organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-[2-(9-Fluorenyl­­idene)-3a,5,7-tri­methyl-3,3a-di­hydro-2H-indol-3-yl­­idene]-2,4,6-tri­methyl­aniline

aInstitute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: tokitoh@boc.kuicr.kyoto-u.ac.jp

(Received 4 January 2008; accepted 16 January 2008; online 23 January 2008)

The title compound, C33H30N2, has an E configuration at the imine double bond. The angle between the least-squares planes of the imine C=N—C group and the benzene ring of the 2,4,6-trimethylphenyl substituent is 85.38 (11)°. The crystal structure is sustained mainly by inter­molecular ππ inter­actions (3.510 Å) between the two fluorene rings and some C—H⋯π inter­actions.

Related literature

For related literature, see: Döpp et al. (1985[Döpp, D., Krüger, C., Makedakis, G. & Nour-el-Din, A. M. (1985). Chem. Ber. 118, 510-525.]); Gerlach & Arnold (1997[Gerlach, C. P. & Arnold, J. (1997). J. Chem. Soc. Dalton Trans. pp. 4795-4805.]); Miyata et al. (1999[Miyata, O., Kimura, Y. & Naito, T. (1999). Chem. Commun. pp. 2429-2430.]); Mizuhata et al. (2005[Mizuhata, Y., Takeda, N., Sasamori, T. & Tokitoh, N. (2005). Chem. Commun. pp. 5876-5878.]); Murakami et al. (1996[Murakami, M., Ito, H. & Ito, Y. (1996). Chem. Lett. 25, 7-8.]); Shimizu et al. (1991[Shimizu, H., Hamada, K., Ozawa, M., Kataoka, T., Hori, M., Kobayashi, K. & Tada, Y. (1991). Tetrahedron Lett. 32, 4359-4362.]).

[Scheme 1]

Experimental

Crystal data
  • C33H30N2

  • Mr = 454.59

  • Monoclinic, P 21 /n

  • a = 10.2810 (2) Å

  • b = 11.2727 (3) Å

  • c = 21.6598 (5) Å

  • β = 102.5953 (16)°

  • V = 2449.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 103 (2) K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Version 1.1. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.986, Tmax = 0.996

  • 15962 measured reflections

  • 4289 independent reflections

  • 2994 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.096

  • S = 1.02

  • 4289 reflections

  • 407 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H15⋯C24i 1.03 (2) 2.74 (2) 3.708 (2) 157.0 (15)
C19—H17⋯C2ii 1.02 (2) 2.70 (2) 3.568 (2) 142.7 (15)
C23—H25⋯C5iii 0.986 (19) 2.82 (2) 3.591 (2) 135.2 (14)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Version 1.3.5 SP2. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: yadokari-XG (Wakita, 2005[Wakita, K. (2005). yadokari-XG. URL: http://www.hat.hi-ho.ne.jp/k-wakita/yadokari/index.html .]).

Supporting information


Comment top

The structural analysis of 3aH-indole, one isomer of indole, has not been achieved due to its instability. On the other hand, the structures of some compounds based on the 3aH-indole skeleton, that is, 3,3a-dihydro-2H-indole derivertives (Döpp et al., 1985; Miyata et al., 1999; Shimizu et al., 1991) and 3,3a-dihydro-2H-indol-2,3-diylidene derivertives (Gerlach et al., 1997; Murakami et al., 1996), have been reported. During our course of studies on the reactivity of a stable stannene (tin–carbon double-bond compound) (Mizuhata et al., 2005), the crystal structure of a new example of 3,3a-dihydro-2H-indol-2,3-diylidene derivertives has been revealed.

The title compound was obtained in 29% yield by the reaction of a stannene, Tbt(Mes)Sn?(9-fluorenylidene) (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl; Mes = mesityl), with mesityl isocyanyde. The molecular structure of the title compound is shown in Fig. 1. It was found that the mesityl group is located with cis configuration to 3,3a-dihydro-2H-indole core with respect to the imine framework. The bond lengths in the 3,3a-dihydro-2H-indole core (C10—C17 and N2) are quite similar to those for the related compounds reported previously. However, the C10—C11 bond length [1.501 (3) Å] is longer than those of other 3,3a-dihydro-2H-indol-2,3-diylidene derivertives [1.456 (6) Å (Gerlach et al.); 1.456 (2) Å (Murakami et al.)] and shorter than those of the 3,3a-dihydro-2H-indole derivertives [1.553 (3) Å (Döpp et al.); 1.566 (3) Å (Miyata et al.); 1.565 (5) Å (Shimizu et al.)]. The distance between the least squares planes of the center rings of the fluorenylidene groups C29—C30—C31—C32—C33 and C29i—C30i—C31i—C32i—C33i (symmetry code: (i) = -x, -y, -z) is 3.510 Å (Fig. 2). The shortest intermolecular contacts were found to be H15—C24iii [2.74 (2) Å], H17—C2ii [2.70 (2) Å], and H25iii—C5ii [2.82 (2) Å] (symmetry codes: (ii) 1 + x, +y, +z; (iii) 1/2 + x, 1/2 - y, 1/2 + z).

Related literature top

For related literature, see: Döpp et al. (1985); Gerlach & Arnold (1997); Miyata et al. (1999); Mizuhata et al. (2005); Murakami et al. (1996); Shimizu et al. (1991).

Experimental top

In a glovebox filled with argon, mesityl isocyanide (7.5 mg, 0.052 mmol) was added to a diethylether (2 ml) solution of Tbt(Mes)Sn?(9-fluorenylidene) [prepared from Tbt(Mes)(9-fluorenyl)SnF (39.3 mg, 0.0403 mmol) and tert-butyllithium (0.95 M in hexane, 0.043 ml, 0.041 mmol)] at room temperature. The reaction mixture was stirred for 15 h at room temperature. After removal of the solvent, the residue was separated by gel permeation liquid chromatography (eluted with CHCl3) to afford the title compound (5.2 mg, 0.0117 mmol, 29%) and MesN?C?(9-fluorenylidene) (3.7 mg, 0.0124 mmol, 31%). Single crystals of the title compound suitable for X-ray crystallographic analysis were obtained as red crystals by slow recrystallization of its benzene solution at room temperature. Physical data: m.p. 411 K (decomposition); 1H NMR (300 MHz, CDCl3, 298 K): δ 1.21 (s, 3H), 1.67 (s, 3H), 1.91 (s, 3H), 2.23 (s, 3H), 2.28 (s, 3H), 2.34 (s, 3H), 5.22 (s, 1H), 6.25 (s, 1H), 6.88 (s, 1H), 6.96 (s, 1H), 7.13–7.19 (m, 1H), 7.29–7.36 (m, 3H), 7.68–7.70 (m, 2H), 9.06–9.08 (m, 1H), 9.47 (d, 3J = 8.0 Hz, 1H).

Refinement top

All H atoms were refined with U tied to the bonded C atom: 1.2(Uiso) for C—H and 1.5(Uiso) for CH3 groups while all the other atoms were refined anisotropically.

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: yadokari-XG (Wakita, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound. Dashed lines indicate the C–H···π intramolecular contacts [Symmetry codes: (i) -x, -y, -z; (ii) 1 + x, +y, +z; (iii) 1/2 + x, 1/2 - y, 1/2 + z].
(E)-N-[2-(9-Fluorenylidene)-3a,5,7-trimethyl-3,3a-dihydro- 2H-indol-3-ylidene]-2,4,6-trimethylaniline top
Crystal data top
C33H30N2F(000) = 968
Mr = 454.59Dx = 1.233 Mg m3
Monoclinic, P21/nMelting point: 411 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 10.2810 (2) Åθ = 3.4–25.0°
b = 11.2727 (3) ŵ = 0.07 mm1
c = 21.6598 (5) ÅT = 103 K
β = 102.5953 (16)°Prism, red
V = 2449.84 (10) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2994 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.986, Tmax = 0.996k = 1310
15962 measured reflectionsl = 2425
4289 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040Only H-atom coordinates refined
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.5999P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4289 reflectionsΔρmax = 0.25 e Å3
407 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (6)
Crystal data top
C33H30N2V = 2449.84 (10) Å3
Mr = 454.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2810 (2) ŵ = 0.07 mm1
b = 11.2727 (3) ÅT = 103 K
c = 21.6598 (5) Å0.20 × 0.20 × 0.05 mm
β = 102.5953 (16)°
Data collection top
Rigaku Mercury CCD
diffractometer
4289 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2994 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.996Rint = 0.048
15962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.096Only H-atom coordinates refined
S = 1.02Δρmax = 0.25 e Å3
4289 reflectionsΔρmin = 0.19 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03226 (14)0.03480 (13)0.22158 (7)0.0217 (4)
C10.06655 (17)0.00324 (16)0.27895 (8)0.0202 (4)
C20.13560 (17)0.10987 (16)0.28032 (8)0.0206 (4)
C30.17530 (18)0.14060 (17)0.33593 (9)0.0236 (4)
H10.2217 (19)0.2182 (17)0.3372 (8)0.028*
C40.15066 (18)0.06749 (17)0.38866 (9)0.0244 (4)
C50.08538 (18)0.03968 (17)0.38498 (9)0.0241 (4)
H20.0656 (18)0.0949 (17)0.4239 (9)0.029*
C60.04435 (17)0.07451 (16)0.33063 (8)0.0215 (4)
C70.1717 (2)0.18698 (18)0.22225 (9)0.0264 (4)
H30.217 (2)0.1430 (18)0.1834 (10)0.040*
H40.235 (2)0.2524 (19)0.2296 (9)0.040*
H50.093 (2)0.2258 (18)0.2107 (9)0.040*
C80.1956 (2)0.1004 (2)0.44821 (10)0.0340 (5)
H60.263 (2)0.168 (2)0.4403 (10)0.051*
H70.236 (2)0.037 (2)0.4631 (10)0.051*
H80.122 (2)0.128 (2)0.4809 (10)0.051*
C90.0248 (2)0.19139 (18)0.32799 (10)0.0284 (5)
H90.123 (2)0.1829 (18)0.3322 (9)0.043*
H100.012 (2)0.2472 (19)0.3629 (10)0.043*
H110.009 (2)0.2346 (19)0.2868 (10)0.043*
N20.26870 (14)0.06119 (13)0.16733 (7)0.0210 (3)
C100.12774 (17)0.06370 (15)0.15398 (8)0.0202 (4)
C110.08304 (17)0.01780 (15)0.21100 (8)0.0195 (4)
C120.24414 (18)0.03646 (16)0.32202 (8)0.0219 (4)
H120.1716 (18)0.0559 (16)0.3459 (8)0.026*
C130.37190 (18)0.02512 (16)0.35192 (8)0.0228 (4)
C140.47680 (18)0.00966 (16)0.31602 (9)0.0246 (4)
H130.572 (2)0.0065 (16)0.3402 (9)0.030*
C150.45125 (17)0.00537 (15)0.25265 (9)0.0218 (4)
C160.20669 (17)0.04503 (16)0.25098 (8)0.0200 (4)
C170.31158 (17)0.00802 (15)0.22083 (8)0.0202 (4)
C180.4151 (2)0.03166 (19)0.42276 (9)0.0298 (5)
H140.335 (2)0.0437 (19)0.4425 (10)0.045*
H150.464 (2)0.0443 (19)0.4412 (10)0.045*
H160.479 (2)0.102 (2)0.4354 (9)0.045*
C190.55426 (19)0.0312 (2)0.21488 (10)0.0278 (5)
H170.647 (2)0.0295 (18)0.2433 (10)0.042*
H180.537 (2)0.110 (2)0.1915 (9)0.042*
H190.549 (2)0.0275 (19)0.1806 (10)0.042*
C200.1947 (2)0.17994 (16)0.23507 (9)0.0235 (4)
H200.1700 (19)0.1935 (17)0.1864 (10)0.035*
H210.127 (2)0.2187 (17)0.2562 (9)0.035*
H220.284 (2)0.2210 (18)0.2533 (9)0.035*
C210.25981 (19)0.18750 (17)0.05033 (9)0.0261 (5)
H230.3320 (19)0.1725 (17)0.0886 (9)0.031*
C220.2922 (2)0.24009 (18)0.00252 (9)0.0287 (5)
H240.387 (2)0.2675 (17)0.0003 (9)0.034*
C230.1956 (2)0.26124 (17)0.05731 (9)0.0273 (5)
H250.2183 (19)0.2987 (17)0.0947 (9)0.033*
C240.0637 (2)0.23048 (16)0.05992 (9)0.0256 (4)
H260.005 (2)0.2484 (16)0.0991 (9)0.031*
C250.22427 (19)0.14758 (17)0.03726 (9)0.0256 (4)
H270.2330 (18)0.1752 (17)0.0804 (9)0.031*
C260.3349 (2)0.11042 (17)0.01557 (9)0.0281 (5)
H280.425 (2)0.1090 (17)0.0438 (9)0.034*
C270.3212 (2)0.07354 (17)0.04646 (9)0.0280 (5)
H290.398 (2)0.0512 (17)0.0631 (9)0.034*
C280.19683 (18)0.07043 (16)0.08820 (9)0.0250 (4)
H300.1866 (18)0.0447 (16)0.1337 (9)0.030*
C290.06016 (17)0.10611 (16)0.09684 (8)0.0201 (4)
C300.12739 (18)0.15654 (15)0.04819 (8)0.0205 (4)
C310.03035 (18)0.17914 (15)0.00726 (8)0.0209 (4)
C320.10020 (18)0.14522 (15)0.00361 (8)0.0214 (4)
C330.08408 (18)0.10508 (15)0.06673 (8)0.0205 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0207 (8)0.0246 (9)0.0202 (8)0.0006 (7)0.0055 (7)0.0002 (7)
C10.0153 (9)0.0266 (10)0.0188 (10)0.0045 (8)0.0039 (8)0.0037 (8)
C20.0159 (9)0.0228 (10)0.0225 (10)0.0027 (8)0.0027 (8)0.0005 (8)
C30.0194 (10)0.0238 (10)0.0282 (11)0.0026 (8)0.0066 (8)0.0034 (9)
C40.0187 (10)0.0302 (11)0.0259 (10)0.0051 (8)0.0084 (8)0.0035 (9)
C50.0191 (10)0.0311 (11)0.0222 (10)0.0041 (8)0.0048 (8)0.0026 (9)
C60.0144 (9)0.0250 (10)0.0249 (10)0.0027 (7)0.0040 (8)0.0009 (8)
C70.0235 (11)0.0276 (11)0.0269 (11)0.0028 (9)0.0030 (9)0.0026 (9)
C80.0338 (13)0.0398 (13)0.0313 (12)0.0034 (10)0.0136 (10)0.0056 (10)
C90.0270 (11)0.0265 (11)0.0329 (12)0.0024 (9)0.0090 (10)0.0051 (9)
N20.0184 (8)0.0226 (8)0.0222 (8)0.0006 (7)0.0046 (7)0.0005 (7)
C100.0198 (9)0.0196 (9)0.0221 (10)0.0010 (8)0.0065 (8)0.0003 (8)
C110.0197 (10)0.0197 (9)0.0188 (9)0.0005 (7)0.0035 (8)0.0025 (8)
C120.0231 (10)0.0227 (10)0.0203 (10)0.0029 (8)0.0054 (8)0.0010 (8)
C130.0239 (10)0.0219 (10)0.0213 (10)0.0021 (8)0.0018 (8)0.0010 (8)
C140.0197 (10)0.0243 (10)0.0275 (11)0.0006 (8)0.0003 (9)0.0008 (8)
C150.0190 (9)0.0192 (10)0.0268 (10)0.0002 (8)0.0040 (8)0.0004 (8)
C160.0175 (9)0.0230 (10)0.0192 (9)0.0004 (7)0.0035 (8)0.0003 (8)
C170.0221 (10)0.0194 (10)0.0194 (10)0.0012 (8)0.0054 (8)0.0018 (8)
C180.0319 (12)0.0327 (12)0.0228 (11)0.0038 (10)0.0015 (9)0.0022 (9)
C190.0201 (11)0.0323 (12)0.0312 (11)0.0001 (9)0.0060 (9)0.0026 (10)
C200.0224 (10)0.0206 (10)0.0271 (11)0.0018 (8)0.0041 (9)0.0022 (8)
C210.0252 (11)0.0282 (11)0.0249 (11)0.0024 (8)0.0059 (9)0.0046 (9)
C220.0279 (11)0.0289 (11)0.0312 (11)0.0008 (9)0.0107 (9)0.0048 (9)
C230.0360 (12)0.0247 (11)0.0233 (11)0.0021 (9)0.0114 (9)0.0022 (8)
C240.0327 (11)0.0220 (10)0.0215 (10)0.0007 (9)0.0046 (9)0.0004 (8)
C250.0307 (11)0.0239 (10)0.0199 (10)0.0013 (9)0.0006 (9)0.0008 (8)
C260.0238 (11)0.0269 (11)0.0294 (11)0.0023 (9)0.0031 (9)0.0020 (9)
C270.0231 (11)0.0282 (11)0.0319 (12)0.0042 (9)0.0042 (9)0.0049 (9)
C280.0249 (11)0.0248 (10)0.0245 (10)0.0002 (8)0.0039 (9)0.0027 (8)
C290.0216 (10)0.0184 (9)0.0206 (10)0.0007 (8)0.0055 (8)0.0017 (8)
C300.0242 (10)0.0175 (9)0.0211 (10)0.0019 (8)0.0076 (8)0.0008 (8)
C310.0271 (10)0.0167 (10)0.0191 (10)0.0021 (8)0.0053 (8)0.0016 (7)
C320.0253 (10)0.0175 (9)0.0211 (10)0.0025 (8)0.0041 (8)0.0027 (8)
C330.0220 (10)0.0179 (9)0.0205 (9)0.0028 (8)0.0022 (8)0.0002 (8)
Geometric parameters (Å, º) top
N1—C111.270 (2)C15—C191.501 (3)
N1—C11.429 (2)C16—C171.501 (2)
C1—C21.399 (2)C16—C201.558 (3)
C1—C61.401 (2)C18—H141.02 (2)
C2—C31.397 (2)C18—H151.03 (2)
C2—C71.507 (3)C18—H161.02 (2)
C3—C41.386 (3)C19—H171.02 (2)
C3—H11.000 (19)C19—H181.02 (2)
C4—C51.393 (3)C19—H190.99 (2)
C4—C81.508 (3)C20—H201.04 (2)
C5—C61.391 (3)C20—H211.01 (2)
C5—H21.033 (19)C20—H221.03 (2)
C6—C91.504 (3)C21—C221.392 (3)
C7—H31.00 (2)C21—C301.396 (2)
C7—H41.02 (2)C21—H231.00 (2)
C7—H51.00 (2)C22—C231.392 (3)
C8—H61.02 (2)C22—H241.01 (2)
C8—H70.93 (2)C23—C241.389 (3)
C8—H80.97 (2)C23—H250.986 (19)
C9—H91.00 (2)C24—C311.387 (3)
C9—H101.02 (2)C24—H261.00 (2)
C9—H111.01 (2)C25—C321.385 (3)
N2—C171.294 (2)C25—C261.387 (3)
N2—C101.415 (2)C25—H270.970 (19)
C10—C291.367 (2)C26—C271.384 (3)
C10—C111.501 (2)C26—H280.99 (2)
C11—C161.545 (2)C27—C281.396 (3)
C12—C131.338 (3)C27—H290.969 (19)
C12—C161.506 (2)C28—C331.396 (2)
C12—H121.020 (18)C28—H301.010 (18)
C13—C141.471 (3)C29—C331.484 (2)
C13—C181.503 (3)C29—C301.493 (2)
C14—C151.351 (2)C30—C311.407 (2)
C14—H131.01 (2)C31—C321.463 (2)
C15—C171.451 (2)C32—C331.415 (2)
C11—N1—C1121.90 (15)C11—C16—C20107.90 (14)
C2—C1—C6121.03 (16)N2—C17—C15122.92 (16)
C2—C1—N1119.90 (16)N2—C17—C16115.94 (15)
C6—C1—N1118.61 (16)C15—C17—C16121.02 (15)
C3—C2—C1118.44 (17)C13—C18—H14110.5 (12)
C3—C2—C7120.75 (17)C13—C18—H15111.5 (11)
C1—C2—C7120.76 (16)H14—C18—H15108.6 (16)
C4—C3—C2121.85 (18)C13—C18—H16109.9 (11)
C4—C3—H1120.0 (10)H14—C18—H16108.2 (17)
C2—C3—H1118.1 (10)H15—C18—H16108.1 (17)
C3—C4—C5118.19 (17)C15—C19—H17110.4 (11)
C3—C4—C8121.55 (19)C15—C19—H18111.8 (11)
C5—C4—C8120.25 (18)H17—C19—H18111.0 (16)
C6—C5—C4122.15 (17)C15—C19—H19110.7 (12)
C6—C5—H2118.7 (10)H17—C19—H19109.3 (17)
C4—C5—H2119.2 (10)H18—C19—H19103.5 (16)
C5—C6—C1118.23 (17)C16—C20—H20111.0 (11)
C5—C6—C9120.84 (17)C16—C20—H21110.5 (11)
C1—C6—C9120.92 (16)H20—C20—H21110.9 (16)
C2—C7—H3113.6 (12)C16—C20—H22109.5 (11)
C2—C7—H4109.7 (11)H20—C20—H22108.9 (15)
H3—C7—H4107.3 (16)H21—C20—H22106.0 (15)
C2—C7—H5113.4 (12)C22—C21—C30119.02 (18)
H3—C7—H5105.1 (16)C22—C21—H23119.2 (11)
H4—C7—H5107.4 (16)C30—C21—H23121.8 (11)
C4—C8—H6111.4 (12)C23—C22—C21121.32 (19)
C4—C8—H7110.8 (14)C23—C22—H24119.2 (11)
H6—C8—H7106.9 (18)C21—C22—H24119.3 (11)
C4—C8—H8111.7 (13)C24—C23—C22120.05 (18)
H6—C8—H8106.2 (18)C24—C23—H25118.5 (11)
H7—C8—H8109.6 (19)C22—C23—H25121.4 (11)
C6—C9—H9112.9 (12)C31—C24—C23119.00 (18)
C6—C9—H10112.0 (11)C31—C24—H26122.0 (11)
H9—C9—H10106.7 (17)C23—C24—H26119.0 (11)
C6—C9—H11112.4 (12)C32—C25—C26119.13 (18)
H9—C9—H11105.9 (16)C32—C25—H27120.0 (11)
H10—C9—H11106.4 (17)C26—C25—H27120.8 (11)
C17—N2—C10109.04 (14)C27—C26—C25120.13 (18)
C29—C10—N2119.21 (15)C27—C26—H28118.6 (11)
C29—C10—C11132.80 (16)C25—C26—H28121.2 (11)
N2—C10—C11107.98 (14)C26—C27—C28121.43 (19)
N1—C11—C10124.19 (16)C26—C27—H29121.3 (12)
N1—C11—C16130.86 (15)C28—C27—H29117.3 (12)
C10—C11—C16104.90 (14)C33—C28—C27119.15 (18)
C13—C12—C16120.40 (16)C33—C28—H30119.2 (11)
C13—C12—H12121.6 (10)C27—C28—H30121.7 (11)
C16—C12—H12116.9 (10)C10—C29—C33131.08 (16)
C12—C13—C14120.73 (17)C10—C29—C30123.37 (16)
C12—C13—C18122.00 (17)C33—C29—C30105.36 (14)
C14—C13—C18117.24 (17)C21—C30—C31119.19 (16)
C15—C14—C13123.33 (17)C21—C30—C29132.06 (16)
C15—C14—H13118.5 (10)C31—C30—C29108.67 (15)
C13—C14—H13118.1 (10)C24—C31—C30121.41 (17)
C14—C15—C17115.99 (16)C24—C31—C32129.88 (17)
C14—C15—C19125.04 (17)C30—C31—C32108.65 (15)
C17—C15—C19118.67 (16)C25—C32—C33121.41 (17)
C17—C16—C12111.78 (15)C25—C32—C31129.88 (17)
C17—C16—C1198.91 (13)C33—C32—C31108.71 (15)
C12—C16—C11122.63 (14)C28—C33—C32118.73 (16)
C17—C16—C20108.81 (14)C28—C33—C29132.74 (16)
C12—C16—C20106.20 (14)C32—C33—C29108.50 (15)
C11—N1—C1—C298.5 (2)C19—C15—C17—C16164.92 (17)
C11—N1—C1—C689.2 (2)C12—C16—C17—N2145.07 (16)
C6—C1—C2—C33.7 (3)C11—C16—C17—N214.51 (19)
N1—C1—C2—C3175.83 (15)C20—C16—C17—N297.96 (18)
C6—C1—C2—C7173.55 (17)C12—C16—C17—C1531.1 (2)
N1—C1—C2—C71.4 (2)C11—C16—C17—C15161.68 (15)
C1—C2—C3—C41.4 (3)C20—C16—C17—C1585.9 (2)
C7—C2—C3—C4175.85 (17)C30—C21—C22—C230.6 (3)
C2—C3—C4—C50.6 (3)C21—C22—C23—C240.4 (3)
C2—C3—C4—C8179.11 (18)C22—C23—C24—C310.2 (3)
C3—C4—C5—C60.3 (3)C32—C25—C26—C271.1 (3)
C8—C4—C5—C6178.86 (18)C25—C26—C27—C281.3 (3)
C4—C5—C6—C11.9 (3)C26—C27—C28—C330.1 (3)
C4—C5—C6—C9179.43 (18)N2—C10—C29—C33170.95 (17)
C2—C1—C6—C54.0 (3)C11—C10—C29—C3310.7 (3)
N1—C1—C6—C5176.18 (15)N2—C10—C29—C303.3 (3)
C2—C1—C6—C9177.41 (17)C11—C10—C29—C30175.04 (17)
N1—C1—C6—C95.2 (2)C22—C21—C30—C310.1 (3)
C17—N2—C10—C29174.03 (16)C22—C21—C30—C29176.18 (18)
C17—N2—C10—C117.24 (19)C10—C29—C30—C2110.0 (3)
C1—N1—C11—C10175.21 (16)C33—C29—C30—C21174.43 (19)
C1—N1—C11—C161.9 (3)C10—C29—C30—C31173.40 (17)
C29—C10—C11—N116.7 (3)C33—C29—C30—C312.11 (19)
N2—C10—C11—N1161.79 (16)C23—C24—C31—C300.7 (3)
C29—C10—C11—C16165.60 (19)C23—C24—C31—C32176.07 (18)
N2—C10—C11—C1615.91 (18)C21—C30—C31—C240.6 (3)
C16—C12—C13—C145.7 (3)C29—C30—C31—C24177.65 (16)
C16—C12—C13—C18172.16 (16)C21—C30—C31—C32176.83 (16)
C12—C13—C14—C156.5 (3)C29—C30—C31—C320.2 (2)
C18—C13—C14—C15175.49 (18)C26—C25—C32—C330.4 (3)
C13—C14—C15—C171.2 (3)C26—C25—C32—C31179.99 (18)
C13—C14—C15—C19174.80 (18)C24—C31—C32—C255.1 (3)
C13—C12—C16—C1722.9 (2)C30—C31—C32—C25177.79 (19)
C13—C12—C16—C11139.88 (18)C24—C31—C32—C33175.26 (18)
C13—C12—C16—C2095.6 (2)C30—C31—C32—C331.9 (2)
N1—C11—C16—C17160.50 (19)C27—C28—C33—C321.6 (3)
C10—C11—C16—C1716.99 (17)C27—C28—C33—C29176.13 (18)
N1—C11—C16—C1237.4 (3)C25—C32—C33—C281.8 (3)
C10—C11—C16—C12140.10 (16)C31—C32—C33—C28178.55 (16)
N1—C11—C16—C2086.3 (2)C25—C32—C33—C29176.49 (17)
C10—C11—C16—C2096.19 (16)C31—C32—C33—C293.20 (19)
C10—N2—C17—C15170.90 (16)C10—C29—C33—C286.1 (3)
C10—N2—C17—C165.2 (2)C30—C29—C33—C28178.83 (19)
C14—C15—C17—N2154.85 (17)C10—C29—C33—C32171.78 (19)
C19—C15—C17—N219.2 (3)C30—C29—C33—C323.26 (19)
C14—C15—C17—C1621.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H15···C24i1.03 (2)2.74 (2)3.708 (2)157.0 (15)
C19—H17···C2ii1.02 (2)2.70 (2)3.568 (2)142.7 (15)
C23—H25···C5iii0.986 (19)2.82 (2)3.591 (2)135.2 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC33H30N2
Mr454.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)10.2810 (2), 11.2727 (3), 21.6598 (5)
β (°) 102.5953 (16)
V3)2449.84 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.986, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
15962, 4289, 2994
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.096, 1.02
No. of reflections4289
No. of parameters407
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), yadokari-XG (Wakita, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H15···C24i1.03 (2)2.74 (2)3.708 (2)157.0 (15)
C19—H17···C2ii1.02 (2)2.70 (2)3.568 (2)142.7 (15)
C23—H25···C5iii0.986 (19)2.82 (2)3.591 (2)135.2 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was partially supported by Grants-in-Aid for Creative Scientific Research (No. 17GS0207), the 21st Century COE Program B14 (Kyoto University Alliance for Chemistry), and the Global COE Program B09 (International Center for Integrated Research and Advanced Education in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDöpp, D., Krüger, C., Makedakis, G. & Nour-el-Din, A. M. (1985). Chem. Ber. 118, 510–525.  Google Scholar
First citationGerlach, C. P. & Arnold, J. (1997). J. Chem. Soc. Dalton Trans. pp. 4795–4805.  Web of Science CSD CrossRef Google Scholar
First citationJacobson, R. (1998). REQAB. Version 1.1. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationMiyata, O., Kimura, Y. & Naito, T. (1999). Chem. Commun. pp. 2429–2430.  Web of Science CSD CrossRef Google Scholar
First citationMizuhata, Y., Takeda, N., Sasamori, T. & Tokitoh, N. (2005). Chem. Commun. pp. 5876–5878.  Web of Science CSD CrossRef Google Scholar
First citationMurakami, M., Ito, H. & Ito, Y. (1996). Chem. Lett. 25, 7–8.  CrossRef Web of Science Google Scholar
First citationRigaku (2004). CrystalClear. Version 1.3.5 SP2. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, H., Hamada, K., Ozawa, M., Kataoka, T., Hori, M., Kobayashi, K. & Tada, Y. (1991). Tetrahedron Lett. 32, 4359–4362.  CSD CrossRef CAS Web of Science Google Scholar
First citationWakita, K. (2005). yadokari-XG. URL: http://www.hat.hi-ho.ne.jp/k-wakita/yadokari/index.htmlGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds