organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­chloro­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 January 2008; accepted 28 January 2008; online 30 January 2008)

The conformation of the N—H and C=O bonds in the structure of the title compound (N26DCPBA), C13H9Cl2NO, are anti to each other, similar to that observed in N-phenyl­benzamide (NPBA), N-(2-chloro­phen­yl)benzamide (N2CPBA), N-(2,3-dichloro­phen­yl)benzamide (N23DCPBA) and other benzanilides. The asymmetric unit of N26DCPBA contains two mol­ecules. The bond parameters in N26DCPBA are similar to those in NPBA, N2CPBA, N23DCPBA and other benzanilides. The amide group, –NHCO–, makes a dihedral angle of 30.8 (1)° with the benzoyl ring in the first mol­ecule and 35.1 (2)° in the second mol­ecule of the asymmetric unit. The dihedral angle between the two benzene rings (benzoyl and aniline) is 56.8 (1)° in the first mol­ecule and 59.1 (1)° in the second mol­ecule. N—H⋯O hydrogen bonds give rise to infinite chains running along the a axis of the crystal structure.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2007a[Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.],b[Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326.],c[Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007c). Acta Cryst. E63, o3365.], 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Monoclinic, P 21 /c

  • a = 10.0431 (2) Å

  • b = 13.7150 (3) Å

  • c = 18.4585 (4) Å

  • β = 93.623 (2)°

  • V = 2537.41 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 295 (2) K

  • 0.26 × 0.24 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: analytical [(Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.882, Tmax = 0.904

  • 54956 measured reflections

  • 4956 independent reflections

  • 3810 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.10

  • 4956 reflections

  • 314 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.860 (19) 2.09 (2) 2.9035 (18) 158 (2)
N2—H2N⋯O1i 0.843 (18) 2.060 (19) 2.8831 (18) 165.1 (19)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97], PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of N-(2,6-dichlorophenyl)-benzamide (N26DCPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003,2007a,b,c,2008). The conformation of the N—H and C=O bonds in the structure of N26DCPBA (Fig.1) are anti to each other, similar to that observed in N-(phenyl)-benzamide (NPBA)(Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (N2CPBA), N-(2,3-dichlorophenyl)-benzamide (N23DCPBA) and other benzanilides(Gowda et al., 2007a,b,c, 2008). The title compound crystallizes in the space group P21/c, with two molecules in the asymmetric unit. The bond parameters in N26DCPBA are similar to those in NPBA, N2CPBA, N23DCPBA and other benzanilides. The amide group –NHCO– has the dihedral angle of 30.8 (1)° with the benzoyl ring in the first molecule and 35.1 (2)° in the second molecule of the asymmetric unit. The dihedral angle between the two benzene rings (benzoyl and aniline) is 56.8 (1)° in the first molecule and 59.1 (1)° in the second molecule. One-dimensional chains of N26DCPBA along the base vector [1 0 0] formed by hydrogen bonds N1–H1N···O2(i) and N2–H2N···O1 (Table 1) as viewed down the b axis is shown in Fig.2. Symmetry code (i): x + 1,y,z.

Related literature top

For related literature, see: Gowda et al. (2003, 2007a,b,c, 2008).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and subsequently treated as riding with C—H bond distance 0.93 Å. H(N) atoms were visible in the difference map. In the refinement the N—H distance was restrained to 0.86 (4) Å. The Uiso(H) values were set at 1.2 Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD, Oxford Diffraction, 2007; cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Numbers of the C atoms in the second molecule are increased by 20. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bond N2—H2N···O1 is shown as a dashed line.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed down the b axis. One-dimensional chains along the base vector [1 0 0] are formed by hydrogen bonds N1–H1N···O2 and N2–H2N···O1(i). Symmetry code (i): x + 1,y,z. H atoms not involved in hydrogen bonding are omitted.
N-(2,6-Dichlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 1088
Mr = 266.11Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24495 reflections
a = 10.0431 (2) Åθ = 3.1–29.5°
b = 13.7150 (3) ŵ = 0.49 mm1
c = 18.4585 (4) ÅT = 295 K
β = 93.623 (2)°Block, colorless
V = 2537.41 (9) Å30.26 × 0.24 × 0.21 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
4956 independent reflections
Radiation source: Enhance (Mo) X-ray Source3810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.434 pixels mm-1θmax = 26.0°, θmin = 5.1°
ϕ scans, and ω scans with κ offsetsh = 1212
Absorption correction: analytical
[(Oxford Diffraction, 2007); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]
k = 1616
Tmin = 0.883, Tmax = 0.904l = 2222
54956 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4979P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4956 reflectionsΔρmax = 0.40 e Å3
314 parametersΔρmin = 0.35 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (11)
Crystal data top
C13H9Cl2NOV = 2537.41 (9) Å3
Mr = 266.11Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.0431 (2) ŵ = 0.49 mm1
b = 13.7150 (3) ÅT = 295 K
c = 18.4585 (4) Å0.26 × 0.24 × 0.21 mm
β = 93.623 (2)°
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
4956 independent reflections
Absorption correction: analytical
[(Oxford Diffraction, 2007); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]
3810 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.904Rint = 0.023
54956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.40 e Å3
4956 reflectionsΔρmin = 0.35 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29163 (15)0.88930 (13)0.13557 (10)0.0468 (4)
C20.31340 (17)0.99515 (13)0.12131 (10)0.0496 (4)
C30.2344 (2)1.06295 (18)0.1520 (2)0.0957 (10)
H30.17181.04330.1840.115*
C40.2478 (3)1.1613 (2)0.1353 (2)0.1205 (13)
H40.19421.20720.15640.145*
C50.3392 (3)1.19053 (19)0.08819 (19)0.0957 (10)
H50.34471.25590.07520.115*
C60.4206 (4)1.1252 (2)0.06070 (14)0.0979 (9)
H60.48561.14560.03040.118*
C70.4090 (3)1.02747 (17)0.07699 (13)0.0798 (7)
H70.46670.98280.05770.096*
C80.39430 (16)0.73180 (13)0.15565 (12)0.0555 (5)
C90.41165 (19)0.70599 (15)0.22837 (14)0.0661 (6)
C100.4153 (2)0.60990 (18)0.25095 (17)0.0805 (7)
H100.42840.59450.30.097*
C110.3993 (2)0.53776 (18)0.19996 (19)0.0853 (8)
H110.40110.47290.21460.102*
C120.3805 (2)0.55993 (17)0.12743 (18)0.0822 (8)
H120.37020.51020.09330.099*
C130.3771 (2)0.65690 (16)0.10524 (14)0.0664 (6)
N10.39953 (14)0.83121 (11)0.13436 (10)0.0535 (4)
H1N0.4772 (19)0.8565 (16)0.1310 (11)0.064*
O10.18181 (11)0.85646 (10)0.14687 (9)0.0635 (4)
Cl10.42425 (7)0.79839 (5)0.29312 (4)0.0924 (2)
Cl20.35242 (9)0.68484 (5)0.01367 (4)0.1030 (3)
C210.79317 (15)0.84885 (12)0.13788 (10)0.0457 (4)
C220.81608 (17)0.75379 (13)0.10084 (11)0.0505 (4)
C230.7373 (2)0.67477 (16)0.11555 (17)0.0803 (8)
H230.67240.68040.14910.096*
C240.7548 (3)0.58684 (18)0.0802 (2)0.1034 (11)
H240.70230.53340.09060.124*
C250.8487 (3)0.57822 (19)0.03020 (18)0.0922 (9)
H250.85880.51930.00620.111*
C260.9277 (3)0.65546 (18)0.01526 (13)0.0761 (7)
H260.99190.64910.01860.091*
C270.9124 (2)0.74372 (15)0.05076 (11)0.0588 (5)
H270.96690.79630.04090.071*
C280.89884 (14)0.99789 (11)0.18305 (9)0.0412 (4)
C290.92285 (17)1.01514 (13)0.25670 (10)0.0501 (4)
C300.9290 (2)1.10850 (16)0.28488 (12)0.0622 (5)
H300.94681.11840.33440.075*
C310.9085 (2)1.18598 (15)0.23909 (13)0.0670 (6)
H310.91211.2490.25780.08*
C320.8826 (2)1.17230 (14)0.16579 (13)0.0653 (5)
H320.86831.22550.13510.078*
C330.87794 (18)1.07878 (13)0.13833 (10)0.0511 (4)
N20.90279 (14)0.90255 (10)0.15368 (8)0.0450 (4)
H2N0.9794 (18)0.8817 (14)0.1457 (10)0.054*
O20.68208 (11)0.87638 (10)0.15285 (9)0.0677 (4)
Cl30.94534 (8)0.91674 (5)0.31518 (3)0.0865 (2)
Cl40.84784 (8)1.06116 (5)0.04585 (3)0.0869 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0336 (8)0.0493 (10)0.0569 (10)0.0039 (7)0.0009 (7)0.0105 (8)
C20.0427 (9)0.0468 (10)0.0576 (10)0.0041 (8)0.0106 (8)0.0080 (8)
C30.0452 (11)0.0592 (14)0.185 (3)0.0027 (10)0.0251 (15)0.0048 (16)
C40.0598 (15)0.0540 (15)0.247 (4)0.0129 (12)0.004 (2)0.001 (2)
C50.0892 (19)0.0524 (14)0.139 (3)0.0148 (13)0.0468 (18)0.0265 (16)
C60.163 (3)0.0603 (15)0.0716 (15)0.0325 (18)0.0185 (17)0.0136 (12)
C70.125 (2)0.0535 (12)0.0637 (13)0.0217 (13)0.0321 (13)0.0015 (10)
C80.0290 (8)0.0467 (10)0.0905 (15)0.0013 (7)0.0021 (8)0.0144 (10)
C90.0424 (10)0.0583 (12)0.0961 (16)0.0013 (9)0.0076 (10)0.0177 (11)
C100.0614 (13)0.0643 (15)0.114 (2)0.0050 (11)0.0110 (13)0.0311 (14)
C110.0612 (13)0.0495 (13)0.145 (3)0.0099 (10)0.0081 (14)0.0293 (15)
C120.0664 (14)0.0485 (12)0.133 (2)0.0020 (10)0.0192 (15)0.0005 (14)
C130.0478 (10)0.0548 (12)0.0976 (16)0.0053 (9)0.0116 (10)0.0053 (11)
N10.0312 (7)0.0452 (8)0.0843 (11)0.0067 (6)0.0043 (7)0.0129 (8)
O10.0320 (6)0.0573 (8)0.1014 (11)0.0022 (5)0.0056 (6)0.0213 (7)
Cl10.1026 (5)0.0785 (4)0.0927 (5)0.0146 (3)0.0221 (4)0.0098 (3)
Cl20.1321 (6)0.0836 (5)0.0940 (5)0.0293 (4)0.0131 (4)0.0028 (4)
C210.0333 (8)0.0438 (9)0.0596 (10)0.0012 (7)0.0003 (7)0.0075 (8)
C220.0382 (9)0.0435 (9)0.0679 (12)0.0031 (7)0.0111 (8)0.0117 (8)
C230.0445 (11)0.0524 (12)0.145 (2)0.0056 (9)0.0107 (12)0.0206 (13)
C240.0651 (15)0.0515 (14)0.192 (3)0.0098 (11)0.0021 (18)0.0332 (17)
C250.0757 (16)0.0631 (15)0.134 (2)0.0173 (13)0.0220 (16)0.0463 (15)
C260.0871 (16)0.0718 (15)0.0681 (14)0.0202 (13)0.0060 (12)0.0257 (11)
C270.0664 (12)0.0531 (11)0.0563 (11)0.0077 (9)0.0004 (9)0.0102 (9)
C280.0288 (7)0.0404 (9)0.0547 (10)0.0010 (6)0.0049 (7)0.0089 (7)
C290.0464 (9)0.0506 (10)0.0536 (10)0.0008 (8)0.0050 (8)0.0060 (8)
C300.0624 (12)0.0631 (13)0.0613 (12)0.0083 (10)0.0060 (10)0.0219 (10)
C310.0693 (13)0.0448 (11)0.0887 (16)0.0085 (9)0.0194 (11)0.0236 (11)
C320.0701 (13)0.0409 (10)0.0862 (16)0.0001 (9)0.0148 (11)0.0002 (10)
C330.0468 (9)0.0513 (10)0.0554 (10)0.0013 (8)0.0054 (8)0.0051 (8)
N20.0290 (6)0.0427 (8)0.0634 (9)0.0026 (6)0.0029 (6)0.0147 (6)
O20.0316 (6)0.0583 (8)0.1137 (12)0.0017 (6)0.0088 (7)0.0256 (8)
Cl30.1228 (5)0.0719 (4)0.0638 (4)0.0113 (3)0.0019 (3)0.0093 (3)
Cl40.1163 (5)0.0878 (4)0.0553 (3)0.0093 (4)0.0057 (3)0.0019 (3)
Geometric parameters (Å, º) top
C1—O11.2214 (19)C21—O21.2258 (19)
C1—N11.346 (2)C21—N21.341 (2)
C1—C21.494 (2)C21—C221.497 (2)
C2—C31.368 (3)C22—C231.379 (3)
C2—C71.373 (3)C22—C271.386 (3)
C3—C41.391 (4)C23—C241.388 (3)
C3—H30.93C23—H230.93
C4—C51.364 (5)C24—C251.366 (4)
C4—H40.93C24—H240.93
C5—C61.335 (4)C25—C261.362 (4)
C5—H50.93C25—H250.93
C6—C71.380 (3)C26—C271.390 (3)
C6—H60.93C26—H260.93
C7—H70.93C27—H270.93
C8—C91.389 (3)C28—C291.386 (2)
C8—C131.389 (3)C28—C331.391 (3)
C8—N11.421 (2)C28—N21.417 (2)
C9—C101.382 (3)C29—C301.382 (3)
C9—Cl11.741 (3)C29—Cl31.734 (2)
C10—C111.368 (4)C30—C311.365 (3)
C10—H100.93C30—H300.93
C11—C121.374 (4)C31—C321.374 (3)
C11—H110.93C31—H310.93
C12—C131.391 (3)C32—C331.379 (3)
C12—H120.93C32—H320.93
C13—Cl21.736 (3)C33—Cl41.732 (2)
N1—H1N0.860 (19)N2—H2N0.843 (18)
O1—C1—N1121.41 (16)O2—C21—N2121.88 (16)
O1—C1—C2122.15 (16)O2—C21—C22122.66 (15)
N1—C1—C2116.43 (14)N2—C21—C22115.46 (14)
C3—C2—C7118.2 (2)C23—C22—C27119.09 (18)
C3—C2—C1119.51 (18)C23—C22—C21119.21 (18)
C7—C2—C1122.29 (18)C27—C22—C21121.68 (16)
C2—C3—C4120.1 (3)C22—C23—C24119.9 (2)
C2—C3—H3120C22—C23—H23120
C4—C3—H3120C24—C23—H23120
C5—C4—C3120.3 (3)C25—C24—C23120.4 (2)
C5—C4—H4119.9C25—C24—H24119.8
C3—C4—H4119.9C23—C24—H24119.8
C6—C5—C4119.9 (2)C26—C25—C24120.4 (2)
C6—C5—H5120.1C26—C25—H25119.8
C4—C5—H5120.1C24—C25—H25119.8
C5—C6—C7120.5 (3)C25—C26—C27119.9 (2)
C5—C6—H6119.8C25—C26—H26120.1
C7—C6—H6119.8C27—C26—H26120.1
C2—C7—C6121.0 (3)C22—C27—C26120.3 (2)
C2—C7—H7119.5C22—C27—H27119.9
C6—C7—H7119.5C26—C27—H27119.9
C9—C8—C13117.49 (18)C29—C28—C33117.15 (15)
C9—C8—N1120.5 (2)C29—C28—N2121.70 (16)
C13—C8—N1122.0 (2)C33—C28—N2121.06 (16)
C10—C9—C8122.3 (2)C30—C29—C28121.88 (18)
C10—C9—Cl1119.2 (2)C30—C29—Cl3119.07 (15)
C8—C9—Cl1118.51 (16)C28—C29—Cl3119.05 (13)
C11—C10—C9118.8 (3)C31—C30—C29119.13 (19)
C11—C10—H10120.6C31—C30—H30120.4
C9—C10—H10120.6C29—C30—H30120.4
C10—C11—C12120.9 (2)C30—C31—C32120.99 (18)
C10—C11—H11119.6C30—C31—H31119.5
C12—C11—H11119.6C32—C31—H31119.5
C11—C12—C13119.8 (3)C31—C32—C33119.3 (2)
C11—C12—H12120.1C31—C32—H32120.4
C13—C12—H12120.1C33—C32—H32120.4
C8—C13—C12120.7 (2)C32—C33—C28121.57 (18)
C8—C13—Cl2119.53 (16)C32—C33—Cl4119.47 (16)
C12—C13—Cl2119.8 (2)C28—C33—Cl4118.95 (14)
C1—N1—C8121.29 (14)C21—N2—C28123.19 (14)
C1—N1—H1N119.9 (14)C21—N2—H2N121.5 (13)
C8—N1—H1N117.2 (15)C28—N2—H2N115.3 (13)
O1—C1—C2—C330.4 (3)O2—C21—C22—C2334.2 (3)
N1—C1—C2—C3150.5 (2)N2—C21—C22—C23145.9 (2)
O1—C1—C2—C7148.3 (2)O2—C21—C22—C27144.2 (2)
N1—C1—C2—C730.8 (3)N2—C21—C22—C2735.7 (3)
C7—C2—C3—C43.0 (4)C27—C22—C23—C240.2 (4)
C1—C2—C3—C4175.7 (3)C21—C22—C23—C24178.3 (2)
C2—C3—C4—C50.2 (5)C22—C23—C24—C250.8 (4)
C3—C4—C5—C63.3 (5)C23—C24—C25—C261.0 (5)
C4—C5—C6—C73.0 (5)C24—C25—C26—C270.4 (4)
C3—C2—C7—C63.3 (4)C23—C22—C27—C260.9 (3)
C1—C2—C7—C6175.4 (2)C21—C22—C27—C26177.54 (18)
C5—C6—C7—C20.4 (4)C25—C26—C27—C220.6 (3)
C13—C8—C9—C101.5 (3)C33—C28—C29—C301.4 (3)
N1—C8—C9—C10176.03 (18)N2—C28—C29—C30175.06 (16)
C13—C8—C9—Cl1176.52 (14)C33—C28—C29—Cl3178.37 (13)
N1—C8—C9—Cl15.9 (2)N2—C28—C29—Cl35.1 (2)
C8—C9—C10—C111.0 (3)C28—C29—C30—C311.2 (3)
Cl1—C9—C10—C11177.08 (18)Cl3—C29—C30—C31178.63 (16)
C9—C10—C11—C120.3 (4)C29—C30—C31—C320.3 (3)
C10—C11—C12—C130.3 (4)C30—C31—C32—C330.3 (3)
C9—C8—C13—C121.5 (3)C31—C32—C33—C280.0 (3)
N1—C8—C13—C12176.04 (18)C31—C32—C33—Cl4179.03 (16)
C9—C8—C13—Cl2179.02 (14)C29—C28—C33—C320.8 (3)
N1—C8—C13—Cl23.4 (2)N2—C28—C33—C32175.69 (17)
C11—C12—C13—C80.9 (3)C29—C28—C33—Cl4179.88 (12)
C11—C12—C13—Cl2179.60 (17)N2—C28—C33—Cl43.4 (2)
O1—C1—N1—C88.5 (3)O2—C21—N2—C285.4 (3)
C2—C1—N1—C8172.35 (18)C22—C21—N2—C28174.49 (16)
C9—C8—N1—C184.0 (2)C29—C28—N2—C2198.8 (2)
C13—C8—N1—C198.5 (2)C33—C28—N2—C2184.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.86 (2)2.09 (2)2.9035 (18)158 (2)
N2—H2N···O1i0.84 (2)2.06 (2)2.8831 (18)165 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.0431 (2), 13.7150 (3), 18.4585 (4)
β (°) 93.623 (2)
V3)2537.41 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.26 × 0.24 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur System
diffractometer
Absorption correctionAnalytical
[(Oxford Diffraction, 2007); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.883, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
54956, 4956, 3810
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.10
No. of reflections4956
No. of parameters314
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.35

Computer programs: CrysAlis CCD, Oxford Diffraction, 2007, CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.860 (19)2.09 (2)2.9035 (18)158 (2)
N2—H2N···O1i0.843 (18)2.060 (19)2.8831 (18)165.1 (19)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (Grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007c). Acta Cryst. E63, o3365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds