metal-organic compounds
A one-dimensional zigzag coordination polymer: catena-poly[[[triaquacadmium(II)]-[μ-2,2′-(5-methyl-1,3-phenylenedioxy)diacetato-κ4O,O′:O′′,O′′′]] monohydrate]
aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: zht2006@mail.ahnu.edu.cn
In the title one-dimensional coordination polymer, {[Cd(C11H10O6)(H2O)3]·H2O}n, the 2,2′-(5-methyl-1,3-phenylenedioxy)diacetate dianions connect CdII ions in a head-to-tail fashion to generate zigzag chains. The coordination geometry of the Cd atom is distorted pentagonal bipyramidal. There are O—H⋯O hydrogen bonds between the carboxyl O atoms, the aqua ligands and the uncoordinated water molecules.
Related literature
For related literature on coordination polymers, see: Burrows et al. (2004); Hong et al. (2006); Janiak (2000, 2003); Kitagawa et al. (2004); Moulton & Zaworotko (2001); Russell et al. (2001).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807068031/ob2104sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068031/ob2104Isup2.hkl
The H25-mpdoa ligand, 2,2'-(5-methyl-1,3-phenylenedioxy)diacetic acid, was synthesized from 5-methylbenzene-1,3-diol and 2-chloroacetic acid according to a literature method reported by Hong et al. (2006). Cd(CH3COO)2.2(H2O) (26.8 mg, 0.10 mmol) and H25-mpdoa (24.0 mg, 0.10 mmol) were dissolved in 10 ml water. The resulting yellow solution was filtered and the filtrate was left at room temperature. Yellow column-like crystals were obtained (25.5 mg, yield ca 60%) after several weeks by slow evaporation of the solvent.
All non-hydrogen atoms were refined anisotropically. H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model with C—H distances of 0.93–0.97 Å. All hydrogen atoms of the water molecules were located in difference maps at an intermediate stage of the
and were then treated as riding, with O—H=0.85 (3) Å. In all cases, the H-atom Uiso(H) is 1.2 times Ueq of the parent atom.Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).Fig. 1. A drawing of the asymmetric unit of (I) (solid line portion) with displacement ellipsoids at the 30% probability level. [symmetry code: (i) x - 1, y, z + 1]. | |
Fig. 2. A packing diagram of (I) viewed down the c axis. Dotted lines show O—H···O hydrogen bonds. All hydrogen atoms have been omitted for clarity. |
[Cd(C11H10O6)(H2O)3]·H2O | Z = 2 |
Mr = 422.66 | F(000) = 424 |
Triclinic, P1 | Dx = 1.853 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3792 (11) Å | Cell parameters from 1908 reflections |
b = 8.6946 (12) Å | θ = 2.4–25.5° |
c = 11.9495 (17) Å | µ = 1.49 mm−1 |
α = 85.294 (19)° | T = 298 K |
β = 82.52 (2)° | Column, yellow |
γ = 88.44 (2)° | 0.24 × 0.08 × 0.02 mm |
V = 757.47 (19) Å3 |
Bruker SMART CCD area-detector diffractometer | 2647 independent reflections |
Radiation source: fine-focus sealed tube | 2121 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.717, Tmax = 0.971 | k = −10→10 |
5397 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0479P)2] where P = (Fo2 + 2Fc2)/3 |
2647 reflections | (Δ/σ)max = 0.001 |
200 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.75 e Å−3 |
[Cd(C11H10O6)(H2O)3]·H2O | γ = 88.44 (2)° |
Mr = 422.66 | V = 757.47 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3792 (11) Å | Mo Kα radiation |
b = 8.6946 (12) Å | µ = 1.49 mm−1 |
c = 11.9495 (17) Å | T = 298 K |
α = 85.294 (19)° | 0.24 × 0.08 × 0.02 mm |
β = 82.52 (2)° |
Bruker SMART CCD area-detector diffractometer | 2647 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2121 reflections with I > 2σ(I) |
Tmin = 0.717, Tmax = 0.971 | Rint = 0.037 |
5397 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.41 e Å−3 |
2647 reflections | Δρmin = −0.75 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0333 (7) | 0.3276 (6) | 0.8172 (4) | 0.0364 (12) | |
C2 | 0.0773 (7) | 0.3784 (6) | 0.7048 (4) | 0.0357 (12) | |
H2A | 0.2052 | 0.3511 | 0.7070 | 0.043* | |
H2B | 0.0346 | 0.3267 | 0.6445 | 0.043* | |
C3 | 0.1556 (6) | 0.6127 (6) | 0.5904 (4) | 0.0304 (11) | |
C4 | 0.2445 (6) | 0.5368 (5) | 0.5016 (4) | 0.0289 (11) | |
H4 | 0.2422 | 0.4298 | 0.5022 | 0.035* | |
C5 | 0.3370 (6) | 0.6246 (6) | 0.4120 (4) | 0.0301 (11) | |
C6 | 0.3419 (6) | 0.7843 (6) | 0.4103 (4) | 0.0339 (12) | |
H6 | 0.4059 | 0.8411 | 0.3491 | 0.041* | |
C7 | 0.2513 (7) | 0.8586 (6) | 0.4997 (5) | 0.0350 (12) | |
C8 | 0.1596 (7) | 0.7715 (6) | 0.5901 (4) | 0.0358 (12) | |
H8 | 0.0999 | 0.8201 | 0.6514 | 0.043* | |
C9 | 0.2558 (8) | 1.0326 (6) | 0.5005 (5) | 0.0515 (15) | |
H9A | 0.1448 | 1.0770 | 0.4773 | 0.061* | |
H9B | 0.3583 | 1.0715 | 0.4492 | 0.061* | |
H9C | 0.2671 | 1.0595 | 0.5756 | 0.061* | |
C10 | 0.4195 (7) | 0.4039 (5) | 0.3083 (4) | 0.0348 (12) | |
H10A | 0.2934 | 0.3767 | 0.3065 | 0.042* | |
H10B | 0.4627 | 0.3468 | 0.3732 | 0.042* | |
C11 | 0.5344 (6) | 0.3625 (7) | 0.2014 (4) | 0.0363 (13) | |
Cd | −0.24893 (5) | 0.25748 (4) | 1.02124 (3) | 0.03576 (16) | |
O1 | −0.1211 (5) | 0.4250 (4) | 0.8748 (3) | 0.0411 (9) | |
O2 | −0.0333 (5) | 0.1860 (4) | 0.8455 (3) | 0.0499 (10) | |
O3 | 0.0573 (5) | 0.5399 (4) | 0.6840 (3) | 0.0387 (9) | |
O4 | 0.4307 (5) | 0.5637 (4) | 0.3184 (3) | 0.0383 (9) | |
O5 | 0.6157 (5) | 0.4624 (4) | 0.1334 (3) | 0.0455 (9) | |
O6 | 0.5458 (5) | 0.2198 (4) | 0.1862 (3) | 0.0500 (10) | |
O7 | −0.4729 (5) | 0.2338 (5) | 0.9073 (3) | 0.0635 (12) | |
H7B | −0.5520 | 0.1705 | 0.9401 | 0.076* | |
H7C | −0.5233 | 0.3214 | 0.8950 | 0.076* | |
O8 | −0.2346 (5) | −0.0167 (4) | 1.0480 (3) | 0.0570 (11) | |
H8C | −0.1671 | −0.0518 | 0.9923 | 0.069* | |
H8D | −0.1896 | −0.0430 | 1.1088 | 0.069* | |
O9 | 0.0139 (5) | 0.2816 (4) | 1.0963 (3) | 0.0580 (11) | |
H9E | 0.0262 | 0.3754 | 1.1086 | 0.069* | |
H9F | 0.0093 | 0.2255 | 1.1580 | 0.069* | |
O10 | 0.2207 (6) | 0.0730 (5) | 0.1980 (4) | 0.0801 (15) | |
H10C | 0.3344 | 0.0701 | 0.1748 | 0.096* | |
H10D | 0.1737 | −0.0127 | 0.1891 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.028 (3) | 0.047 (3) | 0.034 (3) | −0.010 (2) | −0.003 (2) | −0.001 (3) |
C2 | 0.040 (3) | 0.035 (3) | 0.031 (3) | −0.001 (2) | 0.000 (2) | −0.002 (2) |
C3 | 0.030 (3) | 0.036 (3) | 0.024 (3) | −0.004 (2) | −0.001 (2) | 0.002 (2) |
C4 | 0.029 (3) | 0.027 (3) | 0.031 (3) | −0.002 (2) | −0.003 (2) | −0.003 (2) |
C5 | 0.027 (3) | 0.039 (3) | 0.025 (3) | −0.001 (2) | −0.002 (2) | −0.003 (2) |
C6 | 0.030 (3) | 0.037 (3) | 0.031 (3) | −0.005 (2) | 0.004 (2) | 0.000 (2) |
C7 | 0.034 (3) | 0.030 (3) | 0.043 (3) | −0.003 (2) | −0.010 (2) | −0.003 (2) |
C8 | 0.043 (3) | 0.032 (3) | 0.032 (3) | 0.008 (2) | −0.001 (2) | −0.008 (2) |
C9 | 0.050 (4) | 0.035 (3) | 0.067 (4) | −0.002 (3) | 0.003 (3) | −0.006 (3) |
C10 | 0.034 (3) | 0.036 (3) | 0.032 (3) | −0.005 (2) | 0.004 (2) | −0.001 (2) |
C11 | 0.027 (3) | 0.057 (4) | 0.026 (3) | 0.004 (3) | −0.002 (2) | −0.007 (3) |
Cd | 0.0367 (2) | 0.0382 (2) | 0.0297 (2) | −0.00158 (16) | 0.00579 (15) | −0.00233 (16) |
O1 | 0.043 (2) | 0.046 (2) | 0.030 (2) | −0.0051 (18) | 0.0085 (17) | 0.0003 (17) |
O2 | 0.059 (3) | 0.038 (2) | 0.050 (3) | −0.0106 (19) | −0.003 (2) | 0.0085 (19) |
O3 | 0.047 (2) | 0.0324 (19) | 0.031 (2) | 0.0022 (16) | 0.0131 (16) | −0.0004 (16) |
O4 | 0.051 (2) | 0.031 (2) | 0.029 (2) | −0.0055 (16) | 0.0096 (17) | −0.0030 (16) |
O5 | 0.045 (2) | 0.053 (2) | 0.033 (2) | 0.0000 (19) | 0.0115 (17) | −0.0003 (18) |
O6 | 0.058 (3) | 0.040 (2) | 0.050 (3) | −0.0003 (19) | 0.0103 (19) | −0.0144 (19) |
O7 | 0.060 (3) | 0.059 (3) | 0.072 (3) | −0.022 (2) | −0.023 (2) | 0.023 (2) |
O8 | 0.047 (2) | 0.046 (2) | 0.072 (3) | 0.0030 (19) | 0.006 (2) | 0.005 (2) |
O9 | 0.070 (3) | 0.048 (2) | 0.062 (3) | −0.001 (2) | −0.023 (2) | −0.013 (2) |
O10 | 0.078 (3) | 0.047 (3) | 0.124 (4) | −0.006 (2) | −0.044 (3) | −0.008 (3) |
C1—O1 | 1.249 (6) | C10—O4 | 1.409 (5) |
C1—O2 | 1.250 (6) | C10—C11 | 1.503 (7) |
C1—C2 | 1.517 (7) | C10—H10A | 0.9700 |
C1—Cd | 2.766 (5) | C10—H10B | 0.9700 |
C2—O3 | 1.413 (6) | C11—O5 | 1.249 (6) |
C2—H2A | 0.9700 | C11—O6 | 1.268 (6) |
C2—H2B | 0.9700 | C11—Cdi | 2.715 (5) |
C3—O3 | 1.370 (6) | Cd—O9 | 2.262 (4) |
C3—C4 | 1.379 (7) | Cd—O7 | 2.297 (4) |
C3—C8 | 1.382 (7) | Cd—O1 | 2.303 (3) |
C4—C5 | 1.378 (7) | Cd—O6ii | 2.331 (4) |
C4—H4 | 0.9300 | Cd—O8 | 2.381 (4) |
C5—O4 | 1.374 (5) | Cd—O5ii | 2.432 (4) |
C5—C6 | 1.388 (7) | Cd—O2 | 2.573 (4) |
C6—C7 | 1.382 (7) | O7—H7B | 0.8489 |
C6—H6 | 0.9300 | O7—H7C | 0.8491 |
C7—C8 | 1.379 (7) | O8—H8C | 0.8499 |
C7—C9 | 1.515 (7) | O8—H8D | 0.8492 |
C8—H8 | 0.9300 | O9—H9E | 0.8495 |
C9—H9A | 0.9600 | O9—H9F | 0.8482 |
C9—H9B | 0.9600 | O10—H10C | 0.8492 |
C9—H9C | 0.9600 | O10—H10D | 0.8499 |
O1—C1—O2 | 123.5 (5) | O7—Cd—O1 | 84.25 (13) |
O1—C1—C2 | 120.1 (5) | O9—Cd—O6ii | 100.20 (15) |
O2—C1—C2 | 116.4 (5) | O7—Cd—O6ii | 92.61 (15) |
O1—C1—Cd | 55.6 (3) | O1—Cd—O6ii | 148.09 (13) |
O2—C1—Cd | 68.0 (3) | O9—Cd—O8 | 92.24 (14) |
C2—C1—Cd | 175.5 (4) | O7—Cd—O8 | 88.31 (14) |
O3—C2—C1 | 109.0 (4) | O1—Cd—O8 | 130.96 (13) |
O3—C2—H2A | 109.9 | O6ii—Cd—O8 | 80.48 (13) |
C1—C2—H2A | 109.9 | O9—Cd—O5ii | 88.92 (13) |
O3—C2—H2B | 109.9 | O7—Cd—O5ii | 99.79 (15) |
C1—C2—H2B | 109.9 | O1—Cd—O5ii | 93.99 (12) |
H2A—C2—H2B | 108.3 | O6ii—Cd—O5ii | 55.16 (12) |
O3—C3—C4 | 123.9 (4) | O8—Cd—O5ii | 135.00 (13) |
O3—C3—C8 | 114.8 (4) | O9—Cd—O2 | 83.86 (14) |
C4—C3—C8 | 121.3 (5) | O7—Cd—O2 | 83.67 (14) |
C3—C4—C5 | 117.8 (4) | O1—Cd—O2 | 53.34 (12) |
C3—C4—H4 | 121.1 | O6ii—Cd—O2 | 157.94 (13) |
C5—C4—H4 | 121.1 | O8—Cd—O2 | 77.69 (12) |
O4—C5—C4 | 123.7 (4) | O5ii—Cd—O2 | 146.90 (12) |
O4—C5—C6 | 114.6 (4) | O9—Cd—C11ii | 94.48 (14) |
C4—C5—C6 | 121.7 (5) | O7—Cd—C11ii | 97.62 (15) |
C5—C6—C7 | 119.8 (5) | O1—Cd—C11ii | 121.12 (15) |
C5—C6—H6 | 120.1 | O6ii—Cd—C11ii | 27.78 (14) |
C7—C6—H6 | 120.1 | O8—Cd—C11ii | 107.90 (16) |
C8—C7—C6 | 118.9 (4) | O5ii—Cd—C11ii | 27.38 (14) |
C8—C7—C9 | 120.1 (5) | O2—Cd—C11ii | 174.26 (15) |
C6—C7—C9 | 120.9 (5) | O9—Cd—C1 | 84.11 (15) |
C7—C8—C3 | 120.5 (5) | O7—Cd—C1 | 83.27 (14) |
C7—C8—H8 | 119.7 | O1—Cd—C1 | 26.58 (14) |
C3—C8—H8 | 119.7 | O6ii—Cd—C1 | 173.43 (14) |
C7—C9—H9A | 109.5 | O8—Cd—C1 | 104.43 (15) |
C7—C9—H9B | 109.5 | O5ii—Cd—C1 | 120.41 (15) |
H9A—C9—H9B | 109.5 | O2—Cd—C1 | 26.77 (13) |
C7—C9—H9C | 109.5 | C11ii—Cd—C1 | 147.67 (18) |
H9A—C9—H9C | 109.5 | C1—O1—Cd | 97.9 (3) |
H9B—C9—H9C | 109.5 | C1—O2—Cd | 85.3 (3) |
O4—C10—C11 | 109.4 (4) | C3—O3—C2 | 119.1 (4) |
O4—C10—H10A | 109.8 | C5—O4—C10 | 118.4 (4) |
C11—C10—H10A | 109.8 | C11—O5—Cdi | 89.0 (3) |
O4—C10—H10B | 109.8 | C11—O6—Cdi | 93.2 (3) |
C11—C10—H10B | 109.8 | Cd—O7—H7B | 109.4 |
H10A—C10—H10B | 108.3 | Cd—O7—H7C | 109.2 |
O5—C11—O6 | 122.5 (5) | H7B—O7—H7C | 109.7 |
O5—C11—C10 | 121.9 (5) | Cd—O8—H8C | 109.3 |
O6—C11—C10 | 115.6 (5) | Cd—O8—H8D | 109.2 |
O5—C11—Cdi | 63.6 (3) | H8C—O8—H8D | 109.6 |
O6—C11—Cdi | 59.0 (3) | Cd—O9—H9E | 109.2 |
C10—C11—Cdi | 173.6 (4) | Cd—O9—H9F | 109.1 |
O9—Cd—O7 | 167.09 (14) | H9E—O9—H9F | 109.7 |
O9—Cd—O1 | 85.66 (14) | H10C—O10—H10D | 109.6 |
O1—C1—C2—O3 | −0.6 (7) | O2—C1—O1—Cd | 0.1 (6) |
O2—C1—C2—O3 | 177.9 (4) | C2—C1—O1—Cd | 178.5 (4) |
O3—C3—C4—C5 | 179.3 (4) | O9—Cd—O1—C1 | 85.5 (3) |
C8—C3—C4—C5 | −0.3 (7) | O7—Cd—O1—C1 | −86.4 (3) |
C3—C4—C5—O4 | −179.9 (4) | O6ii—Cd—O1—C1 | −172.1 (3) |
C3—C4—C5—C6 | 0.1 (7) | O8—Cd—O1—C1 | −3.7 (4) |
O4—C5—C6—C7 | 179.5 (4) | O5ii—Cd—O1—C1 | 174.1 (3) |
C4—C5—C6—C7 | −0.5 (7) | O2—Cd—O1—C1 | −0.1 (3) |
C5—C6—C7—C8 | 0.9 (7) | C11ii—Cd—O1—C1 | 178.1 (3) |
C5—C6—C7—C9 | 179.4 (5) | O1—C1—O2—Cd | −0.1 (5) |
C6—C7—C8—C3 | −1.1 (7) | C2—C1—O2—Cd | −178.5 (4) |
C9—C7—C8—C3 | −179.6 (5) | O9—Cd—O2—C1 | −89.1 (3) |
O3—C3—C8—C7 | −178.9 (4) | O7—Cd—O2—C1 | 87.6 (3) |
C4—C3—C8—C7 | 0.8 (7) | O1—Cd—O2—C1 | 0.1 (3) |
O4—C10—C11—O5 | −3.2 (7) | O6ii—Cd—O2—C1 | 168.9 (3) |
O4—C10—C11—O6 | 175.4 (4) | O8—Cd—O2—C1 | 177.3 (3) |
O1—C1—Cd—O9 | −92.1 (3) | O5ii—Cd—O2—C1 | −10.6 (4) |
O2—C1—Cd—O9 | 88.0 (3) | C4—C3—O3—C2 | 14.2 (7) |
O1—C1—Cd—O7 | 90.6 (3) | C8—C3—O3—C2 | −166.1 (4) |
O2—C1—Cd—O7 | −89.3 (3) | C1—C2—O3—C3 | 175.6 (4) |
O2—C1—Cd—O1 | −179.9 (5) | C4—C5—O4—C10 | 5.6 (7) |
O1—C1—Cd—O8 | 177.1 (3) | C6—C5—O4—C10 | −174.4 (4) |
O2—C1—Cd—O8 | −2.8 (3) | C11—C10—O4—C5 | −179.0 (4) |
O1—C1—Cd—O5ii | −6.8 (4) | O6—C11—O5—Cdi | −2.4 (5) |
O2—C1—Cd—O5ii | 173.3 (3) | C10—C11—O5—Cdi | 176.1 (4) |
O1—C1—Cd—O2 | 179.9 (5) | O5—C11—O6—Cdi | 2.5 (5) |
O1—C1—Cd—C11ii | −3.0 (5) | C10—C11—O6—Cdi | −176.1 (4) |
O2—C1—Cd—C11ii | 177.1 (3) |
Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7B···O8iii | 0.85 | 2.08 | 2.875 (5) | 156 |
O7—H7C···O5iv | 0.85 | 2.00 | 2.846 (5) | 174 |
O8—H8C···O9v | 0.85 | 2.51 | 3.263 (5) | 148 |
O8—H8C···O10vi | 0.85 | 2.38 | 3.008 (7) | 131 |
O8—H8D···O2v | 0.85 | 2.14 | 2.808 (5) | 136 |
O9—H9E···O1vii | 0.85 | 1.92 | 2.752 (5) | 165 |
O9—H9F···O10viii | 0.85 | 2.10 | 2.659 (6) | 123 |
O10—H10C···O6 | 0.85 | 2.08 | 2.731 (6) | 133 |
O10—H10D···O2vi | 0.85 | 1.95 | 2.793 (6) | 170 |
Symmetry codes: (iii) −x−1, −y, −z+2; (iv) −x, −y+1, −z+1; (v) −x, −y, −z+2; (vi) −x, −y, −z+1; (vii) −x, −y+1, −z+2; (viii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C11H10O6)(H2O)3]·H2O |
Mr | 422.66 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.3792 (11), 8.6946 (12), 11.9495 (17) |
α, β, γ (°) | 85.294 (19), 82.52 (2), 88.44 (2) |
V (Å3) | 757.47 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.49 |
Crystal size (mm) | 0.24 × 0.08 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.717, 0.971 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5397, 2647, 2121 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.093, 0.98 |
No. of reflections | 2647 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.75 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000).
Cd—O9 | 2.262 (4) | Cd—O8 | 2.381 (4) |
Cd—O7 | 2.297 (4) | Cd—O5i | 2.432 (4) |
Cd—O1 | 2.303 (3) | Cd—O2 | 2.573 (4) |
Cd—O6i | 2.331 (4) | ||
O9—Cd—O7 | 167.09 (14) | O6i—Cd—O8 | 80.48 (13) |
O9—Cd—O1 | 85.66 (14) | O9—Cd—O5i | 88.92 (13) |
O9—Cd—O8 | 92.24 (14) | O9—Cd—O2 | 83.86 (14) |
O7—Cd—O8 | 88.31 (14) | O8—Cd—O2 | 77.69 (12) |
O1—Cd—O8 | 130.96 (13) | O5i—Cd—O2 | 146.90 (12) |
O1—C1—C2—O3 | −0.6 (7) | C4—C3—O3—C2 | 14.2 (7) |
O4—C10—C11—O5 | −3.2 (7) | C4—C5—O4—C10 | 5.6 (7) |
Symmetry code: (i) x−1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7B···O8ii | 0.85 | 2.08 | 2.875 (5) | 156.4 |
O7—H7C···O5iii | 0.85 | 2.00 | 2.846 (5) | 173.8 |
O8—H8C···O9iv | 0.85 | 2.51 | 3.263 (5) | 148.0 |
O8—H8C···O10v | 0.85 | 2.38 | 3.008 (7) | 131.0 |
O8—H8D···O2iv | 0.85 | 2.14 | 2.808 (5) | 135.8 |
O9—H9E···O1vi | 0.85 | 1.92 | 2.752 (5) | 164.9 |
O9—H9F···O10vii | 0.85 | 2.10 | 2.659 (6) | 123.3 |
O10—H10C···O6 | 0.85 | 2.08 | 2.731 (6) | 132.6 |
O10—H10D···O2v | 0.85 | 1.95 | 2.793 (6) | 169.5 |
Symmetry codes: (ii) −x−1, −y, −z+2; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z+2; (v) −x, −y, −z+1; (vi) −x, −y+1, −z+2; (vii) x, y, z+1. |
Acknowledgements
This work was funded by the Doctoral Research Launch Foundation of Anhui Normal University and the Youth Research Foundation of Anhui Normal University (grant No. 2006xqn64).
References
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. (2004). Eur. J. Inorg. Chem. pp. 4686–4695. CSD CrossRef Google Scholar
Hong, X.-L., Bai, J., Song, Y., Li, Y.-Z. & Pan, Y. (2006). Eur. J. Inorg. Chem. pp. 3659–3666. Web of Science CSD CrossRef Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Janiak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Russell, V., Craig, D., Scudder, M. & Dance, I. (2001). CrystEngComm, 3, 96–106. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular self-assembly of coordination polymers have been one of the areas of rapid growth in chemistry recently, owing to their intriguing molecular topologies and useful properties, such as molecular recognition, electronic, optical, magnetic and catalytic properties (Janiak, 2003; Kitagawa et al., 2004). Generally, the structure of such a molecular architecture is governed by coordination interaction and other non-covalent interactions such as hydrogen bonding and π-π stacking as well as the conformations of ligands depending on their rigidity and flexibility (Russell et al., 2001; Moulton & Zaworotko, 2001; Burrows et al., 2004). To date, there is a great research interest focused on the coordination interaction, hydrogen bonding and π-π stacking as well as the rigidity of ligands, whereas there is scant attention to the influence of the flexibility of ligands on the structure of coordination polymer. In order to further understand the role of the flexibility of ligands in the self-assembly of coordination polymers, we have designed and synthesized a ligand bearing the flexible group, 2,2'-(5-methyl-1,3-phenylenedioxy)diacetic acid (abbreviated to H25-mpdoa), and employed it with CdII ion to assemble the title coordination polymer, (I), [Cd(5-mpdoa)(H2O)3]n.nH2O.
As shown in Fig. 1, the coordination geometry of the CdII atom is a distorted pentagonal bipyramid. The equatorial positions are occupied by four carboxyl O atoms (O1, O2, O5i, O6i, symmetry code (i) x - 1, y, z + 1) from two symmetry related 5-mpdoa ligands and the aqua O8 atom. The aqua O7 and O9 atoms are located at the axial vertices of the pentagonal bipyramid. Both two carboxylate groups of the 5-mpdoa ligands, O1/C1/O2 and O5i/C11i/O6i, chelate the CdIIatom in the same mode. The O5/C11/O6 carboxylate is almost coplanar with the benzene ring C3—C8, whereas the O1/C1/O2 carboxylate has a slightly twisted from the benzene ring with the dihedral angle of 10.7 (7)°. Due to the flexibility of the molecule induced by the σ-rotation of the C—O bond (selected torsion angles are listed in Table 1), the 5-mpdoa ligand adopts a W-shape conformation.
The 5-mpdoa ligands connect the neighbouring CdII atoms in a head-to-tail mode to construct an infinite zigzag chain which runs along the [101] direction. Such a supramolecular geometry could be regarded as a result of the cooperation of coordination interaction, the symmetry and the flexibility of ligand molecule as well as the hydrogen bonds. All zigzag chains are packing together through an amount of hydrogen bonding interactions between the carboxyl O atoms, the aqua ligands and the lattice water molecules (Fig. 2, Table 2). The shortest center-center distance between two adjacent benzene rings of the different chains is 4.997 (15) Å, indicating no interchain π-π interaction of 5-mpdoa (Janiak et al., 2000).