metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­bis­(1H-imidazole-κN3)bis­­[2-(oxalo­amino)benzoato(3–)]dicopper(II)barium(II)] dihydrate]

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: meichongzhen@ncwu.edu.cn

(Received 19 November 2007; accepted 7 January 2008; online 16 January 2008)

In the title coordination polymer, {[BaCu2(C9H4NO5)2(C3H4N2)2(H2O)4]·2H2O}n, the Ba2+ cation is deca­coordinate, ligated by four aqua ligands and four [Cu(C9H4O5N)(C3H4N2)] `complex ligands'. The CuII-containing complex-ligands are bridged by the Ba2+ cations, resulting in a one-dimensional polymeric chain structure. The crystal structure is maintained via N—H⋯O and O—H⋯O hydrogen bonds. There is one disordered solvent water mol­ecule in the asymmetric unit, with occupancies of 0.44 (2) and 0.56 (2).

Related literature

For related literature, see: Gao et al. (2001[Gao, E.-Q., Tang, J.-K., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Wang, G.-L. (2001). Inorg. Chem. 40, 3134-3140.]); Kahn (1993[Kahn, O. (1993). Molecular Magnetism. New York: VCH.]); Zang et al. (2003[Zang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. & Liao, D.-Z. (2003). Inorg. Chem. 42, 761-766.]).

[Scheme 1]

Experimental

Crystal data
  • [BaCu2(C9H4NO5)2(C3H4N2)2(H2O)4]·2H2O

  • Mr = 920.94

  • Monoclinic, P 2/c

  • a = 10.662 (3) Å

  • b = 6.9165 (18) Å

  • c = 21.335 (5) Å

  • β = 101.146 (4)°

  • V = 1543.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.71 mm−1

  • T = 293 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.525, Tmax = 0.583

  • 7263 measured reflections

  • 2713 independent reflections

  • 2398 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.01

  • 2713 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 1.95 2.804 (5) 177
O5—H5B⋯O4ii 0.85 1.99 2.827 (5) 169
O5—H5B⋯O8ii 0.85 2.58 3.047 (5) 116
O9—H9A⋯O8iii 0.95 2.08 2.915 (5) 145
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Designing metal-containing building blocks to spontaneously assembly infinite molecular architectures is of considerable interest recently as a result of the peculiar magnetic exchange interactions between metal ions through bridging ligands (Kahn, 1993). Among many other methods, the "complex as ligand" approach, i.e. using metal cations to link reactively stable coordination compounds that contain potential bridging blocks, is particularly suitable for designing heteropolymetallic compounds, ranging from discrete entities to three-dimensional architectures. (Gao et al., 2001)

In the title compound, CuII adopts a square planar geometry, coordinating to O3, O4 and N1 from the oxamato-N-benzoate and N2 from the imidazole ligand to afford a Cu-containing "ligand". BaII, lying on the 2-fold axis, is decacoordinate and bridges these Cu-ligands to form one-dimensional chains along the c axis.

Related literature top

For related literature, see: Gao et al. (2001); Kahn (1993); Zang et al. (2003).

Experimental top

0.232 g (1 mmol) oxamato-N-benzoic acid (Zang et al., 2003) and 0.12 g (3 mmol) were dissolved in 20 ml water. To this solution, 0.17 g (1 mmol) CuCl2.2H2O and 0.068 g (1 mmol) imidazole were added. After stirring for an hour, 0.208 g (1 mmol) BaCl2 was added. The solution was filtered after stirring for another hour. Evaporation of the filtrate gave red single crystals of the title compound in one week.

Refinement top

The structure was solved by direct methods. All the H atoms were fixed geometrically and constrained with a riding model. d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms; 0.85 Å, Uiso = 1.5Ueq (O) for H2O hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. A disordered solvent water (O10) molecule has been omitted for clarity. Symmetry-equivalent O atoms generated about the Ba1 atom are at (1 - x, y, 1.5 - z), (1 - x, 2 - y, 2 - z) and (x, 2 - y, z - 1/2).
[Figure 2] Fig. 2. The one-dimensional polymeric chain viewed along the c axis. H atoms, aqueous ligands and solvent water molecules are omitted for clarity.
Poly[[tetraaquabis(1H-imidazole-κN3)bis[2- (oxaloamino)benzoato(3-)]dicopper(II)barium(II)] dihydrate] top
Crystal data top
[BaCu2(C9H4NO5)2(C3H4N2)2(H2O)4]·2H2OF(000) = 912
Mr = 920.94Dx = 1.981 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 857 reflections
a = 10.662 (3) Åθ = 3.0–27.3°
b = 6.9165 (18) ŵ = 2.71 mm1
c = 21.335 (5) ÅT = 293 K
β = 101.146 (4)°Block, red
V = 1543.6 (7) Å30.3 × 0.2 × 0.2 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2713 independent reflections
Radiation source: fine-focus sealed tube2398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.525, Tmax = 0.583k = 88
7263 measured reflectionsl = 2515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
2713 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[BaCu2(C9H4NO5)2(C3H4N2)2(H2O)4]·2H2OV = 1543.6 (7) Å3
Mr = 920.94Z = 2
Monoclinic, P2/cMo Kα radiation
a = 10.662 (3) ŵ = 2.71 mm1
b = 6.9165 (18) ÅT = 293 K
c = 21.335 (5) Å0.3 × 0.2 × 0.2 mm
β = 101.146 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2398 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.583Rint = 0.084
7263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.86 e Å3
2713 reflectionsΔρmin = 0.65 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.50000.90568 (5)0.75000.03268 (14)
Cu20.70008 (4)0.79877 (8)1.03715 (2)0.03358 (16)
C10.4210 (4)0.7210 (6)0.9961 (2)0.0308 (9)
C20.3109 (4)0.6829 (7)0.9499 (2)0.0413 (10)
H20.31560.68900.90690.050*
C30.1959 (4)0.6366 (7)0.9667 (2)0.0459 (12)
H30.12450.61360.93500.055*
C40.1856 (4)0.6243 (7)1.0289 (2)0.0460 (12)
H40.10820.59171.04010.055*
C50.2922 (4)0.6609 (7)1.0754 (2)0.0415 (10)
H50.28560.65331.11820.050*
C60.4103 (4)0.7096 (6)1.0598 (2)0.0334 (9)
C70.5146 (4)0.7449 (7)1.1180 (2)0.0362 (10)
C81.0359 (4)0.7848 (9)1.1711 (2)0.0550 (14)
H81.08970.74031.20780.066*
C90.9614 (4)0.9421 (7)1.0840 (2)0.0464 (12)
H90.95631.02741.04990.056*
C100.9169 (4)0.7209 (8)1.1470 (2)0.0479 (12)
H100.87360.62501.16480.058*
C120.5519 (4)0.7837 (6)0.91832 (19)0.0345 (10)
C130.6890 (4)0.8380 (7)0.91134 (19)0.0339 (9)
N10.5387 (3)0.7682 (5)0.97887 (15)0.0301 (7)
N20.8704 (3)0.8215 (6)1.09186 (17)0.0390 (8)
N31.0623 (3)0.9254 (6)1.13173 (18)0.0484 (10)
H3A1.13150.99221.13650.058*
O10.7097 (3)0.8641 (5)0.85734 (13)0.0460 (8)
O20.4736 (3)0.7653 (6)0.86823 (14)0.0549 (10)
O30.7724 (2)0.8539 (5)0.96263 (13)0.0412 (7)
O40.6293 (3)0.7678 (5)1.11137 (13)0.0466 (8)
O50.7323 (3)1.0322 (6)0.72527 (16)0.0648 (10)
H5B0.71141.09640.69090.097*
H5C0.77680.93040.72460.097*
O80.4863 (3)0.7515 (5)1.17116 (14)0.0462 (8)
O90.3581 (4)0.5293 (6)0.7463 (2)0.0893 (13)
H9C0.27940.55760.74210.134*
H9A0.37730.43840.78040.134*
O100.874 (3)0.681 (4)0.7671 (15)0.143 (6)0.44 (2)
O10'0.8713 (19)0.711 (3)0.7229 (13)0.143 (6)0.56 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0323 (2)0.0479 (2)0.01666 (19)0.0000.00160 (13)0.000
Cu20.0342 (3)0.0463 (4)0.0181 (3)0.0002 (2)0.0003 (2)0.0013 (2)
C10.035 (2)0.028 (2)0.029 (2)0.0008 (17)0.0056 (17)0.0027 (18)
C20.044 (2)0.048 (3)0.032 (2)0.002 (2)0.0073 (19)0.003 (2)
C30.037 (2)0.054 (3)0.044 (3)0.003 (2)0.000 (2)0.006 (3)
C40.039 (2)0.045 (3)0.056 (3)0.006 (2)0.013 (2)0.006 (2)
C50.045 (2)0.044 (3)0.037 (2)0.001 (2)0.013 (2)0.004 (2)
C60.037 (2)0.028 (2)0.034 (2)0.0018 (17)0.0045 (18)0.0012 (19)
C70.041 (2)0.040 (3)0.026 (2)0.0017 (19)0.0055 (18)0.001 (2)
C80.040 (2)0.090 (4)0.031 (2)0.007 (3)0.004 (2)0.005 (3)
C90.044 (2)0.063 (3)0.032 (2)0.002 (2)0.007 (2)0.004 (2)
C100.048 (2)0.066 (3)0.029 (2)0.006 (2)0.003 (2)0.007 (2)
C120.043 (2)0.036 (3)0.023 (2)0.0002 (19)0.0032 (18)0.0035 (19)
C130.040 (2)0.038 (2)0.022 (2)0.0004 (19)0.0019 (17)0.000 (2)
N10.0336 (16)0.0324 (19)0.0228 (17)0.0026 (14)0.0013 (13)0.0009 (15)
N20.0354 (18)0.054 (2)0.0247 (18)0.0018 (17)0.0015 (15)0.0008 (18)
N30.0347 (18)0.070 (3)0.039 (2)0.0095 (19)0.0035 (16)0.005 (2)
O10.0424 (16)0.074 (2)0.0213 (15)0.0110 (16)0.0058 (13)0.0047 (16)
O20.0451 (16)0.095 (3)0.0201 (16)0.0169 (18)0.0047 (14)0.0107 (18)
O30.0361 (14)0.063 (2)0.0225 (14)0.0028 (14)0.0000 (12)0.0063 (16)
O40.0384 (16)0.082 (3)0.0182 (14)0.0026 (15)0.0034 (12)0.0059 (16)
O50.0491 (18)0.099 (3)0.0427 (19)0.0122 (19)0.0002 (15)0.023 (2)
O80.0517 (17)0.068 (2)0.0209 (16)0.0074 (16)0.0120 (13)0.0011 (15)
O90.126 (3)0.073 (3)0.059 (3)0.002 (3)0.008 (3)0.003 (2)
O100.115 (5)0.122 (8)0.198 (18)0.027 (5)0.045 (14)0.028 (15)
O10'0.115 (5)0.122 (8)0.198 (18)0.027 (5)0.045 (14)0.028 (15)
Geometric parameters (Å, º) top
Ba1—O2i2.767 (3)C5—H50.9300
Ba1—O22.767 (3)C6—C71.518 (6)
Ba1—O52.772 (3)C7—O81.230 (5)
Ba1—O5i2.772 (3)C7—O41.268 (5)
Ba1—O1i2.889 (3)C8—C101.347 (6)
Ba1—O12.889 (3)C8—N31.349 (6)
Ba1—O8ii2.894 (3)C8—H80.9300
Ba1—O8iii2.894 (3)C9—N21.314 (6)
Ba1—O93.004 (5)C9—N31.335 (6)
Ba1—O9i3.004 (4)C9—H90.9300
Cu2—O41.894 (3)C10—N21.375 (6)
Cu2—N11.930 (3)C10—H100.9300
Cu2—O31.934 (3)C12—O21.229 (5)
Cu2—N21.966 (3)C12—N11.331 (5)
C1—C61.389 (6)C12—C131.544 (5)
C1—C21.404 (6)C13—O11.228 (5)
C1—N11.412 (5)C13—O31.274 (5)
C2—C31.380 (6)N3—H3A0.8600
C2—H20.9300O5—H5B0.8502
C3—C41.355 (7)O5—H5C0.8500
C3—H30.9300O8—Ba1ii2.894 (3)
C4—C51.379 (6)O9—H9C0.8498
C4—H40.9300O9—H9A0.9530
C5—C61.404 (5)
O2i—Ba1—O2138.93 (16)C6—C1—C2117.4 (3)
O2i—Ba1—O571.64 (10)C6—C1—N1120.9 (4)
O2—Ba1—O5122.44 (9)C2—C1—N1121.7 (4)
O2i—Ba1—O5i122.44 (9)C3—C2—C1121.7 (4)
O2—Ba1—O5i71.64 (10)C3—C2—H2119.1
O5—Ba1—O5i143.21 (18)C1—C2—H2119.1
O2i—Ba1—O1i56.10 (8)C4—C3—C2120.9 (4)
O2—Ba1—O1i119.20 (9)C4—C3—H3119.6
O5—Ba1—O1i117.63 (9)C2—C3—H3119.6
O5i—Ba1—O1i66.37 (9)C3—C4—C5118.7 (4)
O2i—Ba1—O1119.20 (9)C3—C4—H4120.6
O2—Ba1—O156.10 (8)C5—C4—H4120.6
O5—Ba1—O166.37 (9)C4—C5—C6121.7 (4)
O5i—Ba1—O1117.63 (9)C4—C5—H5119.1
O1i—Ba1—O1168.57 (15)C6—C5—H5119.1
O2i—Ba1—O8ii144.53 (10)C1—C6—C5119.5 (4)
O2—Ba1—O8ii76.13 (10)C1—C6—C7127.3 (3)
O5—Ba1—O8ii84.57 (10)C5—C6—C7113.2 (4)
O5i—Ba1—O8ii65.01 (10)O8—C7—O4120.8 (4)
O1i—Ba1—O8ii119.12 (9)O8—C7—C6119.3 (3)
O1—Ba1—O8ii71.12 (10)O4—C7—C6119.9 (3)
O2i—Ba1—O8iii76.13 (10)C10—C8—N3107.1 (4)
O2—Ba1—O8iii144.53 (10)C10—C8—H8126.5
O5—Ba1—O8iii65.01 (10)N3—C8—H8126.5
O5i—Ba1—O8iii84.57 (10)N2—C9—N3110.7 (4)
O1i—Ba1—O8iii71.12 (10)N2—C9—H9124.6
O1—Ba1—O8iii119.12 (9)N3—C9—H9124.6
O8ii—Ba1—O8iii69.99 (12)C8—C10—N2108.5 (4)
O2i—Ba1—O979.15 (11)C8—C10—H10125.8
O2—Ba1—O965.19 (11)N2—C10—H10125.8
O5—Ba1—O9137.09 (13)O2—C12—N1130.9 (4)
O5i—Ba1—O979.31 (13)O2—C12—C13116.0 (3)
O1i—Ba1—O965.44 (11)N1—C12—C13113.1 (3)
O1—Ba1—O9104.07 (11)O1—C13—O3124.8 (4)
O8ii—Ba1—O9133.93 (10)O1—C13—C12118.2 (3)
O8iii—Ba1—O9136.55 (10)O3—C13—C12117.0 (3)
O2i—Ba1—O9i65.19 (11)C12—N1—C1122.5 (3)
O2—Ba1—O9i79.15 (11)C12—N1—Cu2111.6 (3)
O5—Ba1—O9i79.31 (13)C1—N1—Cu2125.8 (3)
O5i—Ba1—O9i137.09 (13)C9—N2—C10106.1 (4)
O1i—Ba1—O9i104.07 (11)C9—N2—Cu2126.5 (3)
O1—Ba1—O9i65.44 (11)C10—N2—Cu2127.3 (3)
O8ii—Ba1—O9i136.55 (10)C9—N3—C8107.6 (4)
O8iii—Ba1—O9i133.93 (10)C9—N3—H3A126.2
O9—Ba1—O9i59.89 (18)C8—N3—H3A126.2
O4—Cu2—N194.38 (13)C13—O1—Ba1120.4 (2)
O4—Cu2—O3175.12 (15)C12—O2—Ba1125.8 (3)
N1—Cu2—O386.53 (13)C13—O3—Cu2111.5 (2)
O4—Cu2—N289.12 (13)C7—O4—Cu2131.0 (3)
N1—Cu2—N2175.91 (14)C7—O8—Ba1ii124.9 (3)
O3—Cu2—N290.17 (13)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+2, z+2; (iii) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1iv0.861.952.804 (5)177
O5—H5B···O4iii0.851.992.827 (5)169
O5—H5B···O8iii0.852.583.047 (5)116
O9—H9A···O8v0.952.082.915 (5)145
Symmetry codes: (iii) x, y+2, z1/2; (iv) x+2, y+2, z+2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[BaCu2(C9H4NO5)2(C3H4N2)2(H2O)4]·2H2O
Mr920.94
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)10.662 (3), 6.9165 (18), 21.335 (5)
β (°) 101.146 (4)
V3)1543.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.525, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
7263, 2713, 2398
Rint0.084
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.01
No. of reflections2713
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.65

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.861.952.804 (5)177
O5—H5B···O4ii0.851.992.827 (5)169
O5—H5B···O8ii0.852.583.047 (5)116
O9—H9A···O8iii0.952.082.915 (5)145
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+2, z1/2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors express their thanks to the Natural Science Foundation of Henan Province for financial support.

References

First citationBruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, E.-Q., Tang, J.-K., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Wang, G.-L. (2001). Inorg. Chem. 40, 3134–3140.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKahn, O. (1993). Molecular Magnetism. New York: VCH.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. & Liao, D.-Z. (2003). Inorg. Chem. 42, 761–766.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds