organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-(3-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 January 2008; accepted 28 January 2008; online 30 January 2008)

In the structure of the title compound (N3MP2MBA), C15H15NO, the conformation of the N—H bond is anti to the meta-methyl substituent in the aniline ring and that of the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, while the conformations of the N—H and C=O bonds are anti to each other. The bond parameters in N3MP2MBA are similar to those in 2-methyl-N-phenyl­benzamide, N-(3,4-dimethyl­phen­yl)benzamide and other benzanilides. The amide group, –NHCO–, makes a dihedral angle of 55.2 (7)° with the benzoyl ring, while the dihedral angle between the two benzene rings (benzoyl and aniline) is 36.2 (1)°. N—H⋯O hydrogen bonds give rise to infinite chains running along the b axis of the crystal structure.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]; 2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o340.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Tetragonal, P 43

  • a = 8.931 (2) Å

  • c = 15.816 (4) Å

  • V = 1261.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 299 (2) K

  • 0.55 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1606 measured reflections

  • 1168 independent reflections

  • 1096 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.07

  • 1168 reflections

  • 158 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.837 (18) 2.10 (2) 2.908 (3) 163 (3)
Symmetry code: (i) [-y+1, x, z-{\script{1\over 4}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of N-aromatic amides, in the present work, the structure of N-(3-methylphenyl)-2-methylbenzamide (N3MP2MBA) has been determined (Gowda et al., 2003; 2008a; 2008b). In the structure of N3MP2MBA (Fig. 1), the conformation of the N—H bond is anti to the meta-methyl substituent in the aniline ring and that of the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, while the conformations of the N—H and C=O bonds are anti to each other. The bond parameters in N2MP2MBA are similar to those in N-(phenyl)-2-methylbenzamide (Gowda et al., 2008a), N-(3,4-dimethylphenyl)-benzamide (Gowda et al., 2008b) and other benzanilides (Gowda et al., 2003). The amide group –NHCO– has the dihedral angle of 55.2 (7)° with the benzoyl ring, while the dihedral angle between the two benzene rings (benzoyl and aniline) is 36.2 (1)°. The packing diagram of N3MP2MBA molecules showing the hydrogen bonds N1—H1N···O1 (Table 1) involved in the formation of molecular chain is given in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003; 2008a,b).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The NH atom was located in difference map and was refined with restrained geometry, viz. N—H distance was restrained to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

In the absence of significant anomalous dispersion effects, Friedel pairs were merged and the Δf"term set to zero.

Computing details top

Data collection: CAD-4-PC Version (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Version (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2-Methyl-N-(3-methylphenyl)benzamide top
Crystal data top
C15H15NODx = 1.186 Mg m3
Mr = 225.28Cu Kα radiation, λ = 1.54180 Å
Tetragonal, P43Cell parameters from 25 reflections
Hall symbol: P 4cwθ = 4.9–19.0°
a = 8.931 (2) ŵ = 0.58 mm1
c = 15.816 (4) ÅT = 299 K
V = 1261.5 (3) Å3Prism, colourless
Z = 40.55 × 0.30 × 0.30 mm
F(000) = 480
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 66.8°, θmin = 5.0°
Graphite monochromatorh = 100
ω/2θ scansk = 100
1606 measured reflectionsl = 183
1168 independent reflections3 standard reflections every 120 min
1096 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.0805P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1168 reflectionsΔρmax = 0.12 e Å3
158 parametersΔρmin = 0.10 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (14)
Crystal data top
C15H15NOZ = 4
Mr = 225.28Cu Kα radiation
Tetragonal, P43µ = 0.58 mm1
a = 8.931 (2) ÅT = 299 K
c = 15.816 (4) Å0.55 × 0.30 × 0.30 mm
V = 1261.5 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
1606 measured reflections3 standard reflections every 120 min
1168 independent reflections intensity decay: 1.0%
1096 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.12 e Å3
1168 reflectionsΔρmin = 0.10 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3124 (3)0.2503 (2)0.05561 (14)0.0534 (5)
C20.2079 (3)0.2607 (3)0.12012 (15)0.0601 (6)
H20.16290.35230.13170.072*
C30.1696 (3)0.1353 (3)0.16775 (15)0.0681 (7)
C40.2385 (4)0.0013 (3)0.1499 (2)0.0827 (9)
H40.21420.08330.18130.099*
C50.3424 (4)0.0095 (3)0.0865 (2)0.0874 (9)
H50.38770.10110.07520.105*
C60.3802 (3)0.1149 (3)0.03921 (17)0.0718 (7)
H60.45120.10720.00360.086*
C70.3347 (2)0.5195 (2)0.01949 (14)0.0521 (5)
C80.3969 (3)0.6215 (3)0.04697 (15)0.0576 (6)
C90.3085 (4)0.7335 (3)0.08194 (17)0.0729 (7)
C100.3766 (6)0.8318 (4)0.1386 (2)0.1034 (12)
H100.32000.90780.16300.124*
C110.5257 (7)0.8189 (4)0.1590 (3)0.1172 (16)
H11A0.56920.88740.19580.141*
C120.6101 (5)0.7064 (5)0.1257 (3)0.1091 (13)
H12A0.71020.69640.14080.131*
C130.5459 (4)0.6074 (3)0.0694 (2)0.0774 (8)
H130.60330.53070.04630.093*
C140.0560 (4)0.1486 (5)0.2363 (2)0.0956 (10)
H14A0.03760.18070.21270.115*
H14B0.08940.22060.27730.115*
H14C0.04310.05310.26320.115*
C150.1464 (4)0.7517 (5)0.0604 (3)0.1053 (12)
H15A0.13610.76780.00070.126*
H15B0.09280.66290.07630.126*
H15C0.10640.83610.09040.126*
N10.3505 (2)0.3731 (2)0.00353 (13)0.0561 (5)
H1N0.392 (3)0.350 (3)0.0422 (14)0.067*
O10.2763 (2)0.56893 (19)0.08395 (11)0.0681 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0613 (12)0.0547 (12)0.0444 (11)0.0074 (9)0.0062 (10)0.0018 (9)
C20.0662 (13)0.0625 (13)0.0515 (13)0.0094 (10)0.0007 (11)0.0011 (11)
C30.0790 (16)0.0749 (16)0.0504 (14)0.0251 (13)0.0092 (12)0.0083 (12)
C40.112 (2)0.0683 (16)0.0680 (17)0.0192 (15)0.0136 (17)0.0189 (14)
C50.123 (2)0.0562 (14)0.083 (2)0.0044 (15)0.007 (2)0.0070 (15)
C60.0897 (18)0.0639 (14)0.0619 (16)0.0042 (12)0.0023 (14)0.0021 (12)
C70.0558 (11)0.0558 (11)0.0447 (11)0.0033 (9)0.0023 (9)0.0026 (9)
C80.0721 (14)0.0517 (12)0.0490 (12)0.0063 (10)0.0031 (11)0.0049 (10)
C90.102 (2)0.0610 (14)0.0560 (15)0.0059 (13)0.0007 (14)0.0014 (12)
C100.173 (4)0.0676 (17)0.070 (2)0.008 (2)0.016 (2)0.0166 (15)
C110.180 (4)0.078 (2)0.093 (3)0.043 (3)0.047 (3)0.003 (2)
C120.111 (3)0.093 (2)0.123 (3)0.033 (2)0.047 (3)0.007 (2)
C130.0777 (17)0.0716 (16)0.0828 (19)0.0131 (13)0.0141 (15)0.0023 (14)
C140.107 (2)0.112 (2)0.0678 (18)0.0414 (19)0.0137 (18)0.0095 (18)
C150.105 (3)0.125 (3)0.086 (2)0.038 (2)0.011 (2)0.012 (2)
N10.0679 (12)0.0564 (10)0.0440 (9)0.0042 (8)0.0088 (9)0.0027 (8)
O10.0946 (12)0.0628 (10)0.0468 (9)0.0015 (9)0.0096 (9)0.0054 (8)
Geometric parameters (Å, º) top
C1—C61.377 (4)C9—C101.394 (5)
C1—C21.386 (3)C9—C151.496 (5)
C1—N11.414 (3)C10—C111.375 (7)
C2—C31.392 (3)C10—H100.9300
C2—H20.9300C11—C121.361 (7)
C3—C41.375 (5)C11—H11A0.9300
C3—C141.490 (5)C12—C131.380 (5)
C4—C51.369 (5)C12—H12A0.9300
C4—H40.9300C13—H130.9300
C5—C61.381 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O11.227 (3)C15—H15A0.9600
C7—N11.339 (3)C15—H15B0.9600
C7—C81.498 (3)C15—H15C0.9600
C8—C131.382 (4)N1—H1N0.837 (18)
C8—C91.389 (4)
C6—C1—C2119.6 (2)C11—C10—C9121.4 (4)
C6—C1—N1117.8 (2)C11—C10—H10119.3
C2—C1—N1122.6 (2)C9—C10—H10119.3
C1—C2—C3120.6 (2)C12—C11—C10120.5 (3)
C1—C2—H2119.7C12—C11—H11A119.8
C3—C2—H2119.7C10—C11—H11A119.8
C4—C3—C2118.6 (3)C11—C12—C13119.5 (4)
C4—C3—C14121.6 (3)C11—C12—H12A120.2
C2—C3—C14119.8 (3)C13—C12—H12A120.2
C5—C4—C3121.0 (3)C12—C13—C8120.4 (3)
C5—C4—H4119.5C12—C13—H13119.8
C3—C4—H4119.5C8—C13—H13119.8
C4—C5—C6120.4 (3)C3—C14—H14A109.5
C4—C5—H5119.8C3—C14—H14B109.5
C6—C5—H5119.8H14A—C14—H14B109.5
C1—C6—C5119.8 (3)C3—C14—H14C109.5
C1—C6—H6120.1H14A—C14—H14C109.5
C5—C6—H6120.1H14B—C14—H14C109.5
O1—C7—N1123.5 (2)C9—C15—H15A109.5
O1—C7—C8121.5 (2)C9—C15—H15B109.5
N1—C7—C8114.97 (19)H15A—C15—H15B109.5
C13—C8—C9120.7 (3)C9—C15—H15C109.5
C13—C8—C7118.8 (2)H15A—C15—H15C109.5
C9—C8—C7120.4 (2)H15B—C15—H15C109.5
C8—C9—C10117.5 (3)C7—N1—C1128.5 (2)
C8—C9—C15122.5 (3)C7—N1—H1N117 (2)
C10—C9—C15120.0 (3)C1—N1—H1N115 (2)
C6—C1—C2—C30.7 (3)C7—C8—C9—C10175.1 (3)
N1—C1—C2—C3177.5 (2)C13—C8—C9—C15179.2 (3)
C1—C2—C3—C40.5 (4)C7—C8—C9—C154.4 (4)
C1—C2—C3—C14179.5 (3)C8—C9—C10—C110.1 (5)
C2—C3—C4—C50.2 (4)C15—C9—C10—C11179.4 (4)
C14—C3—C4—C5179.8 (3)C9—C10—C11—C121.7 (6)
C3—C4—C5—C60.1 (5)C10—C11—C12—C131.7 (7)
C2—C1—C6—C50.7 (4)C11—C12—C13—C80.3 (6)
N1—C1—C6—C5177.7 (3)C9—C8—C13—C121.3 (5)
C4—C5—C6—C10.4 (5)C7—C8—C13—C12175.2 (3)
O1—C7—C8—C13122.6 (3)O1—C7—N1—C13.0 (4)
N1—C7—C8—C1356.2 (3)C8—C7—N1—C1175.7 (2)
O1—C7—C8—C953.9 (3)C6—C1—N1—C7159.7 (2)
N1—C7—C8—C9127.4 (2)C2—C1—N1—C722.0 (4)
C13—C8—C9—C101.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.10 (2)2.908 (3)163 (3)
Symmetry code: (i) y+1, x, z1/4.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupTetragonal, P43
Temperature (K)299
a, c (Å)8.931 (2), 15.816 (4)
V3)1261.5 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.55 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1606, 1168, 1096
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.07
No. of reflections1168
No. of parameters158
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.10

Computer programs: CAD-4-PC Version (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.837 (18)2.10 (2)2.908 (3)163 (3)
Symmetry code: (i) y+1, x, z1/4.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds