organic compounds
Racemic 1,2,3,4,7,8,9,10-octafluoro-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine: an octafluorinated analogue of Tröger's base
aLaboratoire de Chimie des Polymères, Université Libre de Bruxelles, CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium, and bDepartment of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
*Correspondence e-mail: sserguee@ulb.ac.be
The title compound, C15H6F8N2, possesses a non-crystallographic twofold axis. The dihedral angle between the two benzene rings is 98.4 (2)°. The involves intermolecular C—H⋯F hydrogen bonds.
Related literature
For recent reviews on the chemistry of Tröger's base (Tröger, 1887; Spielman, 1935), see: Valík et al. (2005) and Dolensky et al. (2007). For related literature on the of Tröger's base, see: Prelog & Wieland (1944); for molecular clefts, see: Wilcox et al. (1987) and Artacho et al. (2006) and references cited therein; for (poly)halo-substituted Tröger's base analogues, see: Jensen & Wärnmark (2001), Sergeyev & Diederich (2004), Hansson et al. (2003), Li et al. (2005) and Faroughi et al. (2006). For related literature, see: Zabrodsky et al. (1993).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808002602/pk2080sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808002602/pk2080Isup2.hkl
2,3,4,5-Tetrafluoroaniline (330 mg, 2 mmol) and paraformaldehyde (120 mg, 4 mmol) were added under vigorous stirring to CF3COOH (4 ml) at -15°C. The resulting mixture was allowed to reach room temperature and stirred for 14 days, then slowly added to a stirred mixture of ice and 30% aqueous NH3 (7 ml). Extraction with CH2Cl2 (2 x 20 ml), drying of the organic layer over MgSO4, and removal of the solvent in vacuo gave a crude product which was purified by flash
(SiO2/CH2Cl2). Yield of the title compound: 135 mg (37%). Crystals suitable for X-ray diffraction were grown by slow evaporation from CHCl3 solution.1H NMR (300 MHz, CDCl3, 25°C): d = 4.20–4.30 (m, 4H, H61, H62, H121, H122), 4.50 (d, J = 17.5 Hz, 2H, H131, H132); 13C NMR (75 MHz, CDCl3, 25°C): d = 50.1, 66.5, 111.9 (ddt, J =17.7, 3.4, 1.7 Hz), 130.8 (dddd, J = 10.6, 5.2, 3.7, 1.9 Hz), 137.3 (dddd, J = 252.0, 16.5, 13.0, 3.1 Hz), 140.2 (dddd, J = 251.3, 14.9, 13.0, 5.0 Hz), 141.7 (dddd, J = 248.2, 11.2, 4.1, 1.3 Hz), 144.0 (ddt, J = 245.2, 10.9, 3.7 Hz). HR—EI—MS: m/z: calcd. for C15H6F8N2 ([M]+): 366.0403; found: 366.0405.
Hydrogen atoms were located in the Fourier difference map and refined freely. (C—H 0.93 (3)–1.03 (3) Å)
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).Fig. 1. View of the structure with 50% probability displacement ellipsoids. H atoms are numbered according to their attached C-atoms. | |
Fig. 2. View of the unit cell down the b axis. |
C15H6F8N2 | F(000) = 728 |
Mr = 366.22 | Dx = 1.834 Mg m−3 |
Monoclinic, P21/c | Melting point: 192(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.075 (3) Å | Cell parameters from 25 reflections |
b = 10.469 (2) Å | θ = 5–12° |
c = 17.628 (6) Å | µ = 0.19 mm−1 |
β = 117.15 (2)° | T = 290 K |
V = 1326.0 (8) Å3 | Rhomb, colourless |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Enraf–Nonius MACH3 diffractometer | Rint = 0.078 |
Radiation source: sealed tube | θmax = 25.3°, θmin = 2.3° |
Pyrolytic graphite monochromator | h = 0→9 |
profiled ω/2θ scans | k = −12→12 |
5028 measured reflections | l = −21→18 |
2412 independent reflections | 3 standard reflections every 73 reflections |
1353 reflections with I > 2σ(I) | intensity decay: 4% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2412 reflections | Δρmax = 0.20 e Å−3 |
251 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.008 (2) |
Primary atom site location: structure-invariant direct methods |
C15H6F8N2 | V = 1326.0 (8) Å3 |
Mr = 366.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.075 (3) Å | µ = 0.19 mm−1 |
b = 10.469 (2) Å | T = 290 K |
c = 17.628 (6) Å | 0.3 × 0.2 × 0.2 mm |
β = 117.15 (2)° |
Enraf–Nonius MACH3 diffractometer | Rint = 0.078 |
5028 measured reflections | 3 standard reflections every 73 reflections |
2412 independent reflections | intensity decay: 4% |
1353 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.128 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.20 e Å−3 |
2412 reflections | Δρmin = −0.25 e Å−3 |
251 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
H131 | −0.193 (4) | 0.216 (3) | 0.8025 (17) | 0.051 (8)* | |
H121 | 0.305 (4) | 0.121 (3) | 0.810 (2) | 0.069 (9)* | |
H122 | 0.136 (5) | 0.176 (3) | 0.726 (2) | 0.077 (10)* | |
H62 | −0.105 (5) | 0.310 (3) | 0.9326 (17) | 0.057 (9)* | |
H132 | −0.111 (4) | 0.269 (3) | 0.741 (2) | 0.060 (9)* | |
H61 | 0.092 (4) | 0.374 (3) | 0.9788 (19) | 0.053 (9)* | |
F7 | 0.1474 (3) | 0.21118 (18) | 1.10195 (11) | 0.0715 (6) | |
F10 | 0.2539 (3) | −0.08189 (16) | 0.87533 (11) | 0.0699 (6) | |
F1 | 0.5029 (3) | 0.29145 (19) | 0.78363 (12) | 0.0679 (6) | |
F9 | 0.3839 (3) | −0.15905 (16) | 1.03755 (11) | 0.0729 (6) | |
N11 | 0.0509 (3) | 0.1395 (2) | 0.81513 (13) | 0.0506 (6) | |
F8 | 0.3308 (3) | −0.01382 (19) | 1.15148 (10) | 0.0730 (6) | |
C12A | 0.2581 (4) | 0.3151 (3) | 0.81963 (16) | 0.0467 (7) | |
F4 | 0.1600 (3) | 0.58222 (17) | 0.92368 (14) | 0.0845 (7) | |
F3 | 0.4753 (3) | 0.66558 (18) | 0.92211 (15) | 0.0919 (7) | |
C10A | 0.1288 (4) | 0.1067 (3) | 0.90262 (15) | 0.0417 (6) | |
C9 | 0.2933 (4) | −0.0464 (3) | 1.01318 (17) | 0.0489 (7) | |
F2 | 0.6451 (3) | 0.5220 (2) | 0.85025 (14) | 0.0852 (6) | |
C7 | 0.1727 (4) | 0.1397 (3) | 1.04471 (16) | 0.0471 (7) | |
N5 | −0.0035 (3) | 0.3514 (2) | 0.85287 (15) | 0.0570 (7) | |
C4A | 0.1674 (4) | 0.3903 (3) | 0.85490 (17) | 0.0488 (7) | |
C1 | 0.4148 (4) | 0.3626 (3) | 0.81791 (18) | 0.0510 (8) | |
C8 | 0.2668 (4) | 0.0260 (3) | 1.07054 (16) | 0.0491 (7) | |
C10 | 0.2252 (4) | −0.0074 (3) | 0.93048 (16) | 0.0450 (7) | |
C6A | 0.1055 (4) | 0.1831 (3) | 0.96176 (17) | 0.0460 (7) | |
C13 | −0.0834 (5) | 0.2423 (4) | 0.7960 (2) | 0.0611 (9) | |
C2 | 0.4898 (4) | 0.4799 (3) | 0.8519 (2) | 0.0583 (8) | |
C4 | 0.2450 (5) | 0.5081 (3) | 0.88958 (18) | 0.0584 (8) | |
C3 | 0.4040 (5) | 0.5512 (3) | 0.8886 (2) | 0.0616 (9) | |
C6 | 0.0168 (5) | 0.3137 (3) | 0.9374 (2) | 0.0577 (9) | |
C12 | 0.1908 (5) | 0.1805 (3) | 0.78815 (19) | 0.0530 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F7 | 0.1095 (15) | 0.0648 (11) | 0.0538 (10) | 0.0031 (11) | 0.0490 (11) | −0.0071 (9) |
F10 | 0.1081 (15) | 0.0474 (10) | 0.0537 (10) | 0.0049 (10) | 0.0364 (10) | −0.0103 (8) |
F1 | 0.0709 (12) | 0.0683 (12) | 0.0764 (12) | 0.0122 (10) | 0.0440 (10) | 0.0101 (10) |
F9 | 0.0981 (15) | 0.0433 (10) | 0.0660 (12) | 0.0137 (10) | 0.0276 (10) | 0.0114 (9) |
N11 | 0.0534 (14) | 0.0571 (16) | 0.0335 (12) | 0.0002 (13) | 0.0130 (10) | 0.0035 (11) |
F8 | 0.1033 (15) | 0.0666 (12) | 0.0379 (9) | 0.0000 (11) | 0.0224 (9) | 0.0098 (9) |
C12A | 0.0484 (17) | 0.0506 (16) | 0.0352 (14) | 0.0092 (14) | 0.0139 (12) | 0.0113 (13) |
F4 | 0.1074 (17) | 0.0539 (11) | 0.1061 (16) | 0.0224 (11) | 0.0607 (14) | −0.0004 (11) |
F3 | 0.1082 (17) | 0.0477 (11) | 0.1105 (17) | −0.0089 (12) | 0.0419 (14) | −0.0055 (12) |
C10A | 0.0435 (15) | 0.0430 (14) | 0.0348 (14) | −0.0044 (13) | 0.0144 (12) | 0.0002 (12) |
C9 | 0.0557 (17) | 0.0351 (15) | 0.0481 (16) | 0.0008 (14) | 0.0170 (14) | 0.0039 (13) |
F2 | 0.0694 (13) | 0.0731 (13) | 0.1142 (16) | −0.0077 (11) | 0.0429 (12) | 0.0129 (12) |
C7 | 0.0589 (18) | 0.0477 (17) | 0.0397 (15) | −0.0058 (15) | 0.0268 (13) | −0.0068 (13) |
N5 | 0.0536 (15) | 0.0572 (15) | 0.0577 (15) | 0.0156 (14) | 0.0233 (12) | 0.0161 (13) |
C4A | 0.0512 (17) | 0.0468 (17) | 0.0455 (16) | 0.0137 (15) | 0.0195 (14) | 0.0172 (14) |
C1 | 0.0523 (17) | 0.0547 (19) | 0.0478 (16) | 0.0145 (16) | 0.0244 (14) | 0.0120 (14) |
C8 | 0.0609 (18) | 0.0467 (16) | 0.0316 (14) | −0.0078 (15) | 0.0140 (13) | 0.0058 (13) |
C10 | 0.0570 (17) | 0.0389 (15) | 0.0376 (14) | −0.0047 (14) | 0.0201 (13) | −0.0074 (13) |
C6A | 0.0489 (17) | 0.0457 (16) | 0.0443 (15) | 0.0000 (13) | 0.0220 (13) | 0.0014 (13) |
C13 | 0.0468 (19) | 0.078 (2) | 0.0480 (19) | 0.0021 (17) | 0.0123 (15) | 0.0164 (18) |
C2 | 0.0519 (19) | 0.0541 (18) | 0.067 (2) | 0.0070 (16) | 0.0250 (16) | 0.0183 (16) |
C4 | 0.072 (2) | 0.0476 (18) | 0.0587 (19) | 0.0222 (17) | 0.0330 (17) | 0.0108 (16) |
C3 | 0.067 (2) | 0.0402 (17) | 0.067 (2) | 0.0048 (16) | 0.0217 (17) | 0.0091 (15) |
C6 | 0.058 (2) | 0.058 (2) | 0.064 (2) | 0.0141 (17) | 0.0335 (18) | 0.0116 (17) |
C12 | 0.063 (2) | 0.0587 (19) | 0.0358 (15) | 0.0005 (16) | 0.0215 (15) | 0.0011 (14) |
F7—C7 | 1.345 (3) | F2—C2 | 1.342 (3) |
F10—C10 | 1.347 (3) | C7—C8 | 1.373 (4) |
F1—C1 | 1.348 (3) | C7—C6A | 1.384 (4) |
F9—C9 | 1.350 (3) | N5—C4A | 1.423 (4) |
N11—C10A | 1.417 (3) | N5—C13 | 1.461 (4) |
N11—C13 | 1.454 (4) | N5—C6 | 1.476 (4) |
N11—C12 | 1.476 (4) | C4A—C4 | 1.393 (5) |
F8—C8 | 1.343 (3) | C1—C2 | 1.380 (5) |
C12A—C1 | 1.372 (4) | C6A—C6 | 1.513 (4) |
C12A—C4A | 1.400 (4) | C13—H131 | 0.98 (3) |
C12A—C12 | 1.520 (4) | C13—H132 | 0.93 (3) |
F4—C4 | 1.346 (3) | C2—C3 | 1.365 (5) |
F3—C3 | 1.343 (4) | C4—C3 | 1.368 (5) |
C10A—C10 | 1.387 (4) | C6—H62 | 0.95 (3) |
C10A—C6A | 1.393 (4) | C6—H61 | 0.95 (3) |
C9—C8 | 1.357 (4) | C12—H121 | 1.03 (3) |
C9—C10 | 1.365 (4) | C12—H122 | 0.98 (3) |
C10A—N11—C13 | 110.2 (2) | C7—C6A—C10A | 118.7 (3) |
C10A—N11—C12 | 113.3 (2) | C7—C6A—C6 | 120.2 (3) |
C13—N11—C12 | 108.1 (3) | C10A—C6A—C6 | 121.0 (3) |
C1—C12A—C4A | 118.7 (3) | N11—C13—N5 | 111.7 (2) |
C1—C12A—C12 | 120.5 (3) | N11—C13—H131 | 112.5 (18) |
C4A—C12A—C12 | 120.7 (3) | N5—C13—H131 | 106.2 (17) |
C10—C10A—C6A | 118.3 (2) | N11—C13—H132 | 105.1 (19) |
C10—C10A—N11 | 119.5 (2) | N5—C13—H132 | 107 (2) |
C6A—C10A—N11 | 122.1 (3) | H131—C13—H132 | 114 (3) |
F9—C9—C8 | 119.9 (3) | F2—C2—C3 | 120.8 (3) |
F9—C9—C10 | 119.8 (3) | F2—C2—C1 | 120.8 (3) |
C8—C9—C10 | 120.3 (3) | C3—C2—C1 | 118.4 (3) |
F7—C7—C8 | 119.0 (2) | F4—C4—C3 | 119.3 (3) |
F7—C7—C6A | 119.3 (3) | F4—C4—C4A | 119.2 (3) |
C8—C7—C6A | 121.7 (3) | C3—C4—C4A | 121.6 (3) |
C4A—N5—C13 | 111.1 (3) | F3—C3—C2 | 119.2 (3) |
C4A—N5—C6 | 113.0 (2) | F3—C3—C4 | 120.3 (3) |
C13—N5—C6 | 107.1 (3) | C2—C3—C4 | 120.5 (3) |
C4—C4A—C12A | 118.1 (3) | N5—C6—C6A | 110.4 (3) |
C4—C4A—N5 | 120.1 (3) | N5—C6—H62 | 106.7 (17) |
C12A—C4A—N5 | 121.8 (3) | C6A—C6—H62 | 109 (2) |
F1—C1—C12A | 119.3 (3) | N5—C6—H61 | 109.5 (17) |
F1—C1—C2 | 118.0 (3) | C6A—C6—H61 | 109.4 (18) |
C12A—C1—C2 | 122.7 (3) | H62—C6—H61 | 112 (2) |
F8—C8—C9 | 120.2 (3) | N11—C12—C12A | 110.5 (3) |
F8—C8—C7 | 120.5 (3) | N11—C12—H121 | 113.2 (18) |
C9—C8—C7 | 119.3 (2) | C12A—C12—H121 | 107.9 (19) |
F10—C10—C9 | 118.6 (3) | N11—C12—H122 | 109 (2) |
F10—C10—C10A | 119.8 (2) | C12A—C12—H122 | 111 (2) |
C9—C10—C10A | 121.6 (3) | H121—C12—H122 | 105 (3) |
C13—N11—C10A—C10 | 164.7 (3) | F7—C7—C6A—C6 | 4.4 (4) |
C12—N11—C10A—C10 | −74.1 (3) | C8—C7—C6A—C6 | −174.9 (3) |
C13—N11—C10A—C6A | −12.6 (4) | C10—C10A—C6A—C7 | −2.5 (4) |
C12—N11—C10A—C6A | 108.7 (3) | N11—C10A—C6A—C7 | 174.8 (2) |
C1—C12A—C4A—C4 | −2.4 (4) | C10—C10A—C6A—C6 | 174.6 (3) |
C12—C12A—C4A—C4 | 174.4 (3) | N11—C10A—C6A—C6 | −8.1 (4) |
C1—C12A—C4A—N5 | 175.1 (2) | C10A—N11—C13—N5 | 53.2 (3) |
C12—C12A—C4A—N5 | −8.2 (4) | C12—N11—C13—N5 | −71.2 (3) |
C13—N5—C4A—C4 | 165.8 (3) | C4A—N5—C13—N11 | 51.4 (3) |
C6—N5—C4A—C4 | −73.8 (3) | C6—N5—C13—N11 | −72.5 (3) |
C13—N5—C4A—C12A | −11.6 (3) | F1—C1—C2—F2 | 0.4 (4) |
C6—N5—C4A—C12A | 108.8 (3) | C12A—C1—C2—F2 | 178.8 (3) |
C4A—C12A—C1—F1 | −179.6 (2) | F1—C1—C2—C3 | −178.4 (3) |
C12—C12A—C1—F1 | 3.7 (4) | C12A—C1—C2—C3 | 0.0 (4) |
C4A—C12A—C1—C2 | 2.0 (4) | C12A—C4A—C4—F4 | 179.9 (2) |
C12—C12A—C1—C2 | −174.7 (3) | N5—C4A—C4—F4 | 2.4 (4) |
F9—C9—C8—F8 | 0.1 (4) | C12A—C4A—C4—C3 | 0.9 (4) |
C10—C9—C8—F8 | 178.7 (3) | N5—C4A—C4—C3 | −176.6 (3) |
F9—C9—C8—C7 | −179.3 (3) | F2—C2—C3—F3 | 1.1 (5) |
C10—C9—C8—C7 | −0.8 (4) | C1—C2—C3—F3 | 179.9 (3) |
F7—C7—C8—F8 | 0.7 (4) | F2—C2—C3—C4 | 179.6 (3) |
C6A—C7—C8—F8 | 179.9 (3) | C1—C2—C3—C4 | −1.6 (5) |
F7—C7—C8—C9 | −179.8 (3) | F4—C4—C3—F3 | 0.7 (4) |
C6A—C7—C8—C9 | −0.6 (4) | C4A—C4—C3—F3 | 179.7 (3) |
F9—C9—C10—F10 | −1.3 (4) | F4—C4—C3—C2 | −177.8 (3) |
C8—C9—C10—F10 | −179.9 (3) | C4A—C4—C3—C2 | 1.2 (5) |
F9—C9—C10—C10A | 179.0 (3) | C4A—N5—C6—C6A | −75.7 (4) |
C8—C9—C10—C10A | 0.5 (4) | C13—N5—C6—C6A | 47.0 (3) |
C6A—C10A—C10—F10 | −178.4 (2) | C7—C6A—C6—N5 | 166.7 (3) |
N11—C10A—C10—F10 | 4.2 (4) | C10A—C6A—C6—N5 | −10.4 (4) |
C6A—C10A—C10—C9 | 1.2 (4) | C10A—N11—C12—C12A | −75.3 (3) |
N11—C10A—C10—C9 | −176.2 (3) | C13—N11—C12—C12A | 47.2 (3) |
F7—C7—C6A—C10A | −178.5 (3) | C1—C12A—C12—N11 | 166.2 (2) |
C8—C7—C6A—C10A | 2.3 (4) | C4A—C12A—C12—N11 | −10.5 (4) |
Experimental details
Crystal data | |
Chemical formula | C15H6F8N2 |
Mr | 366.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 8.075 (3), 10.469 (2), 17.628 (6) |
β (°) | 117.15 (2) |
V (Å3) | 1326.0 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Enraf–Nonius MACH3 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5028, 2412, 1353 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.128, 1.03 |
No. of reflections | 2412 |
No. of parameters | 251 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.20, −0.25 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
C—H···F | C—H | H···F | C···F | C—H···F |
C13—H132···F10i | 0.93 (3) | 2.41 (3) | 3.257 (4) | 151 (3) |
C13—H131···F1ii | 0.98 (4) | 2.46 (3) | 3.287 (5) | 143 (2) |
C12—H122···F7iii | 0.98 (3) | 2.52 (3) | 3.336 (4) | 141 (3) |
Acknowledgements
S. Sergeyev is grateful to Professor Y. Geerts (Université Libre de Bruxelles) for the opportunity to conduct an independent research programme in his laboratory and for generous financial support.
References
Artacho, J., Nilsson, P., Bergquist, K.-E., Wendt, O. F. & Wärnmark, K. (2006). Chem. Eur. J. 12, 2692–2701. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolensky, B., Elguero, J., Král, V., Pardo, C. & Valík, M. (2007). Adv. Heterocycl. Chem. 93, 1–56. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Faroughi, M., Try, A. C. & Turner, P. (2006). Acta Cryst. E62, o3893–o3894. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hansson, A., Jensen, J., Wendt, O. F. & Wärnmark, K. (2003). Eur. J. Org. Chem. pp. 3179–3188. Web of Science CSD CrossRef Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Jensen, J. & Wärnmark, K. (2001). Synthesis, pp. 1873–1877. CrossRef Google Scholar
Li, Z., Xu, X., Peng, Y., Jiang, Z., Ding, C. & Qian, X. (2005). Synthesis, pp. 1228–1230. Web of Science CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Prelog, V. & Wieland, P. (1944). Helv. Chim. Acta, 27, 1127–1134. CrossRef CAS Google Scholar
Sergeyev, S. & Diederich, F. (2004). Angew. Chem. Int. Ed. 43, 1738–1740. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spielman, M. A. (1935). J. Am. Chem. Soc. 57, 583–585. CrossRef CAS Google Scholar
Tröger, J. (1887). J. Prakt. Chem. 36, 225–245. CrossRef Google Scholar
Valík, M., Strongin, R. M. & Král, V. (2005). Supramol. Chem. 17, 347–367. Google Scholar
Wilcox, C. S., Greer, L. M. & Lynch, V. (1987). J. Am. Chem. Soc. 109, 1865–1867. CSD CrossRef CAS Web of Science Google Scholar
Zabrodsky, H., Peleg, S. & Avnir, D. (1993). J. Am. Chem. Soc. 115, 8278–8289. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,3,4,7,8,9,10-Octafluoro-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine is a fluorinated derivative of Tröger's base (Tröger, 1887; Spielman, 1935), a polycyclic diamine which is chiral due to severely hindered inversion at the bridgehead N-atoms (Prelog & Wieland, 1944). For recent reviews on its chemistry, see Valík et al. (2005) and Dolensky et al. (2007). Recently, a considerable interest has developed in relatively unfunctionalized receptors with concave aromatic surfaces (termed molecular clefts or tweezers). Wilcox et al. (1987) pioneered the incorporation of the Tröger's base framework in chiral molecular clefts by fusing the methanodiazocine core of Tröger's base with two bicyclic aromatic building blocks. Later, molecular clefts comprising two or three fused methanodiazocine cores have been reported (Artacho et al., 2006, and references cited therein). Our interest in the title compound was raised due to the prospect of using highly fluorinated aromatic systems in the design of molecular clefts, thus providing a possibility to explore different supramolecular interactions.
Synthesis of halo-derivatives of Tröger's base was pioneered by Wärnmark (Jensen & Wärnmark, 2001). Later, a number of fluoro-, chloro-, bromo-, and iodo-derivatives of Tröger's base, with the halogen atoms in different positions on the aromatic rings were reported (Sergeyev & Diederich, 2004 and Hansson et al., 2003). However, they typically contain only one halogen atom on each aromatic ring of the methanodiazocine skeleton. Exceptions are the recently reported 2,4,8,10-tetrafluoro- (Li et al., 2005) and tetrabromo-analogs (Faroughi et al., 2006) of Tröger's base. However, polyhalo-analogs of Tröger's base such as the octafluoro analog presented here are unprecedented. To the best of our knowledge, no X-ray crystal structure of a Tröger's base analog with fluorine in the aromatic ring has been reported.
The racemic octafluoro analog of Tröger's base crystallizes in the centrosymmetric space group P21/c with one molecule in the asymmetric unit. The molecule has a non-crystallographic twofold symmetry axis through the bridging carbon C13. The CSM (Continuous Symmetry Measure) is 0.0183 (Zabrodsky et al., 1993). Bond lengths and angles are within expectations. TLS analysis returns quasi-isotropic values for the librational amplitudes, and the values for the resulting corrections of the bond lengths are all below the 2σ level. The dihedral angle between the two benzene rings is 98.4 (2)°, which lies within the normal range for analogs of Tröger's base (Dolensky et al., 2007). Cohesion in the structure appears to be mainly provided by aromatic π-π interactions between the fluorinated benzene rings, leading to pairwise ordering of enantiomers around the centers of inversion, with an interplanar distance of under 4 Å. The most clear examples of this in the structure are Cg(2)···Cg(2)i (i=-x,1 - y,1 - z), 3.713 (2) Å, 3.476 (3)Å perp., with a slippage of 1.305 (3) Å, and Cg(1) ··· Cg(1)ii (ii=1 - x,-y,1 - z), 4.805 (2) Å, 3.538 (3)Å perp., with a slippage of 3.251 (3) Å. Cg(x) indicates the centroid of benzene ring x, perp. indicates the perpendicular distance between the ring planes. Due to the lack of suitable hydrogen bond donors, the N-atoms display no close contacts whatsoever. There are a number of F-π contacts in the structure, e.g. F(3)···Cg(2)ii 3.672 (3) Å, C3—F3···Cg(2)ii 161.7 (2)°. Also, H—F contacts occur that are substantially shorter than the van der Waals radii, but these are not usually understood as hydrogen bonds. They are given in Table 1.