organic compounds
2,3-Difluorobenzoic acid
aUniversity of Virginia, Department of Molecular Physiology and Biological Physics, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
*Correspondence e-mail: maks@iwonka.med.virginia.edu
2,3-Difluorobenzoic acid, C7H4F2O2, forms dimers that are stabilized by hydrogen bonds. The dimers are stacked and the stacks are held together by weak C—H⋯F and C—H⋯O interactions.
Related literature
For related literature, see: Juhler & Mortensen (2002); Malone et al. (2006); Potrzebowski & Chruszcz (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and HKL-3000SM; molecular graphics: HKL-3000SM, Mercury (Macrae et al., 2006), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: HKL-3000SM.
Supporting information
10.1107/S1600536808001232/om2199sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001232/om2199Isup2.hkl
2,3-Difluorobenzoic acid (98%) was purchased from Aldrich, and dissolved in 1-propanol. Single crystals suitable for X-ray diffraction study were obtained by slow evaporation at 293 K.
All hydrogen atoms were localized using the difference density Fourier map. Their positions and isotropic displacement parameters were refined.
Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell
HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); molecular graphics: HKL-3000SM (Minor et al., 2006), Mercury (Macrae et al., 2006), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: HKL-3000SM (Minor et al., 2006).C7H4F2O2 | F(000) = 320 |
Mr = 158.10 | Dx = 1.616 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71074 Å |
Hall symbol: -P 2ybc | Cell parameters from 25713 reflections |
a = 3.761 (1) Å | θ = 3.1–30.0° |
b = 6.520 (1) Å | µ = 0.15 mm−1 |
c = 26.521 (2) Å | T = 293 K |
β = 92.27 (1)° | Plate, colorless |
V = 649.8 (2) Å3 | 0.15 × 0.15 × 0.02 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 1881 independent reflections |
Radiation source: fine-focus sealed tube | 1371 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 10 pixels mm-1 | θmax = 30.0°, θmin = 3.1° |
ω scans with χ offset | h = −5→5 |
Absorption correction: multi-scan (Otwinowski et al., 2003) | k = −9→9 |
Tmin = 0.98, Tmax = 1.00 | l = −37→37 |
25713 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.133 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0665P)2 + 0.0891P] where P = (Fo2 + 2Fc2)/3 |
1881 reflections | (Δ/σ)max < 0.001 |
116 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.13 e Å−3 |
C7H4F2O2 | V = 649.8 (2) Å3 |
Mr = 158.10 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.761 (1) Å | µ = 0.15 mm−1 |
b = 6.520 (1) Å | T = 293 K |
c = 26.521 (2) Å | 0.15 × 0.15 × 0.02 mm |
β = 92.27 (1)° |
Rigaku R-AXIS RAPID diffractometer | 1881 independent reflections |
Absorption correction: multi-scan (Otwinowski et al., 2003) | 1371 reflections with I > 2σ(I) |
Tmin = 0.98, Tmax = 1.00 | Rint = 0.031 |
25713 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.133 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.29 e Å−3 |
1881 reflections | Δρmin = −0.13 e Å−3 |
116 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3028 (3) | 0.18896 (18) | 0.09787 (4) | 0.0453 (3) | |
C2 | 0.3710 (3) | 0.2435 (2) | 0.14793 (5) | 0.0507 (3) | |
C3 | 0.2895 (4) | 0.1088 (2) | 0.18600 (5) | 0.0580 (3) | |
C4 | 0.1428 (4) | −0.0797 (2) | 0.17592 (6) | 0.0607 (4) | |
C5 | 0.0737 (4) | −0.1357 (2) | 0.12626 (6) | 0.0587 (3) | |
C6 | 0.1521 (3) | −0.0033 (2) | 0.08785 (5) | 0.0517 (3) | |
C7 | 0.3892 (3) | 0.32666 (19) | 0.05550 (5) | 0.0485 (3) | |
F1 | 0.5159 (3) | 0.42443 (14) | 0.16134 (3) | 0.0748 (3) | |
F2 | 0.3611 (3) | 0.16829 (19) | 0.23412 (3) | 0.0893 (4) | |
O1 | 0.5592 (3) | 0.48801 (16) | 0.06313 (4) | 0.0673 (3) | |
O2 | 0.2818 (3) | 0.26822 (19) | 0.01143 (4) | 0.0742 (4) | |
H2 | 0.330 (8) | 0.372 (4) | −0.0169 (13) | 0.158 (11)* | |
H4 | 0.090 (5) | −0.174 (3) | 0.2020 (8) | 0.087 (6)* | |
H5 | −0.026 (5) | −0.264 (3) | 0.1183 (7) | 0.079 (5)* | |
H6 | 0.104 (4) | −0.037 (3) | 0.0534 (6) | 0.057 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0441 (6) | 0.0446 (6) | 0.0472 (6) | 0.0012 (5) | 0.0014 (4) | −0.0005 (5) |
C2 | 0.0550 (7) | 0.0465 (6) | 0.0503 (6) | 0.0009 (5) | 0.0003 (5) | −0.0037 (5) |
C3 | 0.0635 (8) | 0.0653 (8) | 0.0451 (6) | 0.0066 (6) | 0.0024 (5) | 0.0018 (6) |
C4 | 0.0593 (7) | 0.0625 (8) | 0.0607 (8) | 0.0018 (6) | 0.0074 (6) | 0.0151 (6) |
C5 | 0.0565 (7) | 0.0494 (7) | 0.0699 (9) | −0.0047 (6) | 0.0003 (6) | 0.0058 (6) |
C6 | 0.0524 (7) | 0.0495 (7) | 0.0529 (7) | −0.0036 (5) | −0.0017 (5) | −0.0021 (5) |
C7 | 0.0503 (6) | 0.0481 (6) | 0.0471 (6) | −0.0027 (5) | 0.0001 (5) | −0.0024 (5) |
F1 | 0.1091 (7) | 0.0572 (5) | 0.0576 (5) | −0.0162 (5) | −0.0039 (5) | −0.0095 (4) |
F2 | 0.1270 (9) | 0.0956 (8) | 0.0449 (5) | −0.0067 (7) | 0.0015 (5) | −0.0011 (5) |
O1 | 0.0901 (7) | 0.0569 (6) | 0.0544 (5) | −0.0240 (5) | −0.0021 (5) | 0.0016 (4) |
O2 | 0.1028 (9) | 0.0728 (7) | 0.0461 (5) | −0.0317 (6) | −0.0058 (5) | 0.0013 (5) |
C1—C2 | 1.3885 (17) | C4—H4 | 0.95 (2) |
C1—C6 | 1.3968 (17) | C5—C6 | 1.376 (2) |
C1—C7 | 1.4842 (17) | C5—H5 | 0.94 (2) |
C2—F1 | 1.3415 (16) | C6—H6 | 0.950 (16) |
C2—C3 | 1.3819 (19) | C7—O1 | 1.2435 (16) |
C3—F2 | 1.3508 (16) | C7—O2 | 1.2796 (15) |
C3—C4 | 1.369 (2) | O2—H2 | 1.03 (3) |
C4—C5 | 1.381 (2) | ||
C2—C1—C6 | 118.03 (12) | C5—C4—H4 | 119.0 (12) |
C2—C1—C7 | 122.09 (11) | C6—C5—C4 | 120.17 (14) |
C6—C1—C7 | 119.88 (11) | C6—C5—H5 | 119.2 (12) |
F1—C2—C3 | 117.71 (12) | C4—C5—H5 | 120.6 (11) |
F1—C2—C1 | 122.43 (12) | C5—C6—C1 | 121.28 (13) |
C3—C2—C1 | 119.86 (12) | C5—C6—H6 | 122.0 (10) |
F2—C3—C4 | 120.41 (13) | C1—C6—H6 | 116.8 (10) |
F2—C3—C2 | 117.76 (14) | O1—C7—O2 | 122.84 (12) |
C4—C3—C2 | 121.82 (13) | O1—C7—C1 | 121.00 (11) |
C3—C4—C5 | 118.84 (13) | O2—C7—C1 | 116.15 (11) |
C3—C4—H4 | 122.2 (12) | C7—O2—H2 | 114.3 (16) |
C6—C1—C2—F1 | 179.84 (11) | C2—C3—C4—C5 | −0.2 (2) |
C7—C1—C2—F1 | 0.6 (2) | C3—C4—C5—C6 | 0.0 (2) |
C6—C1—C2—C3 | −0.03 (19) | C4—C5—C6—C1 | 0.2 (2) |
C7—C1—C2—C3 | −179.23 (12) | C2—C1—C6—C5 | −0.17 (19) |
F1—C2—C3—F2 | 0.0 (2) | C7—C1—C6—C5 | 179.05 (12) |
C1—C2—C3—F2 | 179.88 (12) | C2—C1—C7—O1 | 7.3 (2) |
F1—C2—C3—C4 | −179.64 (13) | C6—C1—C7—O1 | −171.85 (12) |
C1—C2—C3—C4 | 0.2 (2) | C2—C1—C7—O2 | −173.28 (12) |
F2—C3—C4—C5 | −179.87 (13) | C6—C1—C7—O2 | 7.53 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.94 (2) | 2.65 (2) | 3.509 (2) | 153 (2) |
O2—H2···O1ii | 1.03 (3) | 1.60 (3) | 2.625 (2) | 173 (3) |
C6—H6···O2iii | 0.95 (2) | 2.67 (2) | 3.498 (2) | 146 (1) |
C4—H4···F2iv | 0.95 (2) | 2.65 (2) | 3.513 (2) | 151 (2) |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z; (iv) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H4F2O2 |
Mr | 158.10 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 3.761 (1), 6.520 (1), 26.521 (2) |
β (°) | 92.27 (1) |
V (Å3) | 649.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.15 × 0.15 × 0.02 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (Otwinowski et al., 2003) |
Tmin, Tmax | 0.98, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25713, 1881, 1371 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.133, 1.06 |
No. of reflections | 1881 |
No. of parameters | 116 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.29, −0.13 |
Computer programs: HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), HKL-3000SM (Minor et al., 2006), Mercury (Macrae et al., 2006), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997), HKL-3000SM (Minor et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.94 (2) | 2.65 (2) | 3.509 (2) | 153 (2) |
O2—H2···O1ii | 1.03 (3) | 1.60 (3) | 2.625 (2) | 173 (3) |
C6—H6···O2iii | 0.95 (2) | 2.67 (2) | 3.498 (2) | 146 (1) |
C4—H4···F2iv | 0.95 (2) | 2.65 (2) | 3.513 (2) | 151 (2) |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z; (iv) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors thank Matthew D. Zimmerman for helpful discussions. This work was supported by contract GI11496 from HKL Research Inc.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Juhler, R. K. & Mortensen, A. P. (2002). J. Chromatogr. A, 957, 11–16. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Malone, S., Broacha, E., Shaw, D. & Hampton, T. (2006). US Patent 7 032 662. Google Scholar
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Potrzebowski, W. & Chruszcz, M. (2007). Acta Cryst. E63, o2754. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,3-Difluorobenzoic acid (I) (Fig. 1) is used as a tracer for determining the extent of recovery of materials injected into oil wells (Malone et al., 2006) or for observing water movment in soil (Juhler & Mortensen, 2002). 2,3-Difluorobenzoic acid crystallized, like 3,5-difluorobenzoic acid (Potrzebowski & Chruszcz, 2007), in the space group P21/c with one molecule per asymmetric unit. Both (I) and 3,5-difluorobenzoic acid form dimers in the crystal lattice (Fig. 2), but the dimers of the two compounds pack differently. The molecules of (I) pack more tightly in the crystal, as the crystal density is 8% higher than in case of 3,5-difluorobenzoic acid. The dimers of (I) are stabilized by hydrogen bonds (Table 1). The dimers are arranged in stacks that are held together by weak C—H···F and C—H···O interactions (Fig. 2).