organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tri­chloro-2-meth­oxy­benzene

aDepartment of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 14 December 2007; accepted 7 January 2008; online 11 January 2008)

The meth­oxy group of the title compound, C7H5Cl3O, is rotated out of the plane of the aromatic ring system, with a dihedral angle of 84.11 (13)°, due to the two bulky ortho-chloro substituents.

Related literature

For similar structures of anisoles with two ortho-chloro substituents, see: Rissanen et al. (1987[Rissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966-1968.]); Weller & Gerstner (1995[Weller, F. & Gerstner, E. (1995). Z. Kristallogr. 210, 629-629.]); Wieczorek (1980[Wieczorek, M. W. (1980). Acta Cryst. B36, 1515-1517.]). For other related literature, see: Brownlee et al. (1993[Brownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol. 27, 2450-2455.]); Curtis et al. (1972[Curtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223-224.]); Iimura et al. (1984[Iimura, Y., Sakurai, T., Asahi, K.-I., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058-2061.]); Kolehmainen & Knuutinen (1983[Kolehmainen, E. & Knuutinen, J. (1983). Org. Magn. Reson. 21, 388-390.]); Oswald et al. (2005[Oswald, I. D. H., Allan, D. R., Day, G. M., Motherwell, W. D. S. & Parsons, S. (2005). Cryst. Growth Des. 5, 1055-1071.]); Pereira et al. (2000[Pereira, C. S., Marques, J. J. F. & San Romao, M. V. (2000). Crit. Rev. Microbiol. 26, 147-162.]); Rissanen et al. (1988[Rissanen, K., Valkonen, J. & Mannila, B. (1988). Acta Cryst. C44, 684-686.]); Vlachos et al. (2007[Vlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol. 225, 653-663.]); Zhang et al. (2006[Zhang, L., Hu, R. & Yang, Z. (2006). Water Sci. Technol. 54, 335-344.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5Cl3O

  • Mr = 211.46

  • Monoclinic, P 21 /n

  • a = 14.7538 (5) Å

  • b = 3.9846 (2) Å

  • c = 15.4810 (7) Å

  • β = 115.5031 (19)°

  • V = 821.42 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 90.0 (2) K

  • 0.25 × 0.25 × 0.12 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.780, Tmax = 0.885

  • 13489 measured reflections

  • 1888 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.13

  • 1888 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 1994[Sheldrick, G. M. (1994). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELX97 and local procedures.

Supporting information


Comment top

Chlorinated anisoles are persistent environmental pollutants known for their toxicity and tendency to bioaccumulate (Brownlee et al., 1993). Especially anisoles with chlorine substitution in the 2- and 6- position are a well known cause for off-flavors in water, fish and chicken eggs (Brownlee et al., 1993; Curtis et al., 1972; Zhang et al., 2006). The title compound is a major contributor to "cork taint", a well known off-flavor in the wine industry (Pereira et al., 2000; Vlachos et al., 2007). We herin report the molecular structure of the title compound to aid in structure activity relationship (SAR) studies of the toxicity of chlorinated anisoles.

It has been reported that ortho-disubstitution causes drastic changes in the spatial arrangement of the methoxy group of chlorinated anisols, both in solution and in the solid state (Kolehmainen & Knuutinen, 1983; Rissanen et al., 1987). In the title compound, the methoxy group was rotated out of the plane of the phenyl ring with a dihedral angle of 84.11 (13)°. The angle was calculated between the plane of the benzene ring (C1 through C6) and the methoxy group (atoms C1,O1,C7). Comparable anisoles have similar dihedral angles ranging from 76.8 to 92.1° (Iimura et al., 1984; Rissanen et al., 1987; Rissanen et al., 1988; Weller & Gerstner, 1995; Wieczorek, 1980). In contrast, the methoxy group of non-ortho substituted anisoles lies within the plane of the phenyl ring.

The O—CH3 bond length of the title compound (O1—C7: 1.446 (2) Å) was larger compared to non-ortho substituted anisoles, which have a mean bond length of 1.422 Å. Furthermore, the CAr—O—CH3 bond angle of the title compound (C1—O1—C7: 114.60 (15)°) was smaller compared to non-ortho substituted anisoles, which is on average 117.73°. Chlorine disubstitution ortho to an aromatic methoxy group had a similar effect on the O—CH3 bond length and the CAr—O—CH3 bond angles in several structurally related compounds (Iimura et al., 1984; Rissanen et al., 1987; Rissanen et al., 1988; Weller & Gerstner, 1995; Wieczorek, 1980).

Ortho disubstitution forced the methoxy group out of the plane of the aromatic ring, so that the CH3 group (C7) of the title compound was located 1.192 (4) Å above and the O1 atom -0.079 (3)Å below the calculated least-squares plane of the benzene ring. In other, structurally related compounds with ortho dichloro substitution, the O atoms are positioned 0.030 to 0.133 Å below and the methoxy C atoms 1.119 to 1.252 Å above the calculated last-squares plane (Iimura et al., 1984; Rissanen et al., 1987; Rissanen et al., 1988; Weller & Gerstner, 1995; Wieczorek, 1980). Overall, this difference in the spatial arrangement of the methoxy group is thought to explain the off-flavor of anisoles with ortho disubstitution.

Related literature top

For similar structures of anisoles with two ortho-chlorine substituents, see: Rissanen et al. (1987); Weller & Gerstner (1995); Wieczorek (1980). For other related literature, see: Brownlee et al. (1993); Curtis et al. (1972); Iimura et al. (1984); Kolehmainen & Knuutinen (1983); Oswald et al. (2005); Pereira et al. (2000); Rissanen et al. (1988); Vlachos et al. (2007); Zhang et al. (2006).

Experimental top

Crystals of the title compound suitable for crystal structure analysis were obtained from TCI America (Portland, Oregon, USA.).

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (CMeH) and 0.95 Å (CArH) with Uiso(H) values set to either 1.5Ueq (CMeH) or 1.2Ueq (CArH) of the attached C atom respectively.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
1,3,5-Trichloro-2-methoxybenzene top
Crystal data top
C7H5Cl3OF(000) = 424
Mr = 211.46Dx = 1.710 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2156 reflections
a = 14.7538 (5) Åθ = 1.0–27.5°
b = 3.9846 (2) ŵ = 1.05 mm1
c = 15.4810 (7) ÅT = 90 K
β = 115.5031 (19)°Block, colourless
V = 821.42 (6) Å30.25 × 0.25 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1888 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scans at fixed χ = 55°h = 1819
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 55
Tmin = 0.780, Tmax = 0.885l = 2019
13489 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.6499P]
where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H5Cl3OV = 821.42 (6) Å3
Mr = 211.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.7538 (5) ŵ = 1.05 mm1
b = 3.9846 (2) ÅT = 90 K
c = 15.4810 (7) Å0.25 × 0.25 × 0.12 mm
β = 115.5031 (19)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1888 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1558 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.885Rint = 0.020
13489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.13Δρmax = 0.35 e Å3
1888 reflectionsΔρmin = 0.31 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65436 (3)0.31728 (13)0.83292 (3)0.02202 (13)
Cl20.36963 (3)0.90882 (13)0.91077 (3)0.01965 (12)
Cl30.32350 (3)0.84337 (13)0.54775 (3)0.02053 (13)
O10.51708 (9)0.4751 (4)0.63059 (9)0.0189 (3)
C10.48575 (13)0.5887 (5)0.69659 (13)0.0161 (4)
C20.54027 (13)0.5242 (5)0.79404 (13)0.0161 (4)
C30.50643 (13)0.6209 (5)0.86111 (13)0.0162 (4)
H30.54470.57530.92730.019*
C40.41531 (14)0.7858 (5)0.82874 (13)0.0164 (4)
C50.35818 (13)0.8564 (5)0.73309 (13)0.0158 (4)
H50.29580.97050.71260.019*
C60.39426 (13)0.7561 (5)0.66748 (12)0.0147 (4)
C70.58710 (16)0.6940 (6)0.61549 (15)0.0253 (5)
H7A0.55650.91560.59510.038*
H7B0.60390.59880.56590.038*
H7C0.64830.71590.67530.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0146 (2)0.0252 (3)0.0231 (2)0.00407 (19)0.00509 (19)0.0021 (2)
Cl20.0178 (2)0.0266 (3)0.0163 (2)0.00018 (18)0.00906 (18)0.00204 (18)
Cl30.0190 (2)0.0279 (3)0.0139 (2)0.00294 (19)0.00632 (18)0.00251 (18)
O10.0171 (7)0.0230 (8)0.0205 (7)0.0022 (6)0.0119 (6)0.0046 (6)
C10.0160 (9)0.0152 (10)0.0188 (9)0.0037 (7)0.0092 (7)0.0036 (7)
C20.0123 (8)0.0142 (10)0.0208 (9)0.0003 (7)0.0061 (7)0.0008 (7)
C30.0152 (9)0.0177 (10)0.0129 (8)0.0030 (7)0.0035 (7)0.0009 (7)
C40.0177 (9)0.0160 (10)0.0184 (9)0.0037 (7)0.0106 (8)0.0031 (7)
C50.0128 (8)0.0155 (10)0.0192 (9)0.0002 (7)0.0069 (7)0.0005 (7)
C60.0138 (9)0.0168 (10)0.0120 (8)0.0023 (7)0.0040 (7)0.0002 (7)
C70.0273 (11)0.0255 (11)0.0310 (11)0.0054 (9)0.0201 (9)0.0052 (9)
Geometric parameters (Å, º) top
C1—O11.367 (2)Cl3—C61.7264 (18)
C1—C21.394 (3)C4—C51.381 (3)
C1—C61.395 (3)C5—C61.393 (3)
C2—C31.386 (3)C5—H50.9500
C2—Cl11.7329 (19)O1—C71.446 (2)
C3—C41.382 (3)C7—H7A0.9800
C3—H30.9500C7—H7B0.9800
Cl2—C41.7447 (18)C7—H7C0.9800
O1—C1—C2121.63 (16)C4—C5—H5120.8
O1—C1—C6120.55 (16)C6—C5—H5120.8
C2—C1—C6117.70 (16)C5—C6—C1121.46 (16)
C3—C2—C1122.21 (17)C5—C6—Cl3118.74 (14)
C3—C2—Cl1118.77 (14)C1—C6—Cl3119.79 (14)
C1—C2—Cl1119.02 (14)C1—O1—C7114.60 (15)
C4—C3—C2117.92 (17)O1—C7—H7A109.5
C4—C3—H3121.0O1—C7—H7B109.5
C2—C3—H3121.0H7A—C7—H7B109.5
C5—C4—C3122.34 (17)O1—C7—H7C109.5
C5—C4—Cl2118.33 (14)H7A—C7—H7C109.5
C3—C4—Cl2119.33 (14)H7B—C7—H7C109.5
C4—C5—C6118.36 (17)
O1—C1—C2—C3176.17 (17)Cl2—C4—C5—C6179.55 (14)
C6—C1—C2—C30.1 (3)C4—C5—C6—C10.1 (3)
O1—C1—C2—Cl14.0 (3)C4—C5—C6—Cl3179.94 (14)
C6—C1—C2—Cl1179.91 (14)O1—C1—C6—C5176.18 (17)
C1—C2—C3—C40.1 (3)C2—C1—C6—C50.1 (3)
Cl1—C2—C3—C4179.96 (15)O1—C1—C6—Cl34.0 (3)
C2—C3—C4—C50.2 (3)C2—C1—C6—Cl3179.92 (14)
C2—C3—C4—Cl2179.51 (15)C2—C1—O1—C786.2 (2)
C3—C4—C5—C60.1 (3)C6—C1—O1—C797.9 (2)

Experimental details

Crystal data
Chemical formulaC7H5Cl3O
Mr211.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)14.7538 (5), 3.9846 (2), 15.4810 (7)
β (°) 115.5031 (19)
V3)821.42 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.25 × 0.25 × 0.12
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.780, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
13489, 1888, 1558
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.13
No. of reflections1888
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 1994), SHELX97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This research was supported by grant Nos. ES05605, ES012475 and ES013661 from the National Institute of Environmental Health Sciences, NIH.

References

First citationBrownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol. 27, 2450–2455.  CrossRef CAS Web of Science Google Scholar
First citationCurtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223–224.  CrossRef CAS Web of Science Google Scholar
First citationIimura, Y., Sakurai, T., Asahi, K.-I., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058–2061.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKolehmainen, E. & Knuutinen, J. (1983). Org. Magn. Reson. 21, 388–390.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOswald, I. D. H., Allan, D. R., Day, G. M., Motherwell, W. D. S. & Parsons, S. (2005). Cryst. Growth Des. 5, 1055–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPereira, C. S., Marques, J. J. F. & San Romao, M. V. (2000). Crit. Rev. Microbiol. 26, 147–162.  Web of Science CrossRef PubMed Google Scholar
First citationRissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966–1968.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRissanen, K., Valkonen, J. & Mannila, B. (1988). Acta Cryst. C44, 684–686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1994). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol. 225, 653–663.  Web of Science CrossRef CAS Google Scholar
First citationWeller, F. & Gerstner, E. (1995). Z. Kristallogr. 210, 629–629.  CrossRef CAS Google Scholar
First citationWieczorek, M. W. (1980). Acta Cryst. B36, 1515–1517.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhang, L., Hu, R. & Yang, Z. (2006). Water Sci. Technol. 54, 335–344.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds