organic compounds
1,2-Bis{bis[4-(trifluoromethyl)phenyl]phosphino}ethane
aDepartment of Chemistry, University of Wisconsin – Stevens Point, Stevens Point, WI 54481, USA
*Correspondence e-mail: rtanke@uwsp.edu
Crystals of the title compound, C30H20F12P2 or R2PCH2CH2PR2 (R = 4-C6H4CF3), were inadvertently prepared while attempting to recrystallize a crude sample of trans-Re(Cl)(N2)(R2PCH2CH2PR2)2 from diethyl ether. The molecule lies on a center of inversion. One of the rings lies approximately in the P—C—C—P plane; the dihedral angle is 174.53°.The other ring is not quite perpendicular; the dihedral angle is 71.1°. The compound is isostructural with the R = Ph, 4-C6H4CH3 and 4-C6H4CH2CH3 analogues. It is well known that the basicity of and diphosphines can be altered by changing the electron-donating ability of R; however, the structural parameters for the title compound do not significantly differ from those of the aforementioned substituted-phenyl compounds.
Related literature
For the synthesis of the title compound, see: Chatt et al. (1985). For the crystal structures of similar 1,2-bis(diphenylphosphino)ethane structures, see: Tiekink (2001); Zeller et al. (2003); Zeller & Hunter (2004). For related literature, see: Allman & Goel (1982); Larson (1970); Nordwig et al. (2006); Streuli (1960); Tolman (1970).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536807068547/om2196sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068547/om2196Isup2.hkl
A non-crystalline sample of R2PCH2CH2PR2 [R = 4-Ph—CF3] and a crude sample of trans-Re(Cl)(N2)(R2PCH2CH2PR2)2 [R = 4-Ph—CF3] were prepared according to previously reported methods (Chatt, et al., 1985). Crude trans-Re(Cl)(N2)(R2PCH2CH2PR2)2 was dissolved in a minimum of diethyl ether at 20° C. The yellow-orange solution was filtered and ether was gradually evaporated by passing a slow stream of nitrogen gas through the flask. A mixture of microcrystalline orange solid and pale yellow-orange crystals formed over the course of 4 h. A pale crystal from this mixture was analyzed.
Reflections (11) in the vicinity of the beam stop, with [sin θ/λ] 2 < 0.01, were eliminated from the refinement.
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methylene H atoms, and with Uiso(H) = 1.2 Ueq (C). An extinction correction (Larson, 1970) was applied.
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = -x + 2, -y + 2, -z. |
C30H20F12P2 | F(000) = 676 |
Mr = 670.41 | Dx = 1.516 Mg m−3 |
Monoclinic, P21/n | Melting point: 471 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 15.188 (11) Å | Cell parameters from 4592 reflections |
b = 5.402 (4) Å | θ = 2.3–27.2° |
c = 18.123 (13) Å | µ = 0.25 mm−1 |
β = 99.044 (9)° | T = 208 K |
V = 1468.3 (19) Å3 | Block, colorless |
Z = 2 | 0.40 × 0.10 × 0.10 mm |
Bruker SMART APEXII diffractometer | 3240 independent reflections |
Radiation source: fine-focus sealed tube | 2616 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 27.2°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2006) | h = −19→19 |
Tmin = 0.91, Tmax = 0.98 | k = −4→6 |
9947 measured reflections | l = −23→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.162 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2 + 1.82P] , where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.001 |
3229 reflections | Δρmax = 0.73 e Å−3 |
208 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Extinction correction: Larson (1970), Equation 22 |
0 constraints | Extinction coefficient: 100 (30) |
C30H20F12P2 | V = 1468.3 (19) Å3 |
Mr = 670.41 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.188 (11) Å | µ = 0.25 mm−1 |
b = 5.402 (4) Å | T = 208 K |
c = 18.123 (13) Å | 0.40 × 0.10 × 0.10 mm |
β = 99.044 (9)° |
Bruker SMART APEXII diffractometer | 3240 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2006) | 2616 reflections with I > 2σ(I) |
Tmin = 0.91, Tmax = 0.98 | Rint = 0.044 |
9947 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.73 e Å−3 |
3229 reflections | Δρmin = −0.43 e Å−3 |
208 parameters |
x | y | z | Uiso*/Ueq | ||
F1 | 1.27583 (17) | 0.8551 (5) | 0.42720 (14) | 0.0973 | |
F2 | 1.22595 (19) | 0.5004 (4) | 0.40090 (12) | 0.0933 | |
F3 | 1.15394 (18) | 0.7552 (7) | 0.45867 (12) | 0.1188 | |
F4 | 0.58890 (16) | 0.7965 (6) | 0.11270 (19) | 0.1126 | |
F5 | 0.56328 (18) | 1.1552 (8) | 0.0760 (3) | 0.1601 | |
F6 | 0.59438 (18) | 1.0822 (8) | 0.19080 (19) | 0.1525 | |
C1 | 1.02538 (17) | 0.9577 (5) | 0.03782 (13) | 0.0376 | |
C2 | 1.06731 (16) | 1.0281 (5) | 0.19636 (13) | 0.0366 | |
C3 | 1.12029 (18) | 0.8196 (5) | 0.19746 (14) | 0.0432 | |
C4 | 1.16363 (19) | 0.7219 (6) | 0.26452 (15) | 0.0474 | |
C5 | 1.15250 (17) | 0.8323 (5) | 0.33151 (14) | 0.0422 | |
C6 | 1.1999 (2) | 0.7337 (7) | 0.40384 (16) | 0.0566 | |
C7 | 1.0996 (2) | 1.0400 (6) | 0.33167 (15) | 0.0501 | |
C8 | 1.05801 (19) | 1.1393 (6) | 0.26470 (15) | 0.0466 | |
C9 | 0.89383 (17) | 1.1273 (5) | 0.11969 (14) | 0.0375 | |
C10 | 0.8645 (2) | 0.9282 (6) | 0.15831 (18) | 0.0531 | |
C11 | 0.7744 (2) | 0.8957 (7) | 0.16050 (19) | 0.0600 | |
C12 | 0.71295 (19) | 1.0603 (6) | 0.12370 (17) | 0.0530 | |
C13 | 0.6158 (2) | 1.0234 (9) | 0.1269 (3) | 0.0781 | |
C14 | 0.7406 (2) | 1.2566 (7) | 0.08562 (19) | 0.0587 | |
C15 | 0.83094 (19) | 1.2916 (6) | 0.08420 (17) | 0.0488 | |
P1 | 1.01119 (4) | 1.18369 (12) | 0.11177 (3) | 0.0363 | |
H11 | 1.0876 | 0.9429 | 0.0344 | 0.0451* | |
H12 | 1.0028 | 0.7998 | 0.0503 | 0.0451* | |
H31 | 1.1270 | 0.7433 | 0.1527 | 0.0513* | |
H41 | 1.2006 | 0.5845 | 0.2647 | 0.0539* | |
H71 | 1.0918 | 1.1122 | 0.3768 | 0.0578* | |
H81 | 1.0232 | 1.2810 | 0.2648 | 0.0543* | |
H101 | 0.9059 | 0.8154 | 0.1819 | 0.0610* | |
H111 | 0.7548 | 0.7643 | 0.1868 | 0.0685* | |
H141 | 0.6989 | 1.3674 | 0.0614 | 0.0680* | |
H151 | 0.8499 | 1.4260 | 0.0587 | 0.0563* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0832 (16) | 0.114 (2) | 0.0773 (15) | −0.0152 (14) | −0.0410 (12) | 0.0092 (14) |
F2 | 0.135 (2) | 0.0749 (15) | 0.0578 (13) | 0.0188 (14) | −0.0231 (13) | 0.0109 (11) |
F3 | 0.0998 (19) | 0.211 (3) | 0.0491 (12) | 0.057 (2) | 0.0224 (12) | 0.0483 (17) |
F4 | 0.0612 (14) | 0.128 (2) | 0.155 (3) | −0.0417 (15) | 0.0383 (15) | −0.065 (2) |
F5 | 0.0438 (14) | 0.213 (4) | 0.219 (4) | 0.0033 (19) | 0.0043 (19) | 0.058 (3) |
F6 | 0.0792 (17) | 0.252 (4) | 0.143 (3) | −0.069 (2) | 0.0692 (18) | −0.128 (3) |
C1 | 0.0375 (12) | 0.0447 (14) | 0.0301 (12) | −0.0025 (11) | 0.0036 (9) | −0.0012 (10) |
C2 | 0.0352 (12) | 0.0416 (13) | 0.0321 (11) | −0.0035 (10) | 0.0022 (9) | −0.0015 (10) |
C3 | 0.0476 (14) | 0.0499 (15) | 0.0306 (12) | 0.0024 (12) | 0.0015 (10) | −0.0059 (11) |
C4 | 0.0480 (15) | 0.0504 (16) | 0.0419 (14) | 0.0086 (12) | 0.0012 (11) | −0.0001 (12) |
C5 | 0.0368 (13) | 0.0543 (16) | 0.0338 (12) | −0.0062 (11) | 0.0003 (10) | 0.0016 (11) |
C6 | 0.0545 (17) | 0.076 (2) | 0.0371 (14) | 0.0052 (16) | −0.0006 (13) | 0.0024 (14) |
C7 | 0.0527 (16) | 0.0644 (19) | 0.0323 (13) | 0.0042 (14) | 0.0036 (11) | −0.0087 (12) |
C8 | 0.0488 (15) | 0.0506 (16) | 0.0396 (14) | 0.0089 (12) | 0.0043 (11) | −0.0060 (12) |
C9 | 0.0380 (12) | 0.0408 (13) | 0.0330 (12) | −0.0019 (10) | 0.0041 (10) | −0.0020 (10) |
C10 | 0.0447 (15) | 0.0549 (18) | 0.0584 (17) | −0.0033 (13) | 0.0041 (13) | 0.0165 (14) |
C11 | 0.0525 (17) | 0.066 (2) | 0.0627 (19) | −0.0154 (15) | 0.0142 (15) | 0.0084 (16) |
C12 | 0.0403 (14) | 0.068 (2) | 0.0514 (16) | −0.0054 (14) | 0.0108 (12) | −0.0176 (15) |
C13 | 0.0438 (18) | 0.106 (3) | 0.087 (3) | −0.011 (2) | 0.0157 (18) | −0.029 (2) |
C14 | 0.0437 (16) | 0.067 (2) | 0.0638 (19) | 0.0105 (15) | 0.0027 (14) | 0.0007 (16) |
C15 | 0.0469 (15) | 0.0491 (16) | 0.0507 (16) | 0.0045 (13) | 0.0090 (12) | 0.0101 (13) |
P1 | 0.0368 (4) | 0.0389 (4) | 0.0320 (3) | −0.0041 (3) | 0.0022 (2) | 0.0012 (2) |
F1—C6 | 1.336 (4) | C2—C3 | 1.383 (4) |
F2—C6 | 1.324 (4) | C2—C8 | 1.403 (4) |
F3—C6 | 1.307 (4) | C2—P1 | 1.836 (3) |
F4—C13 | 1.305 (5) | C3—C4 | 1.392 (4) |
F5—C13 | 1.328 (6) | C3—H31 | 0.930 |
F6—C13 | 1.290 (5) | C4—C5 | 1.387 (4) |
H101—C10 | 0.930 | C5—C6 | 1.492 (4) |
H111—C11 | 0.930 | C5—C7 | 1.380 (4) |
H141—C14 | 0.930 | C7—C8 | 1.385 (4) |
H151—C15 | 0.930 | C9—C10 | 1.394 (4) |
H41—C4 | 0.930 | C9—C15 | 1.386 (4) |
H71—C7 | 0.930 | C9—P1 | 1.836 (3) |
H81—C8 | 0.930 | C10—C11 | 1.386 (4) |
C1—C1i | 1.533 (5) | C11—C12 | 1.383 (5) |
C1—P1 | 1.850 (3) | C12—C13 | 1.499 (5) |
C1—H11 | 0.960 | C12—C14 | 1.367 (5) |
C1—H12 | 0.960 | C14—C15 | 1.389 (4) |
C1i—C1—P1 | 110.6 (2) | C7—C8—H81 | 119.9 |
C1i—C1—H11 | 109.3 | C10—C9—C15 | 118.4 (3) |
P1—C1—H11 | 109.2 | C10—C9—P1 | 123.9 (2) |
C1i—C1—H12 | 109.1 | C15—C9—P1 | 117.7 (2) |
P1—C1—H12 | 109.2 | C9—C10—H101 | 119.3 |
H11—C1—H12 | 109.5 | C9—C10—C11 | 120.5 (3) |
C3—C2—C8 | 118.3 (2) | H101—C10—C11 | 120.2 |
C3—C2—P1 | 125.28 (19) | C10—C11—H111 | 120.6 |
C8—C2—P1 | 116.3 (2) | C10—C11—C12 | 120.0 (3) |
C2—C3—C4 | 121.0 (2) | H111—C11—C12 | 119.4 |
C2—C3—H31 | 119.5 | C11—C12—C13 | 119.3 (3) |
C4—C3—H31 | 119.5 | C11—C12—C14 | 120.3 (3) |
C3—C4—H41 | 120.6 | C13—C12—C14 | 120.4 (3) |
C3—C4—C5 | 119.7 (3) | C12—C13—F5 | 112.9 (4) |
H41—C4—C5 | 119.7 | C12—C13—F4 | 113.4 (3) |
C4—C5—C6 | 120.5 (3) | F5—C13—F4 | 103.3 (4) |
C4—C5—C7 | 120.2 (2) | C12—C13—F6 | 113.0 (3) |
C6—C5—C7 | 119.3 (3) | F5—C13—F6 | 106.4 (4) |
C5—C6—F1 | 112.1 (3) | F4—C13—F6 | 107.0 (4) |
C5—C6—F2 | 114.2 (3) | H141—C14—C12 | 119.8 |
F1—C6—F2 | 103.4 (3) | H141—C14—C15 | 120.4 |
C5—C6—F3 | 113.2 (3) | C12—C14—C15 | 119.8 (3) |
F1—C6—F3 | 104.7 (3) | C14—C15—C9 | 121.0 (3) |
F2—C6—F3 | 108.3 (3) | C14—C15—H151 | 119.9 |
C5—C7—H71 | 119.8 | C9—C15—H151 | 119.1 |
C5—C7—C8 | 119.9 (3) | C1—P1—C2 | 102.20 (13) |
H71—C7—C8 | 120.3 | C1—P1—C9 | 99.93 (12) |
C2—C8—C7 | 120.8 (3) | C2—P1—C9 | 100.83 (13) |
C2—C8—H81 | 119.3 | ||
C2—P1—C1—C1i | 174.53 (18) | C7—C5—C6—F2 | 160.7 (3) |
C9—P1—C1—C1i | 71.1 (2) | C4—C5—C6—F3 | −146.1 (3) |
C2—P1—C9—C10 | −25.8 (3) | C7—C5—C6—F1 | −82.2 (3) |
C1—P1—C2—C3 | 11.2 (3) | C7—C5—C6—F3 | 36.0 (4) |
C9—P1—C2—C3 | 113.9 (2) | C5—C7—C8—C2 | 1.4 (5) |
C1—P1—C2—C8 | −171.8 (2) | P1—C9—C10—C11 | −178.7 (2) |
C9—P1—C2—C8 | −69.1 (2) | C15—C9—C10—C11 | 0.4 (4) |
C1—P1—C9—C15 | −100.4 (2) | P1—C9—C15—C14 | 177.9 (2) |
C1—P1—C9—C10 | 78.8 (3) | C10—C9—C15—C14 | −1.3 (4) |
C2—P1—C9—C15 | 155.1 (2) | C9—C10—C11—C12 | 0.5 (5) |
P1—C1—C1i—P1i | 179.98 (16) | C10—C11—C12—C13 | −179.7 (4) |
P1—C2—C3—C4 | 176.8 (2) | C10—C11—C12—C14 | −0.6 (5) |
C3—C2—C8—C7 | −1.1 (4) | C11—C12—C13—F4 | −47.9 (5) |
C8—C2—C3—C4 | −0.1 (4) | C11—C12—C13—F5 | −165.0 (4) |
P1—C2—C8—C7 | −178.4 (2) | C11—C12—C13—F6 | 74.1 (5) |
C2—C3—C4—C5 | 1.1 (4) | C14—C12—C13—F4 | 133.0 (4) |
C3—C4—C5—C7 | −0.8 (4) | C14—C12—C13—F5 | 15.8 (6) |
C3—C4—C5—C6 | −178.7 (3) | C14—C12—C13—F6 | −105.0 (5) |
C4—C5—C6—F1 | 95.7 (4) | C11—C12—C14—C15 | −0.3 (5) |
C4—C5—C6—F2 | −21.5 (4) | C13—C12—C14—C15 | 178.8 (3) |
C4—C5—C7—C8 | −0.4 (4) | C12—C14—C15—C9 | 1.3 (5) |
C6—C5—C7—C8 | 177.5 (3) |
Symmetry code: (i) −x+2, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C30H20F12P2 |
Mr | 670.41 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 208 |
a, b, c (Å) | 15.188 (11), 5.402 (4), 18.123 (13) |
β (°) | 99.044 (9) |
V (Å3) | 1468.3 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.40 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2006) |
Tmin, Tmax | 0.91, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9947, 3240, 2616 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.644 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.162, 0.95 |
No. of reflections | 3229 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.73, −0.43 |
Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
R | C-P-C | Σ C-P-C | P-Cethyl | P-CR |
p-Ph-CF3a | 100.79, 102.15,99.96 | 302.90 | 1.854 | 1.838 |
Phb | 100.219,102.369,101.047 | 303.64 | 1.844 | 1.832 |
p-Ph-CH3c | 98.668,101.864,102.985 | 303.52 | 1.849 | 1.821 |
p-Ph-CH2CH3d | 99.719,102.754,101.37 | 303.84 | 1.85 | 1.83 |
CH3e | 98.869,99.665,98.872 | 297.3 | 1.848 | 1.836 |
CH2CH3e | 99.272,99.491,100.206 | 298.5 | 1.845 | 1.843 |
CH(CH3)2e | 101.184,100.805,102.235 | 304.2 | 1.86 | 1.86 |
C(CH3)3f | 100.990,103.197,110.350 | 314.5 | 1.86 | 1.89 |
Notes: (a) This work; (b) Tiekink (2001); (c) Zeller et al. (2003); (d) Zeller & Hunter (2004); (e) Bruckmann & Kruger (1997); (f) Eisentrager et al. (2003). |
Acknowledgements
RST acknowledges the Small Molecule X-ray Crystallography Summer School hosted by Professor Arnold Rheingold at the University of California – San Diego and the University of Wisconsin – Stevens Point Letters and Science Foundation and Chemistry Department.
References
Allman, T. & Goel, R. G. (1982). Can. J. Chem. 60, 716–722. CrossRef CAS Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruckmann, J. & Kruger, C. (1997). J. Organomet. Chem. 536–537, 465–472. CSD CrossRef Web of Science Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chatt, J., Hussain, W., Leigh, G. J., Modh Ali, H., Pickett, C. J. & Rankin, D. A. (1985). J. Chem. Soc. Dalton Trans. pp. 1131–1136. CrossRef Web of Science Google Scholar
Eisentrager, F., Gothlich, A., Gruber, I., Heiss, H., Kiener, C. A., Kruger, C., Ulrich Notheis, J., Rominger, F., Scherhag, G., Schultz, M., Straub, B. F., Volland, M. A. O. & Hofmann, P. (2003). New J. Chem. 27, 540–550. Web of Science CSD CrossRef Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Nordwig, B. L., Ohlsen, D. J., Beyer, K. D., Wruck, A. S. & Brummer, J. G. (2006). Inorg. Chem. 45, 858–867. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Streuli, C. A. (1960). Anal. Chem. 32, 985–987. CrossRef CAS Web of Science Google Scholar
Tiekink, E. R. T. (2001). Z. Kristallogr. 216, 69–70. CrossRef CAS Google Scholar
Tolman, C. A. (1970). J. Am. Chem. Soc. 92, 2953–2956. CrossRef CAS Web of Science Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
Zeller, M. & Hunter, A. D. (2004). Private communication (refcode FOGGAK). CCDC, Union Road, Cambridge, England. Google Scholar
Zeller, M., Lazich, E., Wagner, T. R. & Hunter, A. D. (2003). Acta Cryst. E59, o1721–o1722. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2-Bis{bis[4-(trifluoromethyl)phenyl]phosphino}ethane was obtained accidently during the recrystallization of trans-Re(Cl)(N2)(R2PCH2CH2PR2)2[R = 4-Ph—CF3] from diethyl ether. We were interested in preparing this complex in order to measure its luminescent properties and then compare them to those for the analogous R = Ph, 4-Ph-OCH3, and CH2CH3 complexes. Our preliminary results indicate that these complexes show simultaneous emission from two excited levels of different orbital parentage. Our intent is to investigate how changes in diphosphine basicity brought about by variations in R influence the bandshape and lifetimes of these emissions thereby allowing us to assign the excited states responsible for luminescence.
The title compound resides on a center of inversion. It is isostructural to its R = Ph, 4-Ph—CH3, and 4-Ph—CH2CH3 analogues. It is well known that the basicity of phosphines and diphosphines can be altered by changing the electron donating ability of R; however, the structural parameters for the title compound do not significantly differ from the aforementioned phenyl substituted compounds.
A summary of the C—P bond distances, C—P—C bond angles, and sums of the C—P—C angles is given in Table 1 for this work and several related diphosphines that contain aromatic and aliphatic substituents. The title compound has nearly identical geoemtric parameters about phosphorus as the other phenyl diphosphines and there appears to be no experimentally significant trends that parallel the electron donating ability of the para-substituent, which follows the order CH3CH2> CH3> H > CF3 (Nordwig et al., 2006; Allman & Goel, 1982; Tolman, 1970; Streuli, 1960). The aromatic diphosphines display Σ C—P—C values of about 303.5° which indicates a pyramidal arrangement of the bonds about phosphorus. The aliphatic diphosphines are more electron donating with the less sterically demanding R = CH3 and CH2CH3 cases giving rise to lower ΣC—P—C values. The R = CH(CH3)2 and C(CH3)3 compounds display larger ΣC—P—C values and longer C—P bond distances due to increased space requirements for these bulkier substituents. Substituent effects for the alkyl substituted compounds have been discussed previously (Bruckmann & Kruger, 1997; Eisentrager et al., 2003).
One of the rings lines approximately in the P—C—C—P plane; the dihedral angle is 174.53°.The other ring is not quite perpendicular; the dihedral angle is 71.1°.