organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-2,3-di­hydro­quinolin-4(1H)-one

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wangmlchem@263.net

(Received 10 December 2007; accepted 2 January 2008; online 16 January 2008)

In the title compound, C16H15NO, the two aromatic rings are approximately perpendicular; the carbonyl group is twisted out of the adjacent benzene ring by 14.8 (2)°. In the heterocyclic ring, the C atom linked to the carbonyl group and the C atom linked to the N atom have opposite deviations of 0.467 (5) and 0.184 (4) Å, respectively, from the plane of the benzene ring. The N atom lies approximately in the plane of the phenyl ring. There are no conventional hydrogen bonds; the packing of mol­ecules in the crystal structure is stabilized by van der Waals forces.

Related literature

For related literature, see: Johnson et al. (1949[Johnson, W. S.,Woroch, E. L. & Buell, B. G. (1949). J. Am. Chem. Soc. 71, 1901-1905.]); Anilkumar et al. (2005[Anilkumar, H. G., Yathirajan, H. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o2551-o2552.]); Kazak et al. (2002[Kazak, C., Aygün, M., Kuş, C., Özbey, S. & Büyükgüngör, O. (2002). Acta Cryst. E58, o612-o614.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO

  • Mr = 237.29

  • Monoclinic, P 21 /n

  • a = 5.5992 (11) Å

  • b = 9.786 (2) Å

  • c = 23.313 (5) Å

  • β = 96.79 (3)°

  • V = 1268.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.898, Tmax = 1.00 (expected range = 0.894–0.996)

  • 9867 measured reflections

  • 2242 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.182

  • S = 1.05

  • 2242 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, belongs to the class of 4-dihydroquinolinone derivatives (Johnson et al., 1949), which have hitherto received relatively little attention. We have recently found that it has two-photon absorption and two-photon excited fluorescence. So it is of interest for non-linear optics. An X-ray crystal structure determination was undertaken in order to elucidate the conformation, and the results are presented here.

The two aromatic rings in the molecule are approximately perpendicular, with an angle between the two planes of 88.3 (1) °. The plane through atom O1, C2 and C3 is twisted out of the plane of the ring through atoms C4 to C9 by 14.8 (2) °, while in acetophenone (Kazak et al., 2002; Anilkumar et al., 2005) the acetyl is nearly coplanar with phenyl ring. The twist is probably due to the sp3-hybridization of C1 and C2. The N atom lies approximately in the plane of the adjacent aromatic ring plane with a tiny deviation of 0.013 (3) Å, as would be expected for maximum conjugation and as is normally found for N attached to benzene rings. There are no conventional hydrogen bonds.

Related literature top

For related literature, see: Johnson et al. (1949); Anilkumar et al. (2005); Kazak et al. (2002).

Experimental top

Melting points were determined with a Yanagimoto MP-35 melting-point apparatus and were uncorrected. The 1H NMR spectra were measured with a Bruker DRX (300 MHz) (relative to TMS) spectrometer. The solid state IR spectra were recorded from KBr discs on a Nicolet-170.

2, 3-Dihydroquinolin-4-one (5.7 g,), benzyl iodide (6.54 g), tetrabutylammonium bromide (TBAB, 0.5 g) and 20 ml 50% aqueous sodium hydroxide in 25 ml toluene were vigorously stirred and heated to reflux for 3 h. After cooling, the mixture was washed with 20 ml water three times, and evaporated under reduced pressure to remove toluene. The residue was recrystallized from ethanol to afford a yellow solid. Yield: 7.8 g (85%); m.p.391–392 K. IR (KBr): ν= 1672 cm-1 (C?O). 1H NMR (300 MHz, CDCl3): δ 2.77 (t, 2H, CH2, J = 6.9 Hz), 3.61 (t, 2H, CH2, J = 6.9 Hz), 4.58 (s, 2H, CH2), 6.73 (m, 2H, ArH), 7.27–7.39 (m, 6H, ArH), 7.94 (d, 1H, ArH, J = 7.5 Hz,). Single crystals suitable for crystallographic analysis were obtained by slow evaporation of a methanol/water (4:1 v/v) solution.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with d(C—H) = 0.93 Å for sp2 C or d(C—H) = 0.97 Å for sp3 C and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids were drawn at the 30% probability level
1-Benzyl-2,3-dihydroquinolin-4(1H)-one top
Crystal data top
C16H15NOF(000) = 504
Mr = 237.29Dx = 1.243 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7530 reflections
a = 5.5992 (11) Åθ = 3.7–27.5°
b = 9.786 (2) ŵ = 0.08 mm1
c = 23.313 (5) ÅT = 293 K
β = 96.79 (3)°Block, colourless
V = 1268.5 (5) Å30.25 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2 CCD
diffractometer
2242 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.898, Tmax = 1l = 2727
9867 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.1531P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2242 reflectionsΔρmax = 0.38 e Å3
164 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C16H15NOV = 1268.5 (5) Å3
Mr = 237.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5992 (11) ŵ = 0.08 mm1
b = 9.786 (2) ÅT = 293 K
c = 23.313 (5) Å0.25 × 0.05 × 0.05 mm
β = 96.79 (3)°
Data collection top
Rigaku Mercury2 CCD
diffractometer
2242 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1252 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 1Rint = 0.081
9867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
2242 reflectionsΔρmin = 0.20 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.6399 (5)0.3558 (3)0.11589 (12)0.0427 (8)
C41.0812 (5)0.7455 (3)0.15820 (13)0.0432 (8)
N10.7645 (4)0.5798 (3)0.16157 (11)0.0513 (7)
O11.2200 (4)0.8547 (3)0.24606 (10)0.0790 (8)
C90.9179 (5)0.6500 (3)0.13068 (13)0.0431 (8)
C31.1014 (5)0.7645 (3)0.22089 (14)0.0515 (9)
C80.9186 (6)0.6306 (3)0.07149 (13)0.0550 (9)
H8A0.81320.56790.05220.066*
C61.2320 (6)0.7970 (4)0.06840 (16)0.0644 (10)
H6A1.33550.84550.04750.077*
C51.2345 (5)0.8172 (3)0.12615 (15)0.0540 (9)
H5A1.34110.88050.14470.065*
C100.5711 (5)0.4967 (3)0.13269 (15)0.0571 (9)
H10A0.50280.54450.09810.068*
H10B0.44590.48910.15790.068*
C71.0728 (6)0.7029 (4)0.04123 (14)0.0621 (10)
H7A1.07000.68830.00170.074*
C160.4733 (6)0.2784 (4)0.08129 (13)0.0548 (9)
H16A0.32720.31710.06660.066*
C130.9027 (6)0.1602 (4)0.12313 (15)0.0626 (10)
H13A1.04920.12090.13720.075*
C120.8556 (5)0.2948 (4)0.13631 (13)0.0527 (9)
H12A0.97120.34500.15930.063*
C150.5218 (7)0.1445 (4)0.06844 (15)0.0657 (10)
H15A0.40790.09400.04510.079*
C20.9820 (7)0.6579 (4)0.25256 (15)0.0730 (11)
H2A1.08600.57850.25810.088*
H2B0.95680.69240.29040.088*
C140.7342 (7)0.0850 (4)0.08949 (16)0.0669 (11)
H14A0.76430.00590.08110.080*
C10.7489 (6)0.6170 (4)0.22115 (15)0.0685 (11)
H1A0.68630.53990.24080.082*
H1B0.63600.69190.22210.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0380 (18)0.046 (2)0.0451 (18)0.0061 (14)0.0103 (13)0.0013 (14)
C40.0414 (18)0.0368 (19)0.051 (2)0.0025 (14)0.0037 (14)0.0018 (13)
N10.0495 (16)0.0503 (18)0.0558 (17)0.0120 (13)0.0127 (12)0.0106 (13)
O10.0837 (18)0.080 (2)0.0707 (17)0.0265 (15)0.0011 (13)0.0288 (13)
C90.0432 (19)0.0362 (19)0.050 (2)0.0026 (14)0.0044 (14)0.0004 (14)
C30.049 (2)0.050 (2)0.056 (2)0.0029 (16)0.0075 (15)0.0085 (16)
C80.062 (2)0.052 (2)0.049 (2)0.0099 (16)0.0028 (16)0.0046 (15)
C60.080 (3)0.054 (2)0.062 (2)0.0076 (19)0.0185 (18)0.0112 (18)
C50.054 (2)0.042 (2)0.066 (2)0.0093 (16)0.0050 (16)0.0012 (16)
C100.042 (2)0.051 (2)0.078 (2)0.0071 (15)0.0055 (16)0.0056 (17)
C70.077 (3)0.065 (3)0.044 (2)0.000 (2)0.0057 (17)0.0029 (17)
C160.048 (2)0.062 (3)0.054 (2)0.0091 (16)0.0002 (15)0.0012 (17)
C130.050 (2)0.058 (3)0.082 (3)0.0065 (18)0.0159 (18)0.0066 (19)
C120.043 (2)0.059 (3)0.057 (2)0.0051 (16)0.0078 (15)0.0019 (17)
C150.073 (3)0.059 (3)0.066 (2)0.023 (2)0.0113 (19)0.0126 (18)
C20.088 (3)0.076 (3)0.057 (2)0.002 (2)0.018 (2)0.0104 (19)
C140.073 (3)0.047 (2)0.085 (3)0.007 (2)0.027 (2)0.0069 (19)
C10.058 (2)0.085 (3)0.065 (2)0.0107 (19)0.0169 (18)0.0036 (19)
Geometric parameters (Å, º) top
C11—C121.380 (4)C10—H10A0.9700
C11—C161.384 (4)C10—H10B0.9700
C11—C101.497 (4)C7—H7A0.9300
C4—C51.392 (4)C16—C151.378 (5)
C4—C91.408 (4)C16—H16A0.9300
C4—C31.464 (4)C13—C141.368 (4)
N1—C91.369 (4)C13—C121.385 (4)
N1—C11.448 (4)C13—H13A0.9300
N1—C101.454 (4)C12—H12A0.9300
O1—C31.214 (3)C15—C141.362 (5)
C9—C81.393 (4)C15—H15A0.9300
C3—C21.482 (5)C2—C11.474 (4)
C8—C71.374 (4)C2—H2A0.9700
C8—H8A0.9300C2—H2B0.9700
C6—C51.359 (5)C14—H14A0.9300
C6—C71.382 (4)C1—H1A0.9700
C6—H6A0.9300C1—H1B0.9700
C5—H5A0.9300
C12—C11—C16117.8 (3)C8—C7—C6121.2 (3)
C12—C11—C10123.4 (3)C8—C7—H7A119.4
C16—C11—C10118.7 (3)C6—C7—H7A119.4
C5—C4—C9119.9 (3)C15—C16—C11120.7 (3)
C5—C4—C3119.5 (3)C15—C16—H16A119.7
C9—C4—C3120.5 (3)C11—C16—H16A119.7
C9—N1—C1119.4 (3)C14—C13—C12120.2 (3)
C9—N1—C10121.1 (3)C14—C13—H13A119.9
C1—N1—C10117.3 (3)C12—C13—H13A119.9
N1—C9—C8121.9 (3)C11—C12—C13121.1 (3)
N1—C9—C4120.5 (3)C11—C12—H12A119.5
C8—C9—C4117.6 (3)C13—C12—H12A119.5
O1—C3—C4123.2 (3)C14—C15—C16121.0 (3)
O1—C3—C2121.6 (3)C14—C15—H15A119.5
C4—C3—C2115.0 (3)C16—C15—H15A119.5
C7—C8—C9120.9 (3)C1—C2—C3111.6 (3)
C7—C8—H8A119.5C1—C2—H2A109.3
C9—C8—H8A119.5C3—C2—H2A109.3
C5—C6—C7118.8 (3)C1—C2—H2B109.3
C5—C6—H6A120.6C3—C2—H2B109.3
C7—C6—H6A120.6H2A—C2—H2B108.0
C6—C5—C4121.5 (3)C15—C14—C13119.3 (4)
C6—C5—H5A119.2C15—C14—H14A120.3
C4—C5—H5A119.2C13—C14—H14A120.3
N1—C10—C11115.8 (2)N1—C1—C2113.2 (3)
N1—C10—H10A108.3N1—C1—H1A108.9
C11—C10—H10A108.3C2—C1—H1A108.9
N1—C10—H10B108.3N1—C1—H1B108.9
C11—C10—H10B108.3C2—C1—H1B108.9
H10A—C10—H10B107.4H1A—C1—H1B107.7
C1—N1—C9—C8171.7 (3)C1—N1—C10—C11114.3 (3)
C10—N1—C9—C89.2 (4)C12—C11—C10—N113.5 (4)
C1—N1—C9—C48.0 (4)C16—C11—C10—N1171.1 (3)
C10—N1—C9—C4170.6 (3)C9—C8—C7—C60.0 (5)
C5—C4—C9—N1179.3 (3)C5—C6—C7—C80.1 (5)
C3—C4—C9—N14.3 (4)C12—C11—C16—C150.7 (4)
C5—C4—C9—C80.4 (4)C10—C11—C16—C15174.9 (3)
C3—C4—C9—C8175.9 (3)C16—C11—C12—C130.7 (4)
C5—C4—C3—O111.5 (5)C10—C11—C12—C13174.7 (3)
C9—C4—C3—O1172.1 (3)C14—C13—C12—C110.2 (5)
C5—C4—C3—C2163.6 (3)C11—C16—C15—C140.1 (5)
C9—C4—C3—C212.8 (4)O1—C3—C2—C1144.7 (3)
N1—C9—C8—C7179.5 (3)C4—C3—C2—C140.1 (4)
C4—C9—C8—C70.3 (5)C16—C15—C14—C131.0 (5)
C7—C6—C5—C40.1 (5)C12—C13—C14—C151.0 (5)
C9—C4—C5—C60.3 (5)C9—N1—C1—C236.7 (4)
C3—C4—C5—C6176.1 (3)C10—N1—C1—C2160.1 (3)
C9—N1—C10—C1182.8 (4)C3—C2—C1—N151.8 (4)

Experimental details

Crystal data
Chemical formulaC16H15NO
Mr237.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.5992 (11), 9.786 (2), 23.313 (5)
β (°) 96.79 (3)
V3)1268.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.898, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9867, 2242, 1252
Rint0.081
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.182, 1.05
No. of reflections2242
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of this work by the Southeast University Foundation (No. 9207041358) and the High Technology Research Plan of Jiangsu Province (No. BG2006006) is gratefully acknowledged.

References

First citationAnilkumar, H. G., Yathirajan, H. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o2551–o2552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKazak, C., Aygün, M., Kuş, C., Özbey, S. & Büyükgüngör, O. (2002). Acta Cryst. E58, o612–o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, W. S.,Woroch, E. L. & Buell, B. G. (1949). J. Am. Chem. Soc. 71, 1901–1905.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds