.9300O2—Sm12.520 (2)
C14—C151.393 (5)O3—Sm12.380 (2)
C14—H130.9300O4—Sm12.510 (2)
C15—C161.386 (4)O5—Sm12.501 (2)
C15—H140.9300O7—Sm12.517 (2)
C16—O41.381 (4)O8—Sm12.469 (2)
C16—C171.394 (4)O10—Sm12.525 (2)
C17—O31.326 (3)O11—Sm12.515 (3)
C18—O41.443 (4)O13—Sm12.577 (3)
O1—C1—C6122.4 (3)H25—C22—H26109.5
O1—C1—C2118.8 (3)O3—Cu2—O179.81 (9)
C6—C1—C2118.7 (3)O3—Cu2—N291.27 (10)
C3—C2—O2124.3 (3)O1—Cu2—N2171.07 (9)
C3—C2—C1121.9 (3)O3—Cu2—N1169.89 (10)
O2—C2—C1113.8 (2)O1—Cu2—N190.75 (11)
C2—C3—C4119.1 (3)N2—Cu2—N198.18 (12)
C2—C3—H1120.4C7—N1—C8114.6 (3)
C4—C3—H1120.4C7—N1—Cu2124.2 (2)
C5—C4—C3120.2 (3)C8—N1—Cu2121.2 (2)
C5—C4—H2119.9C11—N2—C10114.6 (3)
C3—C4—H2119.9C11—N2—Cu2124.6 (2)
C4—C5—C6121.2 (3)C10—N2—Cu2120.8 (2)
C4—C5—H3119.4O6—N3—O5121.5 (3)
C6—C5—H3119.4O6—N3—O7122.7 (3)
C1—C6—C5118.8 (3)O5—N3—O7115.9 (3)
C1—C6—C7122.5 (3)O9—N4—O10122.3 (3)
C5—C6—C7118.6 (3)O9—N4—O8122.0 (3)
N1—C7—C6128.8 (3)O10—N4—O8115.7 (2)
N1—C7—H4115.6O12—N5—O13121.7 (3)
C6—C7—H4115.6O12—N5—O11122.0 (3)
N1—C8—C9112.9 (3)O13—N5—O11116.3 (3)
N1—C8—H5109.0C1—O1—Cu2128.75 (18)
C9—C8—H5109.0C1—O1—Sm1123.53 (18)
N1—C8—H6109.0Cu2—O1—Sm1107.68 (9)
C9—C8—H6109.0C2—O2—C19117.3 (2)
H5—C8—H6107.8C2—O2—Sm1118.50 (17)
C10—C9—C8112.1 (3)C19—O2—Sm1123.5 (2)
C10—C9—H7109.2C17—O3—Cu2129.08 (18)
C8—C9—H7109.2C17—O3—Sm1123.76 (17)
C10—C9—H8109.2Cu2—O3—Sm1107.15 (9)
C8—C9—H8109.2C16—O4—C18117.2 (2)
H7—C9—H8107.9C16—O4—Sm1118.80 (16)
N2—C10—C9112.3 (3)C18—O4—Sm1121.66 (19)
N2—C10—H9109.2N3—O5—Sm197.49 (18)
C9—C10—H9109.2N3—O7—Sm196.27 (18)
N2—C10—H10109.2N4—O8—Sm197.71 (17)
C9—C10—H10109.2N4—O10—Sm195.60 (17)
H9—C10—H10107.9N5—O11—Sm198.4 (2)
N2—C11—C12128.3 (3)N5—O13—Sm196.02 (18)
N2—C11—H11115.9O1—Sm1—O363.27 (8)
C12—C11—H11115.9O1—Sm1—O8148.32 (8)
C17—C12—C13119.5 (3)O3—Sm1—O8146.44 (8)
C17—C12—C11122.5 (3)O1—Sm1—O573.64 (8)
C13—C12—C11117.8 (3)O3—Sm1—O573.43 (8)
C14—C13—C12121.1 (3)O8—Sm1—O5117.84 (8)
C14—C13—H12119.5O1—Sm1—O4124.51 (7)
C12—C13—H12119.5O3—Sm1—O464.03 (7)
C13—C14—C15119.9 (3)O8—Sm1—O487.13 (8)
C13—C14—H13120.0O5—Sm1—O476.07 (8)
C15—C14—H13120.0O1—Sm1—O11115.72 (8)
C16—C15—C14119.6 (3)O3—Sm1—O1180.42 (8)
C16—C15—H14120.2O8—Sm1—O1173.58 (9)
C14—C15—H14120.2O5—Sm1—O11144.02 (8)
O4—C16—C15124.5 (3)O4—Sm1—O1170.38 (8)
O4—C16—C17114.3 (2)O1—Sm1—O7117.15 (8)
C15—C16—C17121.2 (3)O3—Sm1—O7114.49 (8)
O3—C17—C16118.4 (3)O8—Sm1—O767.60 (8)
O3—C17—C12123.0 (3)O5—Sm1—O750.26 (8)
C16—C17—C12118.6 (3)O4—Sm1—O771.58 (8)
O4—C18—H15109.5O11—Sm1—O7125.99 (8)
O4—C18—H16109.5O1—Sm1—O264.43 (7)
H15—C18—H16109.5O3—Sm1—O2123.87 (7)
O4—C18—H17109.5O8—Sm1—O289.45 (8)
H15—C18—H17109.5O5—Sm1—O273.80 (8)
H16—C18—H17109.5O4—Sm1—O2143.74 (7)
O2—C19—H18109.5O11—Sm1—O2142.17 (8)
O2—C19—H19109.5O7—Sm1—O273.77 (8)
H18—C19—H19109.5O1—Sm1—O10100.83 (8)
O2—C19—H20109.5O3—Sm1—O10139.45 (8)
H18—C19—H20109.5O8—Sm1—O1050.74 (8)
H19—C19—H20109.5O5—Sm1—O10141.10 (8)
C21—C20—H21109.5O4—Sm1—O10130.89 (7)
C21—C20—H22109.5O11—Sm1—O1073.75 (9)
H21—C20—H22109.5O7—Sm1—O10105.97 (8)
C21—C20—H23109.5O2—Sm1—O1069.44 (8)
H21—C20—H23109.5O1—Sm1—O1369.00 (8)
H22—C20—H23109.5O3—Sm1—O1371.58 (8)
O14—C21—C20122.5 (5)O8—Sm1—O13104.97 (8)
O14—C21—C22121.5 (5)O5—Sm1—O13137.17 (8)
C20—C21—C22115.9 (4)O4—Sm1—O13108.91 (9)
C21—C22—H24109.5O11—Sm1—O1349.23 (8)
C21—C22—H25109.5O7—Sm1—O13172.57 (8)
H24—C22—H25109.5O2—Sm1—O13106.84 (8)
C21—C22—H26109.5O10—Sm1—O1367.87 (9)
H24—C22—H26109.5

Experimental details

Crystal data
Chemical formula[CuSm(C19H20N2O4)(NO3)3]·C3H6O
Mr798.37
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.384 (5), 12.111 (5), 13.529 (6)
α, β, γ (°)73.071 (18), 86.984 (19), 72.346 (18)
V3)1400.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.33 × 0.30 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.446, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
13938, 6381, 5692
Rint0.023
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.09
No. of reflections6381
No. of parameters392
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.41

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 20572018 and 20672032), Heilongjiang Province (Nos. 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University.

References

First citationElmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.  CAS Google Scholar
First citationElmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535–540.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds