organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3,5-di­chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 December 2007; accepted 5 January 2008; online 11 January 2008)

The structure of the title compound, C8H6Cl3NO, is closely related to that of N-(3,5-dichloro­phen­yl)acetamide and other amides. The mol­ecular skeleton is essentially planar. The mol­ecules in the crystal structure are stabilized by N—H⋯O and N—H⋯Cl inter­molecular hydrogen bonds running along the a axis

Related literature

For related literature, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.], 2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2341-o2342.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488.]); Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Cl3NO

  • Mr = 238.49

  • Monoclinic, P 21 /n

  • a = 4.567 (1) Å

  • b = 24.350 (4) Å

  • c = 8.903 (2) Å

  • β = 102.20 (2)°

  • V = 967.7 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.23 mm−1

  • T = 299 (2) K

  • 0.60 × 0.35 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.063, Tmax = 0.354

  • 3732 measured reflections

  • 1730 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.073

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.288

  • S = 1.39

  • 1730 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.37 3.019 (4) 133
N1—H1N⋯Cl3i 0.86 2.68 3.482 (3) 156
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(3,5-dichlorophenyl)- acetamide (35DCPCA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2007a, b; Gowda et al., 2007). The structure of 35DCPCA (Fig. 1) is closely related to 2-chloro-N-(2-chlorophenyl)acetamide (2CPCA), 2-chloro-N-(4-chlorophenyl)acetamide (4CPCA)(Gowda et al., 2007b), N-(3,5-dichlorophenyl)-acetamide (35DCPA) (Gowda et al., 2007a) and other amides (Gowda et al., 2007). The molecular skeleton is essentially planar. The bond parameters in 35DCPCA are similar to those in 2CPCA, 4CPCA, 35DCPA and other acetanilides (Gowda et al., 2007a, b; Gowda et al., 2007). The simultaneous intermolecular N—H···O and N—H···Cl hydrogen bonds (Table 1) link the molecules into chains running along the a axis (Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2007, 2007a,b); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. The NH atom was located in difference map with N—H = 0.86 Å. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2-Chloro-N-(3,5-dichlorophenyl)acetamide top
Crystal data top
C8H6Cl3NOF(000) = 480
Mr = 238.49Dx = 1.637 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.567 (1) Åθ = 6.2–23.2°
b = 24.350 (4) ŵ = 8.23 mm1
c = 8.903 (2) ÅT = 299 K
β = 102.20 (2)°Long plate, colourless
V = 967.7 (3) Å30.60 × 0.35 × 0.13 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 66.9°, θmin = 3.6°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 2923
Tmin = 0.063, Tmax = 0.354l = 1010
3732 measured reflections3 standard reflections every 120 min
1730 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.288H-atom parameters constrained
S = 1.39 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
1730 reflections(Δ/σ)max = 0.005
118 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
C8H6Cl3NOV = 967.7 (3) Å3
Mr = 238.49Z = 4
Monoclinic, P21/nCu Kα radiation
a = 4.567 (1) ŵ = 8.23 mm1
b = 24.350 (4) ÅT = 299 K
c = 8.903 (2) Å0.60 × 0.35 × 0.13 mm
β = 102.20 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1606 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.074
Tmin = 0.063, Tmax = 0.3543 standard reflections every 120 min
3732 measured reflections intensity decay: 1.0%
1730 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0980 restraints
wR(F2) = 0.288H-atom parameters constrained
S = 1.39Δρmax = 0.57 e Å3
1730 reflectionsΔρmin = 1.12 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7994 (8)0.15227 (14)0.4676 (4)0.0509 (8)
C20.9691 (7)0.12475 (16)0.5925 (4)0.0528 (9)
H20.96170.13530.69210.063*
C31.1486 (9)0.08169 (15)0.5677 (5)0.0585 (10)
C41.1657 (10)0.06515 (16)0.4216 (5)0.0639 (10)
H41.28840.03620.40590.077*
C50.9960 (10)0.09289 (17)0.3011 (5)0.0615 (10)
C60.8060 (8)0.13604 (15)0.3183 (4)0.0553 (9)
H60.68810.15330.23360.066*
C70.4446 (7)0.23062 (14)0.4049 (4)0.0466 (8)
C80.3181 (8)0.27475 (16)0.4947 (4)0.0539 (9)
H8A0.47870.29920.54250.065*
H8B0.23880.25750.57580.065*
N10.6266 (7)0.19666 (13)0.5008 (3)0.0513 (8)
H1N0.63940.20300.59700.062*
O10.3874 (5)0.22828 (12)0.2651 (3)0.0560 (8)
Cl11.3597 (3)0.04771 (4)0.72484 (15)0.0797 (6)
Cl21.0161 (4)0.07364 (6)0.11529 (14)0.0948 (6)
Cl30.0336 (2)0.31342 (4)0.37802 (10)0.0626 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (16)0.0467 (17)0.0520 (18)0.0028 (13)0.0048 (14)0.0006 (14)
C20.0540 (19)0.0512 (18)0.0503 (18)0.0072 (14)0.0042 (14)0.0012 (14)
C30.057 (2)0.0451 (17)0.068 (2)0.0029 (14)0.0001 (17)0.0021 (16)
C40.073 (2)0.0481 (17)0.071 (2)0.0086 (17)0.0157 (19)0.0015 (18)
C50.073 (2)0.055 (2)0.059 (2)0.0001 (16)0.0189 (17)0.0056 (16)
C60.064 (2)0.0501 (19)0.051 (2)0.0011 (15)0.0115 (16)0.0001 (15)
C70.0435 (15)0.0520 (17)0.0421 (16)0.0029 (13)0.0038 (12)0.0003 (13)
C80.0540 (18)0.062 (2)0.0406 (17)0.0106 (15)0.0004 (13)0.0021 (14)
N10.0544 (15)0.0573 (16)0.0382 (14)0.0062 (12)0.0010 (12)0.0012 (12)
O10.0566 (14)0.0654 (16)0.0413 (13)0.0070 (11)0.0002 (10)0.0017 (11)
Cl10.0871 (9)0.0616 (8)0.0782 (9)0.0179 (5)0.0100 (7)0.0057 (5)
Cl20.1422 (14)0.0816 (10)0.0661 (9)0.0296 (7)0.0342 (8)0.0070 (6)
Cl30.0580 (7)0.0717 (8)0.0538 (8)0.0174 (4)0.0023 (5)0.0058 (4)
Geometric parameters (Å, º) top
C1—C21.387 (5)C5—Cl21.740 (4)
C1—C61.393 (5)C6—H60.9300
C1—N11.406 (5)C7—O11.218 (4)
C2—C31.377 (5)C7—N11.343 (5)
C2—H20.9300C7—C81.524 (5)
C3—C41.380 (6)C8—Cl31.756 (3)
C3—Cl11.732 (4)C8—H8A0.9700
C4—C51.363 (6)C8—H8B0.9700
C4—H40.9300N1—H1N0.8600
C5—C61.392 (5)
C2—C1—C6120.5 (3)C5—C6—C1117.3 (3)
C2—C1—N1116.5 (3)C5—C6—H6121.3
C6—C1—N1123.0 (3)C1—C6—H6121.3
C3—C2—C1119.3 (3)O1—C7—N1126.2 (3)
C3—C2—H2120.3O1—C7—C8123.1 (3)
C1—C2—H2120.3N1—C7—C8110.7 (3)
C2—C3—C4121.9 (3)C7—C8—Cl3112.5 (2)
C2—C3—Cl1118.9 (3)C7—C8—H8A109.1
C4—C3—Cl1119.3 (3)Cl3—C8—H8A109.1
C5—C4—C3117.5 (4)C7—C8—H8B109.1
C5—C4—H4121.3Cl3—C8—H8B109.1
C3—C4—H4121.3H8A—C8—H8B107.8
C4—C5—C6123.5 (3)C7—N1—C1129.7 (3)
C4—C5—Cl2118.6 (3)C7—N1—H1N115.1
C6—C5—Cl2117.9 (3)C1—N1—H1N115.1
C6—C1—C2—C31.1 (5)Cl2—C5—C6—C1177.9 (3)
N1—C1—C2—C3178.5 (3)C2—C1—C6—C52.2 (5)
C1—C2—C3—C40.3 (6)N1—C1—C6—C5177.4 (3)
C1—C2—C3—Cl1179.9 (3)O1—C7—C8—Cl310.7 (5)
C2—C3—C4—C50.4 (6)N1—C7—C8—Cl3170.4 (3)
Cl1—C3—C4—C5179.9 (3)O1—C7—N1—C12.0 (6)
C3—C4—C5—C60.9 (6)C8—C7—N1—C1176.8 (3)
C3—C4—C5—Cl2179.2 (3)C2—C1—N1—C7179.5 (3)
C4—C5—C6—C12.1 (6)C6—C1—N1—C70.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.373.019 (4)133
N1—H1N···Cl3i0.862.683.482 (3)156
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6Cl3NO
Mr238.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)4.567 (1), 24.350 (4), 8.903 (2)
β (°) 102.20 (2)
V3)967.7 (3)
Z4
Radiation typeCu Kα
µ (mm1)8.23
Crystal size (mm)0.60 × 0.35 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.063, 0.354
No. of measured, independent and
observed [I > 2σ(I)] reflections
3732, 1730, 1606
Rint0.074
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.288, 1.39
No. of reflections1730
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 1.12

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.373.019 (4)132.8
N1—H1N···Cl3i0.862.683.482 (3)156.4
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2341–o2342.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds