organic compounds
(2-Methoxy-1,3-phenylene)diboronic acid
aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: serek@ch.pw.edu.pl
The molecular structure of the title compound, 2-CH3O—C6H3-1,3-[B(OH)2]2 or C7H10B2O5, features two intramolecular O—H⋯O hydrogen bonds of different strengths. One of the boronic acid groups is almost coplanar with the aromatic ring, whereas the second is significantly twisted. Molecules are linked by intermolecular O—H⋯O hydrogen bonds, generating infinite chains cross-linked to form a two-dimensional sheet structure aligned parallel to the (01) plane.
Related literature
For structures of other di- and polyboronic acids, see: Fournier et al. (2003); Maly et al. (2006); Pilkington et al. (1995); Rodríguez-Cuamatzi, Vargas-Díaz, Maris, Wuest & Höpfl (2004); Rodríguez-Cuamatzi, Vargas-Díaz & Höpfl (2004). For the structural characterization of related ortho-alkoxy arylboronic acids, see: Dabrowski et al. (2006); Serwatowski et al. (2006); Yang et al. (2005). For related literature, see: Rettig & Trotter (1977); Dorman (1966).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction (2005); cell CrysAlis RED (Oxford Diffraction (2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680800010X/om2204sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680800010X/om2204Isup2.hkl
A solution of 2,6-dibromoanisole (5.32 g, 20 mmoL, prepared using the published procedure: Dorman, 1966) in Et2O (20 ml) was added under argon to a solution of nBuLi (10 mol, 4.5 ml, 45 mmol) in THF (60 ml) at 203 K. The mixture was stirred for 30 min at 233 K and then cooled again to 203 K followed by rapid addition of trimethyl borate (5.2 g, 50 mmol). The mixture was stirred for 30 min at 273 K and then it was quenched with HCl (2 M solution in ether, 22 ml, 44 mmol). The resultant mixture was concentrated and the residue fractionally distilled in vacuo to give 2,6-bis(dimethoxyboryl)anisole as on oil (2.50 g, 50%), b.p. 377–381 K (0.5 Torr). It was hydrolyzed with water (0.9 g, 50 mmol) in acetone (20 ml); the resultant solution was left to evaporate. A remaining crystalline product was filtered and washed with ethyl acetate and hexane to give 1.7 g of the title compound, m.p. > 670 K (with decomposition). 1H NMR (acetone-d6 + D2O): 7.73 (dd, 2 H), 7.08 (t, 1 H), 3.83 (s, 3 H) p.p.m.; 13C NMR: 171.0, 138.8, 123.8, 63.2; 11B NMR: 29.0 p.p.m..
Crystals suitable for single-crystal X-ray
were grown by slow evaporation of a solution of the acid (0.2 g) in ethyl acetate/acetone/water (20 ml, 10:10:1).Data collection: CrysAlis CCD, Oxford Diffraction (2005); cell
CrysAlis RED, Oxford Diffraction (2005); data reduction: CrysAlis RED, Oxford Diffraction (2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure showing the atom-labelling scheme. Intramolecular hydrogen bonds are shown as dashed lines. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level. | |
Fig. 2. The hydrogen-bonding pattern. Hydrogen bonds are shown as dashed lines. |
C7H10B2O5 | Z = 2 |
Mr = 195.77 | F(000) = 204 |
Triclinic, P1 | Dx = 1.426 Mg m−3 |
a = 5.0261 (6) Å | Melting point: 670 K |
b = 7.6475 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
c = 12.4535 (19) Å | µ = 0.12 mm−1 |
α = 79.010 (13)° | T = 100 K |
β = 81.898 (12)° | Prismatic, colourless |
γ = 77.246 (12)° | 0.75 × 0.28 × 0.16 mm |
V = 455.85 (11) Å3 |
Kuma KM4 CCD diffractometer | 2191 independent reflections |
Radiation source: fine-focus sealed tube | 1884 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
Detector resolution: 8.6479 pixels mm-1 | θmax = 28.6°, θmin = 2.8° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005) | k = −10→10 |
Tmin = 0.91, Tmax = 0.98 | l = −16→16 |
8626 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | All H-atom parameters refined |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0064P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.001 |
2191 reflections | Δρmax = 0.40 e Å−3 |
168 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.074 (12) |
C7H10B2O5 | γ = 77.246 (12)° |
Mr = 195.77 | V = 455.85 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.0261 (6) Å | Mo Kα radiation |
b = 7.6475 (12) Å | µ = 0.12 mm−1 |
c = 12.4535 (19) Å | T = 100 K |
α = 79.010 (13)° | 0.75 × 0.28 × 0.16 mm |
β = 81.898 (12)° |
Kuma KM4 CCD diffractometer | 2191 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005) | 1884 reflections with I > 2σ(I) |
Tmin = 0.91, Tmax = 0.98 | Rint = 0.012 |
8626 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.099 | All H-atom parameters refined |
S = 1.17 | Δρmax = 0.40 e Å−3 |
2191 reflections | Δρmin = −0.24 e Å−3 |
168 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.2297 (2) | 1.01153 (14) | 0.88850 (8) | 0.0121 (2) | |
O2 | 0.17562 (14) | 1.15369 (9) | 0.94414 (6) | 0.01497 (19) | |
O3 | 0.44802 (13) | 0.87075 (9) | 0.91170 (6) | 0.01494 (18) | |
O4 | 0.27015 (13) | 0.71276 (8) | 0.76769 (5) | 0.01290 (18) | |
C5 | 0.1659 (2) | 0.56730 (13) | 0.84048 (9) | 0.0204 (2) | |
B6 | −0.0649 (2) | 0.70611 (14) | 0.59403 (8) | 0.0119 (2) | |
O7 | 0.18385 (13) | 0.59475 (9) | 0.57331 (6) | 0.01505 (19) | |
O8 | −0.28690 (13) | 0.67665 (10) | 0.55374 (6) | 0.01734 (19) | |
C9 | 0.04151 (18) | 1.01375 (12) | 0.79683 (7) | 0.0114 (2) | |
C10 | 0.06518 (18) | 0.86766 (12) | 0.74123 (7) | 0.0108 (2) | |
C11 | −0.10218 (18) | 0.86757 (12) | 0.66004 (7) | 0.0117 (2) | |
C12 | −0.30411 (19) | 1.02389 (13) | 0.63595 (8) | 0.0142 (2) | |
C13 | −0.33351 (19) | 1.17323 (13) | 0.68851 (8) | 0.0154 (2) | |
C14 | −0.16146 (19) | 1.16694 (12) | 0.76789 (8) | 0.0138 (2) | |
H2 | 0.285 (3) | 1.140 (2) | 0.9942 (13) | 0.042 (4)* | |
H3 | 0.468 (3) | 0.793 (2) | 0.8674 (14) | 0.048 (4)* | |
H5A | 0.086 (3) | 0.6033 (17) | 0.9132 (11) | 0.029 (3)* | |
H5B | 0.322 (3) | 0.4681 (19) | 0.8490 (11) | 0.034 (4)* | |
H5C | 0.019 (3) | 0.5290 (19) | 0.8100 (12) | 0.038 (4)* | |
H7 | 0.322 (3) | 0.6297 (19) | 0.5953 (12) | 0.039 (4)* | |
H8 | −0.239 (4) | 0.591 (3) | 0.5115 (15) | 0.058 (5)* | |
H12 | −0.422 (3) | 1.0288 (16) | 0.5792 (10) | 0.023 (3)* | |
H13 | −0.479 (3) | 1.2810 (18) | 0.6688 (10) | 0.023 (3)* | |
H14 | −0.189 (2) | 1.2703 (16) | 0.8053 (10) | 0.019 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0127 (5) | 0.0138 (5) | 0.0112 (5) | −0.0050 (4) | −0.0012 (4) | −0.0024 (4) |
O2 | 0.0170 (4) | 0.0154 (4) | 0.0149 (4) | −0.0025 (3) | −0.0059 (3) | −0.0060 (3) |
O3 | 0.0150 (4) | 0.0160 (4) | 0.0163 (4) | −0.0011 (3) | −0.0059 (3) | −0.0080 (3) |
O4 | 0.0131 (3) | 0.0111 (3) | 0.0149 (3) | −0.0003 (3) | −0.0039 (2) | −0.0039 (3) |
C5 | 0.0258 (5) | 0.0139 (5) | 0.0208 (5) | −0.0040 (4) | −0.0052 (4) | 0.0011 (4) |
B6 | 0.0123 (5) | 0.0141 (5) | 0.0101 (5) | −0.0033 (4) | −0.0019 (4) | −0.0032 (4) |
O7 | 0.0110 (3) | 0.0184 (4) | 0.0190 (4) | −0.0020 (3) | −0.0037 (3) | −0.0105 (3) |
O8 | 0.0116 (3) | 0.0228 (4) | 0.0217 (4) | −0.0018 (3) | −0.0031 (3) | −0.0144 (3) |
C9 | 0.0118 (4) | 0.0133 (4) | 0.0107 (4) | −0.0045 (3) | −0.0010 (3) | −0.0034 (3) |
C10 | 0.0094 (4) | 0.0116 (4) | 0.0114 (4) | −0.0021 (3) | −0.0011 (3) | −0.0020 (3) |
C11 | 0.0116 (4) | 0.0142 (4) | 0.0111 (4) | −0.0038 (3) | −0.0011 (3) | −0.0047 (3) |
C12 | 0.0141 (4) | 0.0173 (5) | 0.0124 (4) | −0.0030 (4) | −0.0042 (3) | −0.0036 (4) |
C13 | 0.0154 (5) | 0.0139 (5) | 0.0160 (5) | 0.0009 (4) | −0.0046 (3) | −0.0027 (4) |
C14 | 0.0159 (5) | 0.0124 (5) | 0.0147 (5) | −0.0032 (4) | −0.0023 (3) | −0.0051 (4) |
B1—O2 | 1.3564 (12) | B6—C11 | 1.5738 (13) |
B1—O3 | 1.3768 (12) | O7—H7 | 0.888 (15) |
B1—C9 | 1.5774 (13) | O8—H8 | 0.89 (2) |
O2—H2 | 0.865 (17) | C9—C10 | 1.3982 (13) |
O3—H3 | 0.866 (16) | C9—C14 | 1.3993 (13) |
O4—C10 | 1.4075 (11) | C10—C11 | 1.4036 (12) |
O4—C5 | 1.4397 (12) | C11—C12 | 1.4009 (13) |
C5—H5A | 1.001 (13) | C12—C13 | 1.3920 (13) |
C5—H5B | 0.965 (14) | C12—H12 | 0.975 (12) |
C5—H5C | 0.995 (15) | C13—C14 | 1.3899 (13) |
B6—O8 | 1.3635 (12) | C13—H13 | 0.991 (13) |
B6—O7 | 1.3704 (12) | C14—H14 | 0.967 (12) |
O2—B1—O3 | 119.76 (8) | C10—C9—B1 | 123.17 (8) |
O2—B1—C9 | 118.66 (8) | C14—C9—B1 | 120.01 (8) |
O3—B1—C9 | 121.57 (8) | C9—C10—C11 | 123.70 (8) |
B1—O2—H2 | 112.8 (10) | C9—C10—O4 | 117.99 (8) |
B1—O3—H3 | 110.6 (11) | C11—C10—O4 | 118.30 (8) |
C10—O4—C5 | 113.05 (7) | C12—C11—C10 | 116.72 (8) |
O4—C5—H5A | 111.6 (8) | C12—C11—B6 | 119.95 (8) |
O4—C5—H5B | 105.1 (8) | C10—C11—B6 | 123.29 (8) |
H5A—C5—H5B | 110.9 (11) | C13—C12—C11 | 121.55 (8) |
O4—C5—H5C | 112.4 (9) | C13—C12—H12 | 119.7 (7) |
H5A—C5—H5C | 106.8 (11) | C11—C12—H12 | 118.7 (7) |
H5B—C5—H5C | 110.0 (12) | C14—C13—C12 | 119.49 (8) |
O8—B6—O7 | 118.14 (8) | C14—C13—H13 | 121.7 (7) |
O8—B6—C11 | 119.17 (8) | C12—C13—H13 | 118.8 (7) |
O7—B6—C11 | 122.67 (8) | C13—C14—C9 | 121.71 (8) |
B6—O7—H7 | 113.0 (9) | C13—C14—H14 | 118.3 (7) |
B6—O8—H8 | 111.4 (12) | C9—C14—H14 | 119.9 (7) |
C10—C9—C14 | 116.81 (8) | ||
O2—B1—C9—C10 | −174.50 (8) | C9—C10—C11—B6 | 177.05 (8) |
O3—B1—C9—C10 | 6.46 (14) | O4—C10—C11—B6 | −2.39 (13) |
O2—B1—C9—C14 | 5.35 (14) | O8—B6—C11—C12 | −29.98 (13) |
O3—B1—C9—C14 | −173.69 (8) | O7—B6—C11—C12 | 148.79 (9) |
C14—C9—C10—C11 | −0.27 (14) | O8—B6—C11—C10 | 152.40 (9) |
B1—C9—C10—C11 | 179.58 (8) | O7—B6—C11—C10 | −28.83 (14) |
C14—C9—C10—O4 | 179.17 (7) | C10—C11—C12—C13 | 1.22 (14) |
B1—C9—C10—O4 | −0.99 (13) | B6—C11—C12—C13 | −176.55 (8) |
C5—O4—C10—C9 | 100.68 (9) | C11—C12—C13—C14 | −0.88 (15) |
C5—O4—C10—C11 | −79.86 (10) | C12—C13—C14—C9 | −0.10 (15) |
C9—C10—C11—C12 | −0.64 (14) | C10—C9—C14—C13 | 0.65 (14) |
O4—C10—C11—C12 | 179.93 (7) | B1—C9—C14—C13 | −179.20 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.865 (17) | 1.881 (17) | 2.7403 (10) | 172.1 (15) |
O3—H3···O4 | 0.866 (16) | 1.953 (16) | 2.6890 (10) | 142.1 (14) |
O7—H7···O8ii | 0.888 (15) | 2.055 (15) | 2.8324 (10) | 145.6 (13) |
O7—H7···O4 | 0.888 (15) | 2.317 (14) | 2.8573 (10) | 119.1 (12) |
O8—H8···O7iii | 0.89 (2) | 1.88 (2) | 2.7615 (10) | 172.6 (18) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x+1, y, z; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H10B2O5 |
Mr | 195.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.0261 (6), 7.6475 (12), 12.4535 (19) |
α, β, γ (°) | 79.010 (13), 81.898 (12), 77.246 (12) |
V (Å3) | 455.85 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.75 × 0.28 × 0.16 |
Data collection | |
Diffractometer | Kuma KM4 CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction 2005) |
Tmin, Tmax | 0.91, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8626, 2191, 1884 |
Rint | 0.012 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.099, 1.17 |
No. of reflections | 2191 |
No. of parameters | 168 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.40, −0.24 |
Computer programs: CrysAlis CCD, Oxford Diffraction (2005), CrysAlis RED, Oxford Diffraction (2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
B1—O2 | 1.3564 (12) | O4—C5 | 1.4397 (12) |
B1—O3 | 1.3768 (12) | B6—O8 | 1.3635 (12) |
B1—C9 | 1.5774 (13) | B6—O7 | 1.3704 (12) |
O4—C10 | 1.4075 (11) | B6—C11 | 1.5738 (13) |
O3—B1—C9—C10 | 6.46 (14) | O7—B6—C11—C12 | 148.79 (9) |
C5—O4—C10—C9 | 100.68 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.865 (17) | 1.881 (17) | 2.7403 (10) | 172.1 (15) |
O3—H3···O4 | 0.866 (16) | 1.953 (16) | 2.6890 (10) | 142.1 (14) |
O7—H7···O8ii | 0.888 (15) | 2.055 (15) | 2.8324 (10) | 145.6 (13) |
O7—H7···O4 | 0.888 (15) | 2.317 (14) | 2.8573 (10) | 119.1 (12) |
O8—H8···O7iii | 0.89 (2) | 1.88 (2) | 2.7615 (10) | 172.6 (18) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x+1, y, z; (iii) −x, −y+1, −z+1. |
Acknowledgements
The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology and by the Polish Ministry of Science and Higher Education (Grant No. N N205 055633). Support by Aldrich Chemical Co., Milwaukee, Wisconsin, USA, through continuing donations of chemicals and equipment is gratefully acknowledged.
References
Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dorman, L. C. (1966). J. Org. Chem. 31, 3666–3671. CrossRef CAS Web of Science Google Scholar
Fournier, J. H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006. Web of Science CSD CrossRef PubMed CAS Google Scholar
Maly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33–35. CAS Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.28cycle2 beta. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England. Google Scholar
Pilkington, M., Wallis, J. D. & Larsen, S. (1995). J. Chem. Soc. Chem. Commun. pp. 1499–1500. CrossRef Web of Science Google Scholar
Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075. CAS Google Scholar
Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 3041–3044. Web of Science CSD CrossRef Google Scholar
Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004). Acta Cryst. E60, o1316–o1318. Web of Science CSD CrossRef IUCr Journals Google Scholar
Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308–o1309. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The ability of arylboronic acids to form supramolecular structures via hydrogen-bonding interactions of B(OH)2 groups is well documented (Rettig & Trotter (1977). The presence of two or more boronic groups in a molecule provides an increased potential for the extended supramolecular organization (Fournier et al., 2003; Maly et al., 2006; Pilkington et al., 1995; Rodríguez-Cuamatzi, Vargas-Díaz & Höpfl (2004). The promising properties of di- and polyboronic acids in crystal engineering prompted us to determine the structure of the title compound.
The molecular structure is shown in Fig. 1. One of two boronic groups is almost coplanar with the benzene ring whereas the second one is significantly twisted (Table 1). The methoxy group is twisted almost perpendicularly with respect to the aromatic ring. Both boronic groups have an exo-endo conformation. The endo-oriented OH groups of both boronic moieties are engaged into intramolecular O—H···O bonds with the methoxy O atom. As a result, a nearly planar six-membered ring is formed by the boronic group coplanar with the benzene ring. This motif has already been observed in structures of related ortho-alkoxyarylboronic acids (Yang et al., 2005; Dabrowski et al., 2006; Serwatowski et al., 2006) and seems to be typical. The interaction of the second (twisted) boronic group with the methoxy O atom is much weaker [H7···O4 at 2.317 (14) Å]. The molecules are linked via almost linear O—H···O bridges in a "head-to-head, tail-to-tail" fashion, i.e., equivalent groups interact with each other forming two alternate centrosymmetric dimeric motifs. As a result, an infinite, zig-zag chain is formed (Fig. 2). A similar situation is observed in 1,4-phenylenediboronic acid Rodríguez-Cuamatzi, Vargas-Díaz & Höpfl, 2004) and its tetrahydrate (Rodríguez-Cuamatzi, Vargas-Díaz, Maris, Wuest & Höpfl (2004). However, in the former structure both boronic groups are conformationally equivalent whereas in the latter they are almost coplanar with the aromatic ring. The one-dimensional supramolecular architecture extends through cross-linking O—H···O bonds between twisted boronic groups. As a result a two-dimensional network is formed, aligned parallel to the (01–1) plane. Unlike the structure of related diboronic acids (Maly et al., 2006; Rodríguez-Cuamatzi, Vargas-Díaz & Höpf, 2004), only one boronic group is active as a linker for chains.
In conclusion, the intermolecular hydrogen-bonding interactions of boronic groups are operative to form the chain structure whereas their contribution to further secondary supramolecular organization is strongly affected by competitive intramolecular hydrogen bonds.