metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m280-m281

A one-dimensional zigzag coordination polymer: catena-poly[[[tri­aqua­cadmium(II)]-[μ-2,2′-(5-methyl-1,3-phenyl­enedi­­oxy)di­acetato-κ4O,O′:O′′,O′′′]] monohydrate]

aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: zht2006@mail.ahnu.edu.cn

(Received 21 November 2007; accepted 21 December 2007; online 4 January 2008)

In the title one-dimensional coordination polymer, {[Cd(C11H10O6)(H2O)3]·H2O}n, the 2,2′-(5-methyl-1,3-phenyl­enedi­oxy)diacetate dianions connect CdII ions in a head-to-tail fashion to generate zigzag chains. The coordination geometry of the Cd atom is distorted penta­gonal bipyramidal. There are O—H⋯O hydrogen bonds between the carboxyl O atoms, the aqua ligands and the uncoordinated water mol­ecules.

Related literature

For related literature on coordination polymers, see: Burrows et al. (2004[Burrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. (2004). Eur. J. Inorg. Chem. pp. 4686-4695.]); Hong et al. (2006[Hong, X.-L., Bai, J., Song, Y., Li, Y.-Z. & Pan, Y. (2006). Eur. J. Inorg. Chem. pp. 3659-3666.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.], 2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Russell et al. (2001[Russell, V., Craig, D., Scudder, M. & Dance, I. (2001). CrystEngComm, 3, 96-106.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C11H10O6)(H2O)3]·H2O

  • Mr = 422.66

  • Triclinic, [P \overline 1]

  • a = 7.3792 (11) Å

  • b = 8.6946 (12) Å

  • c = 11.9495 (17) Å

  • α = 85.294 (19)°

  • β = 82.52 (2)°

  • γ = 88.44 (2)°

  • V = 757.47 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 298 (2) K

  • 0.24 × 0.08 × 0.02 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.717, Tmax = 0.971

  • 5397 measured reflections

  • 2647 independent reflections

  • 2121 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.093

  • S = 0.98

  • 2647 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd—O9 2.262 (4)
Cd—O7 2.297 (4)
Cd—O1 2.303 (3)
Cd—O6i 2.331 (4)
Cd—O8 2.381 (4)
Cd—O5i 2.432 (4)
Cd—O2 2.573 (4)
O9—Cd—O7 167.09 (14)
O9—Cd—O1 85.66 (14)
O9—Cd—O8 92.24 (14)
O7—Cd—O8 88.31 (14)
O1—Cd—O8 130.96 (13)
O6i—Cd—O8 80.48 (13)
O9—Cd—O5i 88.92 (13)
O9—Cd—O2 83.86 (14)
O8—Cd—O2 77.69 (12)
O5i—Cd—O2 146.90 (12)
Symmetry code: (i) x-1, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O8ii 0.85 2.08 2.875 (5) 156
O7—H7C⋯O5iii 0.85 2.00 2.846 (5) 174
O8—H8C⋯O9iv 0.85 2.51 3.263 (5) 148
O8—H8C⋯O10v 0.85 2.38 3.008 (7) 131
O8—H8D⋯O2iv 0.85 2.14 2.808 (5) 136
O9—H9E⋯O1vi 0.85 1.92 2.752 (5) 165
O9—H9F⋯O10vii 0.85 2.10 2.659 (6) 123
O10—H10C⋯O6 0.85 2.08 2.731 (6) 133
O10—H10D⋯O2v 0.85 1.95 2.793 (6) 170
Symmetry codes: (ii) -x-1, -y, -z+2; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z+2; (v) -x, -y, -z+1; (vi) -x, -y+1, -z+2; (vii) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular self-assembly of coordination polymers have been one of the areas of rapid growth in chemistry recently, owing to their intriguing molecular topologies and useful properties, such as molecular recognition, electronic, optical, magnetic and catalytic properties (Janiak, 2003; Kitagawa et al., 2004). Generally, the structure of such a molecular architecture is governed by coordination interaction and other non-covalent interactions such as hydrogen bonding and π-π stacking as well as the conformations of ligands depending on their rigidity and flexibility (Russell et al., 2001; Moulton & Zaworotko, 2001; Burrows et al., 2004). To date, there is a great research interest focused on the coordination interaction, hydrogen bonding and π-π stacking as well as the rigidity of ligands, whereas there is scant attention to the influence of the flexibility of ligands on the structure of coordination polymer. In order to further understand the role of the flexibility of ligands in the self-assembly of coordination polymers, we have designed and synthesized a ligand bearing the flexible group, 2,2'-(5-methyl-1,3-phenylenedioxy)diacetic acid (abbreviated to H25-mpdoa), and employed it with CdII ion to assemble the title coordination polymer, (I), [Cd(5-mpdoa)(H2O)3]n.nH2O.

As shown in Fig. 1, the coordination geometry of the CdII atom is a distorted pentagonal bipyramid. The equatorial positions are occupied by four carboxyl O atoms (O1, O2, O5i, O6i, symmetry code (i) x - 1, y, z + 1) from two symmetry related 5-mpdoa ligands and the aqua O8 atom. The aqua O7 and O9 atoms are located at the axial vertices of the pentagonal bipyramid. Both two carboxylate groups of the 5-mpdoa ligands, O1/C1/O2 and O5i/C11i/O6i, chelate the CdIIatom in the same mode. The O5/C11/O6 carboxylate is almost coplanar with the benzene ring C3—C8, whereas the O1/C1/O2 carboxylate has a slightly twisted from the benzene ring with the dihedral angle of 10.7 (7)°. Due to the flexibility of the molecule induced by the σ-rotation of the C—O bond (selected torsion angles are listed in Table 1), the 5-mpdoa ligand adopts a W-shape conformation.

The 5-mpdoa ligands connect the neighbouring CdII atoms in a head-to-tail mode to construct an infinite zigzag chain which runs along the [101] direction. Such a supramolecular geometry could be regarded as a result of the cooperation of coordination interaction, the symmetry and the flexibility of ligand molecule as well as the hydrogen bonds. All zigzag chains are packing together through an amount of hydrogen bonding interactions between the carboxyl O atoms, the aqua ligands and the lattice water molecules (Fig. 2, Table 2). The shortest center-center distance between two adjacent benzene rings of the different chains is 4.997 (15) Å, indicating no interchain π-π interaction of 5-mpdoa (Janiak et al., 2000).

Related literature top

For related literature on coordination polymers, see: Burrows et al. (2004); Hong et al. (2006); Janiak (2000, 2003); Kitagawa et al. (2004); Moulton & Zaworotko (2001); Russell et al. (2001).

Experimental top

The H25-mpdoa ligand, 2,2'-(5-methyl-1,3-phenylenedioxy)diacetic acid, was synthesized from 5-methylbenzene-1,3-diol and 2-chloroacetic acid according to a literature method reported by Hong et al. (2006). Cd(CH3COO)2.2(H2O) (26.8 mg, 0.10 mmol) and H25-mpdoa (24.0 mg, 0.10 mmol) were dissolved in 10 ml water. The resulting yellow solution was filtered and the filtrate was left at room temperature. Yellow column-like crystals were obtained (25.5 mg, yield ca 60%) after several weeks by slow evaporation of the solvent.

Refinement top

All non-hydrogen atoms were refined anisotropically. H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model with C—H distances of 0.93–0.97 Å. All hydrogen atoms of the water molecules were located in difference maps at an intermediate stage of the refinement and were then treated as riding, with O—H=0.85 (3) Å. In all cases, the H-atom Uiso(H) is 1.2 times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. A drawing of the asymmetric unit of (I) (solid line portion) with displacement ellipsoids at the 30% probability level. [symmetry code: (i) x - 1, y, z + 1].
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the c axis. Dotted lines show O—H···O hydrogen bonds. All hydrogen atoms have been omitted for clarity.
catena-poly[[[triaquacadmium(II)]-[µ-2,2'-(5-methyl-1,3- phenylenedioxy)diacetato-κ4O,O':O'',O''']] monohydrate] top
Crystal data top
[Cd(C11H10O6)(H2O)3]·H2OZ = 2
Mr = 422.66F(000) = 424
Triclinic, P1Dx = 1.853 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3792 (11) ÅCell parameters from 1908 reflections
b = 8.6946 (12) Åθ = 2.4–25.5°
c = 11.9495 (17) ŵ = 1.49 mm1
α = 85.294 (19)°T = 298 K
β = 82.52 (2)°Column, yellow
γ = 88.44 (2)°0.24 × 0.08 × 0.02 mm
V = 757.47 (19) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2647 independent reflections
Radiation source: fine-focus sealed tube2121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.717, Tmax = 0.971k = 1010
5397 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0479P)2]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cd(C11H10O6)(H2O)3]·H2Oγ = 88.44 (2)°
Mr = 422.66V = 757.47 (19) Å3
Triclinic, P1Z = 2
a = 7.3792 (11) ÅMo Kα radiation
b = 8.6946 (12) ŵ = 1.49 mm1
c = 11.9495 (17) ÅT = 298 K
α = 85.294 (19)°0.24 × 0.08 × 0.02 mm
β = 82.52 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2647 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2121 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.971Rint = 0.037
5397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.98Δρmax = 0.41 e Å3
2647 reflectionsΔρmin = 0.75 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0333 (7)0.3276 (6)0.8172 (4)0.0364 (12)
C20.0773 (7)0.3784 (6)0.7048 (4)0.0357 (12)
H2A0.20520.35110.70700.043*
H2B0.03460.32670.64450.043*
C30.1556 (6)0.6127 (6)0.5904 (4)0.0304 (11)
C40.2445 (6)0.5368 (5)0.5016 (4)0.0289 (11)
H40.24220.42980.50220.035*
C50.3370 (6)0.6246 (6)0.4120 (4)0.0301 (11)
C60.3419 (6)0.7843 (6)0.4103 (4)0.0339 (12)
H60.40590.84110.34910.041*
C70.2513 (7)0.8586 (6)0.4997 (5)0.0350 (12)
C80.1596 (7)0.7715 (6)0.5901 (4)0.0358 (12)
H80.09990.82010.65140.043*
C90.2558 (8)1.0326 (6)0.5005 (5)0.0515 (15)
H9A0.14481.07700.47730.061*
H9B0.35831.07150.44920.061*
H9C0.26711.05950.57560.061*
C100.4195 (7)0.4039 (5)0.3083 (4)0.0348 (12)
H10A0.29340.37670.30650.042*
H10B0.46270.34680.37320.042*
C110.5344 (6)0.3625 (7)0.2014 (4)0.0363 (13)
Cd0.24893 (5)0.25748 (4)1.02124 (3)0.03576 (16)
O10.1211 (5)0.4250 (4)0.8748 (3)0.0411 (9)
O20.0333 (5)0.1860 (4)0.8455 (3)0.0499 (10)
O30.0573 (5)0.5399 (4)0.6840 (3)0.0387 (9)
O40.4307 (5)0.5637 (4)0.3184 (3)0.0383 (9)
O50.6157 (5)0.4624 (4)0.1334 (3)0.0455 (9)
O60.5458 (5)0.2198 (4)0.1862 (3)0.0500 (10)
O70.4729 (5)0.2338 (5)0.9073 (3)0.0635 (12)
H7B0.55200.17050.94010.076*
H7C0.52330.32140.89500.076*
O80.2346 (5)0.0167 (4)1.0480 (3)0.0570 (11)
H8C0.16710.05180.99230.069*
H8D0.18960.04301.10880.069*
O90.0139 (5)0.2816 (4)1.0963 (3)0.0580 (11)
H9E0.02620.37541.10860.069*
H9F0.00930.22551.15800.069*
O100.2207 (6)0.0730 (5)0.1980 (4)0.0801 (15)
H10C0.33440.07010.17480.096*
H10D0.17370.01270.18910.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (3)0.047 (3)0.034 (3)0.010 (2)0.003 (2)0.001 (3)
C20.040 (3)0.035 (3)0.031 (3)0.001 (2)0.000 (2)0.002 (2)
C30.030 (3)0.036 (3)0.024 (3)0.004 (2)0.001 (2)0.002 (2)
C40.029 (3)0.027 (3)0.031 (3)0.002 (2)0.003 (2)0.003 (2)
C50.027 (3)0.039 (3)0.025 (3)0.001 (2)0.002 (2)0.003 (2)
C60.030 (3)0.037 (3)0.031 (3)0.005 (2)0.004 (2)0.000 (2)
C70.034 (3)0.030 (3)0.043 (3)0.003 (2)0.010 (2)0.003 (2)
C80.043 (3)0.032 (3)0.032 (3)0.008 (2)0.001 (2)0.008 (2)
C90.050 (4)0.035 (3)0.067 (4)0.002 (3)0.003 (3)0.006 (3)
C100.034 (3)0.036 (3)0.032 (3)0.005 (2)0.004 (2)0.001 (2)
C110.027 (3)0.057 (4)0.026 (3)0.004 (3)0.002 (2)0.007 (3)
Cd0.0367 (2)0.0382 (2)0.0297 (2)0.00158 (16)0.00579 (15)0.00233 (16)
O10.043 (2)0.046 (2)0.030 (2)0.0051 (18)0.0085 (17)0.0003 (17)
O20.059 (3)0.038 (2)0.050 (3)0.0106 (19)0.003 (2)0.0085 (19)
O30.047 (2)0.0324 (19)0.031 (2)0.0022 (16)0.0131 (16)0.0004 (16)
O40.051 (2)0.031 (2)0.029 (2)0.0055 (16)0.0096 (17)0.0030 (16)
O50.045 (2)0.053 (2)0.033 (2)0.0000 (19)0.0115 (17)0.0003 (18)
O60.058 (3)0.040 (2)0.050 (3)0.0003 (19)0.0103 (19)0.0144 (19)
O70.060 (3)0.059 (3)0.072 (3)0.022 (2)0.023 (2)0.023 (2)
O80.047 (2)0.046 (2)0.072 (3)0.0030 (19)0.006 (2)0.005 (2)
O90.070 (3)0.048 (2)0.062 (3)0.001 (2)0.023 (2)0.013 (2)
O100.078 (3)0.047 (3)0.124 (4)0.006 (2)0.044 (3)0.008 (3)
Geometric parameters (Å, º) top
C1—O11.249 (6)C10—O41.409 (5)
C1—O21.250 (6)C10—C111.503 (7)
C1—C21.517 (7)C10—H10A0.9700
C1—Cd2.766 (5)C10—H10B0.9700
C2—O31.413 (6)C11—O51.249 (6)
C2—H2A0.9700C11—O61.268 (6)
C2—H2B0.9700C11—Cdi2.715 (5)
C3—O31.370 (6)Cd—O92.262 (4)
C3—C41.379 (7)Cd—O72.297 (4)
C3—C81.382 (7)Cd—O12.303 (3)
C4—C51.378 (7)Cd—O6ii2.331 (4)
C4—H40.9300Cd—O82.381 (4)
C5—O41.374 (5)Cd—O5ii2.432 (4)
C5—C61.388 (7)Cd—O22.573 (4)
C6—C71.382 (7)O7—H7B0.8489
C6—H60.9300O7—H7C0.8491
C7—C81.379 (7)O8—H8C0.8499
C7—C91.515 (7)O8—H8D0.8492
C8—H80.9300O9—H9E0.8495
C9—H9A0.9600O9—H9F0.8482
C9—H9B0.9600O10—H10C0.8492
C9—H9C0.9600O10—H10D0.8499
O1—C1—O2123.5 (5)O7—Cd—O184.25 (13)
O1—C1—C2120.1 (5)O9—Cd—O6ii100.20 (15)
O2—C1—C2116.4 (5)O7—Cd—O6ii92.61 (15)
O1—C1—Cd55.6 (3)O1—Cd—O6ii148.09 (13)
O2—C1—Cd68.0 (3)O9—Cd—O892.24 (14)
C2—C1—Cd175.5 (4)O7—Cd—O888.31 (14)
O3—C2—C1109.0 (4)O1—Cd—O8130.96 (13)
O3—C2—H2A109.9O6ii—Cd—O880.48 (13)
C1—C2—H2A109.9O9—Cd—O5ii88.92 (13)
O3—C2—H2B109.9O7—Cd—O5ii99.79 (15)
C1—C2—H2B109.9O1—Cd—O5ii93.99 (12)
H2A—C2—H2B108.3O6ii—Cd—O5ii55.16 (12)
O3—C3—C4123.9 (4)O8—Cd—O5ii135.00 (13)
O3—C3—C8114.8 (4)O9—Cd—O283.86 (14)
C4—C3—C8121.3 (5)O7—Cd—O283.67 (14)
C3—C4—C5117.8 (4)O1—Cd—O253.34 (12)
C3—C4—H4121.1O6ii—Cd—O2157.94 (13)
C5—C4—H4121.1O8—Cd—O277.69 (12)
O4—C5—C4123.7 (4)O5ii—Cd—O2146.90 (12)
O4—C5—C6114.6 (4)O9—Cd—C11ii94.48 (14)
C4—C5—C6121.7 (5)O7—Cd—C11ii97.62 (15)
C5—C6—C7119.8 (5)O1—Cd—C11ii121.12 (15)
C5—C6—H6120.1O6ii—Cd—C11ii27.78 (14)
C7—C6—H6120.1O8—Cd—C11ii107.90 (16)
C8—C7—C6118.9 (4)O5ii—Cd—C11ii27.38 (14)
C8—C7—C9120.1 (5)O2—Cd—C11ii174.26 (15)
C6—C7—C9120.9 (5)O9—Cd—C184.11 (15)
C7—C8—C3120.5 (5)O7—Cd—C183.27 (14)
C7—C8—H8119.7O1—Cd—C126.58 (14)
C3—C8—H8119.7O6ii—Cd—C1173.43 (14)
C7—C9—H9A109.5O8—Cd—C1104.43 (15)
C7—C9—H9B109.5O5ii—Cd—C1120.41 (15)
H9A—C9—H9B109.5O2—Cd—C126.77 (13)
C7—C9—H9C109.5C11ii—Cd—C1147.67 (18)
H9A—C9—H9C109.5C1—O1—Cd97.9 (3)
H9B—C9—H9C109.5C1—O2—Cd85.3 (3)
O4—C10—C11109.4 (4)C3—O3—C2119.1 (4)
O4—C10—H10A109.8C5—O4—C10118.4 (4)
C11—C10—H10A109.8C11—O5—Cdi89.0 (3)
O4—C10—H10B109.8C11—O6—Cdi93.2 (3)
C11—C10—H10B109.8Cd—O7—H7B109.4
H10A—C10—H10B108.3Cd—O7—H7C109.2
O5—C11—O6122.5 (5)H7B—O7—H7C109.7
O5—C11—C10121.9 (5)Cd—O8—H8C109.3
O6—C11—C10115.6 (5)Cd—O8—H8D109.2
O5—C11—Cdi63.6 (3)H8C—O8—H8D109.6
O6—C11—Cdi59.0 (3)Cd—O9—H9E109.2
C10—C11—Cdi173.6 (4)Cd—O9—H9F109.1
O9—Cd—O7167.09 (14)H9E—O9—H9F109.7
O9—Cd—O185.66 (14)H10C—O10—H10D109.6
O1—C1—C2—O30.6 (7)O2—C1—O1—Cd0.1 (6)
O2—C1—C2—O3177.9 (4)C2—C1—O1—Cd178.5 (4)
O3—C3—C4—C5179.3 (4)O9—Cd—O1—C185.5 (3)
C8—C3—C4—C50.3 (7)O7—Cd—O1—C186.4 (3)
C3—C4—C5—O4179.9 (4)O6ii—Cd—O1—C1172.1 (3)
C3—C4—C5—C60.1 (7)O8—Cd—O1—C13.7 (4)
O4—C5—C6—C7179.5 (4)O5ii—Cd—O1—C1174.1 (3)
C4—C5—C6—C70.5 (7)O2—Cd—O1—C10.1 (3)
C5—C6—C7—C80.9 (7)C11ii—Cd—O1—C1178.1 (3)
C5—C6—C7—C9179.4 (5)O1—C1—O2—Cd0.1 (5)
C6—C7—C8—C31.1 (7)C2—C1—O2—Cd178.5 (4)
C9—C7—C8—C3179.6 (5)O9—Cd—O2—C189.1 (3)
O3—C3—C8—C7178.9 (4)O7—Cd—O2—C187.6 (3)
C4—C3—C8—C70.8 (7)O1—Cd—O2—C10.1 (3)
O4—C10—C11—O53.2 (7)O6ii—Cd—O2—C1168.9 (3)
O4—C10—C11—O6175.4 (4)O8—Cd—O2—C1177.3 (3)
O1—C1—Cd—O992.1 (3)O5ii—Cd—O2—C110.6 (4)
O2—C1—Cd—O988.0 (3)C4—C3—O3—C214.2 (7)
O1—C1—Cd—O790.6 (3)C8—C3—O3—C2166.1 (4)
O2—C1—Cd—O789.3 (3)C1—C2—O3—C3175.6 (4)
O2—C1—Cd—O1179.9 (5)C4—C5—O4—C105.6 (7)
O1—C1—Cd—O8177.1 (3)C6—C5—O4—C10174.4 (4)
O2—C1—Cd—O82.8 (3)C11—C10—O4—C5179.0 (4)
O1—C1—Cd—O5ii6.8 (4)O6—C11—O5—Cdi2.4 (5)
O2—C1—Cd—O5ii173.3 (3)C10—C11—O5—Cdi176.1 (4)
O1—C1—Cd—O2179.9 (5)O5—C11—O6—Cdi2.5 (5)
O1—C1—Cd—C11ii3.0 (5)C10—C11—O6—Cdi176.1 (4)
O2—C1—Cd—C11ii177.1 (3)
Symmetry codes: (i) x+1, y, z1; (ii) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O8iii0.852.082.875 (5)156
O7—H7C···O5iv0.852.002.846 (5)174
O8—H8C···O9v0.852.513.263 (5)148
O8—H8C···O10vi0.852.383.008 (7)131
O8—H8D···O2v0.852.142.808 (5)136
O9—H9E···O1vii0.851.922.752 (5)165
O9—H9F···O10viii0.852.102.659 (6)123
O10—H10C···O60.852.082.731 (6)133
O10—H10D···O2vi0.851.952.793 (6)170
Symmetry codes: (iii) x1, y, z+2; (iv) x, y+1, z+1; (v) x, y, z+2; (vi) x, y, z+1; (vii) x, y+1, z+2; (viii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C11H10O6)(H2O)3]·H2O
Mr422.66
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3792 (11), 8.6946 (12), 11.9495 (17)
α, β, γ (°)85.294 (19), 82.52 (2), 88.44 (2)
V3)757.47 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.24 × 0.08 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.717, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5397, 2647, 2121
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 0.98
No. of reflections2647
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.75

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000).

Selected geometric parameters (Å, º) top
Cd—O92.262 (4)Cd—O82.381 (4)
Cd—O72.297 (4)Cd—O5i2.432 (4)
Cd—O12.303 (3)Cd—O22.573 (4)
Cd—O6i2.331 (4)
O9—Cd—O7167.09 (14)O6i—Cd—O880.48 (13)
O9—Cd—O185.66 (14)O9—Cd—O5i88.92 (13)
O9—Cd—O892.24 (14)O9—Cd—O283.86 (14)
O7—Cd—O888.31 (14)O8—Cd—O277.69 (12)
O1—Cd—O8130.96 (13)O5i—Cd—O2146.90 (12)
O1—C1—C2—O30.6 (7)C4—C3—O3—C214.2 (7)
O4—C10—C11—O53.2 (7)C4—C5—O4—C105.6 (7)
Symmetry code: (i) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O8ii0.852.082.875 (5)156.4
O7—H7C···O5iii0.852.002.846 (5)173.8
O8—H8C···O9iv0.852.513.263 (5)148.0
O8—H8C···O10v0.852.383.008 (7)131.0
O8—H8D···O2iv0.852.142.808 (5)135.8
O9—H9E···O1vi0.851.922.752 (5)164.9
O9—H9F···O10vii0.852.102.659 (6)123.3
O10—H10C···O60.852.082.731 (6)132.6
O10—H10D···O2v0.851.952.793 (6)169.5
Symmetry codes: (ii) x1, y, z+2; (iii) x, y+1, z+1; (iv) x, y, z+2; (v) x, y, z+1; (vi) x, y+1, z+2; (vii) x, y, z+1.
 

Acknowledgements

This work was funded by the Doctoral Research Launch Foundation of Anhui Normal University and the Youth Research Foundation of Anhui Normal University (grant No. 2006xqn64).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. (2004). Eur. J. Inorg. Chem. pp. 4686–4695.  CSD CrossRef Google Scholar
First citationHong, X.-L., Bai, J., Song, Y., Li, Y.-Z. & Pan, Y. (2006). Eur. J. Inorg. Chem. pp. 3659–3666.  Web of Science CSD CrossRef Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRussell, V., Craig, D., Scudder, M. & Dance, I. (2001). CrystEngComm, 3, 96–106.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m280-m281
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds