organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o414-o415

(2-Meth­­oxy-1,3-phenyl­ene)diboronic acid

aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: serek@ch.pw.edu.pl

(Received 21 December 2007; accepted 2 January 2008; online 9 January 2008)

The mol­ecular structure of the title compound, 2-CH3O—C6H3-1,3-[B(OH)2]2 or C7H10B2O5, features two intra­molecular O—H⋯O hydrogen bonds of different strengths. One of the boronic acid groups is almost coplanar with the aromatic ring, whereas the second is significantly twisted. Mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds, generating infinite chains cross-linked to form a two-dimensional sheet structure aligned parallel to the (01[\overline{1}]) plane.

Related literature

For structures of other di- and polyboronic acids, see: Fournier et al. (2003[Fournier, J. H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002-1006.]); Maly et al. (2006[Maly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33-35.]); Pilkington et al. (1995[Pilkington, M., Wallis, J. D. & Larsen, S. (1995). J. Chem. Soc. Chem. Commun. pp. 1499-1500.]); Rodríguez-Cuamatzi, Vargas-Díaz, Maris, Wuest & Höpfl (2004[Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004). Acta Cryst. E60, o1316-o1318.]); Rodríguez-Cuamatzi, Vargas-Díaz & Höpfl (2004[Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 3041-3044.]). For the structural characterization of related ortho-alk­oxy aryl­boronic acids, see: Dabrowski et al. (2006[Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702-o704.]); Serwatowski et al. (2006[Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308-o1309.]); Yang et al. (2005[Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907-6912.]). For related literature, see: Rettig & Trotter (1977[Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.]); Dorman (1966[Dorman, L. C. (1966). J. Org. Chem. 31, 3666-3671.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10B2O5

  • Mr = 195.77

  • Triclinic, [P \overline 1]

  • a = 5.0261 (6) Å

  • b = 7.6475 (12) Å

  • c = 12.4535 (19) Å

  • α = 79.010 (13)°

  • β = 81.898 (12)°

  • γ = 77.246 (12)°

  • V = 455.85 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 (2) K

  • 0.75 × 0.28 × 0.16 mm

Data collection
  • Kuma KM4 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.28cycle2 beta. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]) Tmin = 0.91, Tmax = 0.98

  • 8626 measured reflections

  • 2191 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.099

  • S = 1.17

  • 2191 reflections

  • 168 parameters

  • All H-atom parameters refined

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected torsion angles (°)

O3—B1—C9—C10 6.46 (14)
C5—O4—C10—C9 100.68 (9)
O7—B6—C11—C12 148.79 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.865 (17) 1.881 (17) 2.7403 (10) 172.1 (15)
O3—H3⋯O4 0.866 (16) 1.953 (16) 2.6890 (10) 142.1 (14)
O7—H7⋯O8ii 0.888 (15) 2.055 (15) 2.8324 (10) 145.6 (13)
O7—H7⋯O4 0.888 (15) 2.317 (14) 2.8573 (10) 119.1 (12)
O8—H8⋯O7iii 0.89 (2) 1.88 (2) 2.7615 (10) 172.6 (18)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x+1, y, z; (iii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction (2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.28cycle2 beta. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction (2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.28cycle2 beta. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ability of arylboronic acids to form supramolecular structures via hydrogen-bonding interactions of B(OH)2 groups is well documented (Rettig & Trotter (1977). The presence of two or more boronic groups in a molecule provides an increased potential for the extended supramolecular organization (Fournier et al., 2003; Maly et al., 2006; Pilkington et al., 1995; Rodríguez-Cuamatzi, Vargas-Díaz & Höpfl (2004). The promising properties of di- and polyboronic acids in crystal engineering prompted us to determine the structure of the title compound.

The molecular structure is shown in Fig. 1. One of two boronic groups is almost coplanar with the benzene ring whereas the second one is significantly twisted (Table 1). The methoxy group is twisted almost perpendicularly with respect to the aromatic ring. Both boronic groups have an exo-endo conformation. The endo-oriented OH groups of both boronic moieties are engaged into intramolecular O—H···O bonds with the methoxy O atom. As a result, a nearly planar six-membered ring is formed by the boronic group coplanar with the benzene ring. This motif has already been observed in structures of related ortho-alkoxyarylboronic acids (Yang et al., 2005; Dabrowski et al., 2006; Serwatowski et al., 2006) and seems to be typical. The interaction of the second (twisted) boronic group with the methoxy O atom is much weaker [H7···O4 at 2.317 (14) Å]. The molecules are linked via almost linear O—H···O bridges in a "head-to-head, tail-to-tail" fashion, i.e., equivalent groups interact with each other forming two alternate centrosymmetric dimeric motifs. As a result, an infinite, zig-zag chain is formed (Fig. 2). A similar situation is observed in 1,4-phenylenediboronic acid Rodríguez-Cuamatzi, Vargas-Díaz & Höpfl, 2004) and its tetrahydrate (Rodríguez-Cuamatzi, Vargas-Díaz, Maris, Wuest & Höpfl (2004). However, in the former structure both boronic groups are conformationally equivalent whereas in the latter they are almost coplanar with the aromatic ring. The one-dimensional supramolecular architecture extends through cross-linking O—H···O bonds between twisted boronic groups. As a result a two-dimensional network is formed, aligned parallel to the (01–1) plane. Unlike the structure of related diboronic acids (Maly et al., 2006; Rodríguez-Cuamatzi, Vargas-Díaz & Höpf, 2004), only one boronic group is active as a linker for chains.

In conclusion, the intermolecular hydrogen-bonding interactions of boronic groups are operative to form the chain structure whereas their contribution to further secondary supramolecular organization is strongly affected by competitive intramolecular hydrogen bonds.

Related literature top

For structures of other di- and polyboronic acids, see: Fournier et al. (2003); Maly et al. (2006); Pilkington et al. (1995); Rodríguez-Cuamatzi, Vargas-Díaz, Maris, Wuest & Höpfl (2004); Rodríguez-Cuamatzi, Vargas-Díaz & Höpfl (2004). For the structural characterization of related ortho-alkoxy arylboronic acids, see: Dabrowski et al. (2006\bbr00); Serwatowski et al. (2006); Yang et al. (2005). For related literature, see: Rettig & Trotter (1977); Dorman (1966).

Experimental top

A solution of 2,6-dibromoanisole (5.32 g, 20 mmoL, prepared using the published procedure: Dorman, 1966) in Et2O (20 ml) was added under argon to a solution of nBuLi (10 mol, 4.5 ml, 45 mmol) in THF (60 ml) at 203 K. The mixture was stirred for 30 min at 233 K and then cooled again to 203 K followed by rapid addition of trimethyl borate (5.2 g, 50 mmol). The mixture was stirred for 30 min at 273 K and then it was quenched with HCl (2 M solution in ether, 22 ml, 44 mmol). The resultant mixture was concentrated and the residue fractionally distilled in vacuo to give 2,6-bis(dimethoxyboryl)anisole as on oil (2.50 g, 50%), b.p. 377–381 K (0.5 Torr). It was hydrolyzed with water (0.9 g, 50 mmol) in acetone (20 ml); the resultant solution was left to evaporate. A remaining crystalline product was filtered and washed with ethyl acetate and hexane to give 1.7 g of the title compound, m.p. > 670 K (with decomposition). 1H NMR (acetone-d6 + D2O): 7.73 (dd, 2 H), 7.08 (t, 1 H), 3.83 (s, 3 H) p.p.m.; 13C NMR: 171.0, 138.8, 123.8, 63.2; 11B NMR: 29.0 p.p.m..

Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of a solution of the acid (0.2 g) in ethyl acetate/acetone/water (20 ml, 10:10:1).

Refinement top

All hydrogen atoms were located in difference syntheses and refined freely.

Computing details top

Data collection: CrysAlis CCD, Oxford Diffraction (2005); cell refinement: CrysAlis RED, Oxford Diffraction (2005); data reduction: CrysAlis RED, Oxford Diffraction (2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme. Intramolecular hydrogen bonds are shown as dashed lines. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding pattern. Hydrogen bonds are shown as dashed lines.
(2-Methoxy-1,3-phenylene)diboronic acid top
Crystal data top
C7H10B2O5Z = 2
Mr = 195.77F(000) = 204
Triclinic, P1Dx = 1.426 Mg m3
a = 5.0261 (6) ÅMelting point: 670 K
b = 7.6475 (12) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.4535 (19) ŵ = 0.12 mm1
α = 79.010 (13)°T = 100 K
β = 81.898 (12)°Prismatic, colourless
γ = 77.246 (12)°0.75 × 0.28 × 0.16 mm
V = 455.85 (11) Å3
Data collection top
Kuma KM4 CCD
diffractometer
2191 independent reflections
Radiation source: fine-focus sealed tube1884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 8.6479 pixels mm-1θmax = 28.6°, θmin = 2.8°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction 2005)
k = 1010
Tmin = 0.91, Tmax = 0.98l = 1616
8626 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0064P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
2191 reflectionsΔρmax = 0.40 e Å3
168 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.074 (12)
Crystal data top
C7H10B2O5γ = 77.246 (12)°
Mr = 195.77V = 455.85 (11) Å3
Triclinic, P1Z = 2
a = 5.0261 (6) ÅMo Kα radiation
b = 7.6475 (12) ŵ = 0.12 mm1
c = 12.4535 (19) ÅT = 100 K
α = 79.010 (13)°0.75 × 0.28 × 0.16 mm
β = 81.898 (12)°
Data collection top
Kuma KM4 CCD
diffractometer
2191 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction 2005)
1884 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.98Rint = 0.012
8626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.099All H-atom parameters refined
S = 1.17Δρmax = 0.40 e Å3
2191 reflectionsΔρmin = 0.24 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.2297 (2)1.01153 (14)0.88850 (8)0.0121 (2)
O20.17562 (14)1.15369 (9)0.94414 (6)0.01497 (19)
O30.44802 (13)0.87075 (9)0.91170 (6)0.01494 (18)
O40.27015 (13)0.71276 (8)0.76769 (5)0.01290 (18)
C50.1659 (2)0.56730 (13)0.84048 (9)0.0204 (2)
B60.0649 (2)0.70611 (14)0.59403 (8)0.0119 (2)
O70.18385 (13)0.59475 (9)0.57331 (6)0.01505 (19)
O80.28690 (13)0.67665 (10)0.55374 (6)0.01734 (19)
C90.04151 (18)1.01375 (12)0.79683 (7)0.0114 (2)
C100.06518 (18)0.86766 (12)0.74123 (7)0.0108 (2)
C110.10218 (18)0.86757 (12)0.66004 (7)0.0117 (2)
C120.30411 (19)1.02389 (13)0.63595 (8)0.0142 (2)
C130.33351 (19)1.17323 (13)0.68851 (8)0.0154 (2)
C140.16146 (19)1.16694 (12)0.76789 (8)0.0138 (2)
H20.285 (3)1.140 (2)0.9942 (13)0.042 (4)*
H30.468 (3)0.793 (2)0.8674 (14)0.048 (4)*
H5A0.086 (3)0.6033 (17)0.9132 (11)0.029 (3)*
H5B0.322 (3)0.4681 (19)0.8490 (11)0.034 (4)*
H5C0.019 (3)0.5290 (19)0.8100 (12)0.038 (4)*
H70.322 (3)0.6297 (19)0.5953 (12)0.039 (4)*
H80.239 (4)0.591 (3)0.5115 (15)0.058 (5)*
H120.422 (3)1.0288 (16)0.5792 (10)0.023 (3)*
H130.479 (3)1.2810 (18)0.6688 (10)0.023 (3)*
H140.189 (2)1.2703 (16)0.8053 (10)0.019 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0127 (5)0.0138 (5)0.0112 (5)0.0050 (4)0.0012 (4)0.0024 (4)
O20.0170 (4)0.0154 (4)0.0149 (4)0.0025 (3)0.0059 (3)0.0060 (3)
O30.0150 (4)0.0160 (4)0.0163 (4)0.0011 (3)0.0059 (3)0.0080 (3)
O40.0131 (3)0.0111 (3)0.0149 (3)0.0003 (3)0.0039 (2)0.0039 (3)
C50.0258 (5)0.0139 (5)0.0208 (5)0.0040 (4)0.0052 (4)0.0011 (4)
B60.0123 (5)0.0141 (5)0.0101 (5)0.0033 (4)0.0019 (4)0.0032 (4)
O70.0110 (3)0.0184 (4)0.0190 (4)0.0020 (3)0.0037 (3)0.0105 (3)
O80.0116 (3)0.0228 (4)0.0217 (4)0.0018 (3)0.0031 (3)0.0144 (3)
C90.0118 (4)0.0133 (4)0.0107 (4)0.0045 (3)0.0010 (3)0.0034 (3)
C100.0094 (4)0.0116 (4)0.0114 (4)0.0021 (3)0.0011 (3)0.0020 (3)
C110.0116 (4)0.0142 (4)0.0111 (4)0.0038 (3)0.0011 (3)0.0047 (3)
C120.0141 (4)0.0173 (5)0.0124 (4)0.0030 (4)0.0042 (3)0.0036 (4)
C130.0154 (5)0.0139 (5)0.0160 (5)0.0009 (4)0.0046 (3)0.0027 (4)
C140.0159 (5)0.0124 (5)0.0147 (5)0.0032 (4)0.0023 (3)0.0051 (4)
Geometric parameters (Å, º) top
B1—O21.3564 (12)B6—C111.5738 (13)
B1—O31.3768 (12)O7—H70.888 (15)
B1—C91.5774 (13)O8—H80.89 (2)
O2—H20.865 (17)C9—C101.3982 (13)
O3—H30.866 (16)C9—C141.3993 (13)
O4—C101.4075 (11)C10—C111.4036 (12)
O4—C51.4397 (12)C11—C121.4009 (13)
C5—H5A1.001 (13)C12—C131.3920 (13)
C5—H5B0.965 (14)C12—H120.975 (12)
C5—H5C0.995 (15)C13—C141.3899 (13)
B6—O81.3635 (12)C13—H130.991 (13)
B6—O71.3704 (12)C14—H140.967 (12)
O2—B1—O3119.76 (8)C10—C9—B1123.17 (8)
O2—B1—C9118.66 (8)C14—C9—B1120.01 (8)
O3—B1—C9121.57 (8)C9—C10—C11123.70 (8)
B1—O2—H2112.8 (10)C9—C10—O4117.99 (8)
B1—O3—H3110.6 (11)C11—C10—O4118.30 (8)
C10—O4—C5113.05 (7)C12—C11—C10116.72 (8)
O4—C5—H5A111.6 (8)C12—C11—B6119.95 (8)
O4—C5—H5B105.1 (8)C10—C11—B6123.29 (8)
H5A—C5—H5B110.9 (11)C13—C12—C11121.55 (8)
O4—C5—H5C112.4 (9)C13—C12—H12119.7 (7)
H5A—C5—H5C106.8 (11)C11—C12—H12118.7 (7)
H5B—C5—H5C110.0 (12)C14—C13—C12119.49 (8)
O8—B6—O7118.14 (8)C14—C13—H13121.7 (7)
O8—B6—C11119.17 (8)C12—C13—H13118.8 (7)
O7—B6—C11122.67 (8)C13—C14—C9121.71 (8)
B6—O7—H7113.0 (9)C13—C14—H14118.3 (7)
B6—O8—H8111.4 (12)C9—C14—H14119.9 (7)
C10—C9—C14116.81 (8)
O2—B1—C9—C10174.50 (8)C9—C10—C11—B6177.05 (8)
O3—B1—C9—C106.46 (14)O4—C10—C11—B62.39 (13)
O2—B1—C9—C145.35 (14)O8—B6—C11—C1229.98 (13)
O3—B1—C9—C14173.69 (8)O7—B6—C11—C12148.79 (9)
C14—C9—C10—C110.27 (14)O8—B6—C11—C10152.40 (9)
B1—C9—C10—C11179.58 (8)O7—B6—C11—C1028.83 (14)
C14—C9—C10—O4179.17 (7)C10—C11—C12—C131.22 (14)
B1—C9—C10—O40.99 (13)B6—C11—C12—C13176.55 (8)
C5—O4—C10—C9100.68 (9)C11—C12—C13—C140.88 (15)
C5—O4—C10—C1179.86 (10)C12—C13—C14—C90.10 (15)
C9—C10—C11—C120.64 (14)C10—C9—C14—C130.65 (14)
O4—C10—C11—C12179.93 (7)B1—C9—C14—C13179.20 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.865 (17)1.881 (17)2.7403 (10)172.1 (15)
O3—H3···O40.866 (16)1.953 (16)2.6890 (10)142.1 (14)
O7—H7···O8ii0.888 (15)2.055 (15)2.8324 (10)145.6 (13)
O7—H7···O40.888 (15)2.317 (14)2.8573 (10)119.1 (12)
O8—H8···O7iii0.89 (2)1.88 (2)2.7615 (10)172.6 (18)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H10B2O5
Mr195.77
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.0261 (6), 7.6475 (12), 12.4535 (19)
α, β, γ (°)79.010 (13), 81.898 (12), 77.246 (12)
V3)455.85 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.75 × 0.28 × 0.16
Data collection
DiffractometerKuma KM4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction 2005)
Tmin, Tmax0.91, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
8626, 2191, 1884
Rint0.012
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.099, 1.17
No. of reflections2191
No. of parameters168
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.40, 0.24

Computer programs: CrysAlis CCD, Oxford Diffraction (2005), CrysAlis RED, Oxford Diffraction (2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected geometric parameters (Å, º) top
B1—O21.3564 (12)O4—C51.4397 (12)
B1—O31.3768 (12)B6—O81.3635 (12)
B1—C91.5774 (13)B6—O71.3704 (12)
O4—C101.4075 (11)B6—C111.5738 (13)
O3—B1—C9—C106.46 (14)O7—B6—C11—C12148.79 (9)
C5—O4—C10—C9100.68 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.865 (17)1.881 (17)2.7403 (10)172.1 (15)
O3—H3···O40.866 (16)1.953 (16)2.6890 (10)142.1 (14)
O7—H7···O8ii0.888 (15)2.055 (15)2.8324 (10)145.6 (13)
O7—H7···O40.888 (15)2.317 (14)2.8573 (10)119.1 (12)
O8—H8···O7iii0.89 (2)1.88 (2)2.7615 (10)172.6 (18)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y, z; (iii) x, y+1, z+1.
 

Acknowledgements

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology and by the Polish Ministry of Science and Higher Education (Grant No. N N205 055633). Support by Aldrich Chemical Co., Milwaukee, Wisconsin, USA, through continuing donations of chemicals and equipment is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDorman, L. C. (1966). J. Org. Chem. 31, 3666–3671.  CrossRef CAS Web of Science Google Scholar
First citationFournier, J. H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33–35.  CAS Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.28cycle2 beta. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.  Google Scholar
First citationPilkington, M., Wallis, J. D. & Larsen, S. (1995). J. Chem. Soc. Chem. Commun. pp. 1499–1500.  CrossRef Web of Science Google Scholar
First citationRettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075.  CAS Google Scholar
First citationRodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 3041–3044.  Web of Science CSD CrossRef Google Scholar
First citationRodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004). Acta Cryst. E60, o1316–o1318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSerwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308–o1309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o414-o415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds