organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Racemic 1,2,3,4,7,8,9,10-octa­fluoro-6H,12H-5,11-methano­dibenzo[b,f][1,5]diazo­cine: an octa­fluorinated analogue of Tröger's base

aLaboratoire de Chimie des Polymères, Université Libre de Bruxelles, CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium, and bDepartment of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
*Correspondence e-mail: sserguee@ulb.ac.be

(Received 4 January 2008; accepted 23 January 2008; online 30 January 2008)

The title compound, C15H6F8N2, possesses a non-crystal­lographic twofold axis. The dihedral angle between the two benzene rings is 98.4 (2)°. The crystal structure involves intermolecular C—H⋯F hydrogen bonds.

Related literature

For recent reviews on the chemistry of Tröger's base (Tröger, 1887[Tröger, J. (1887). J. Prakt. Chem. 36, 225-245.]; Spielman, 1935[Spielman, M. A. (1935). J. Am. Chem. Soc. 57, 583-585.]), see: Valík et al. (2005[Valík, M., Strongin, R. M. & Král, V. (2005). Supramol. Chem. 17, 347-367.]) and Dolensky et al. (2007[Dolensky, B., Elguero, J., Král, V., Pardo, C. & Valík, M. (2007). Adv. Heterocycl. Chem. 93, 1-56.]). For related literature on the chirality of Tröger's base, see: Prelog & Wieland (1944[Prelog, V. & Wieland, P. (1944). Helv. Chim. Acta, 27, 1127-1134.]); for mol­ecular clefts, see: Wilcox et al. (1987[Wilcox, C. S., Greer, L. M. & Lynch, V. (1987). J. Am. Chem. Soc. 109, 1865-1867.]) and Artacho et al. (2006[Artacho, J., Nilsson, P., Bergquist, K.-E., Wendt, O. F. & Wärnmark, K. (2006). Chem. Eur. J. 12, 2692-2701.]) and references cited therein; for (poly)halo-substituted Tröger's base analogues, see: Jensen & Wärnmark (2001[Jensen, J. & Wärnmark, K. (2001). Synthesis, pp. 1873-1877.]), Sergeyev & Diederich (2004[Sergeyev, S. & Diederich, F. (2004). Angew. Chem. Int. Ed. 43, 1738-1740.]), Hansson et al. (2003[Hansson, A., Jensen, J., Wendt, O. F. & Wärnmark, K. (2003). Eur. J. Org. Chem. pp. 3179-3188.]), Li et al. (2005[Li, Z., Xu, X., Peng, Y., Jiang, Z., Ding, C. & Qian, X. (2005). Synthesis, pp. 1228-1230.]) and Faroughi et al. (2006[Faroughi, M., Try, A. C. & Turner, P. (2006). Acta Cryst. E62, o3893-o3894.]). For related literature, see: Zabrodsky et al. (1993[Zabrodsky, H., Peleg, S. & Avnir, D. (1993). J. Am. Chem. Soc. 115, 8278-8289.]).

[Scheme 1]

Experimental

Crystal data
  • C15H6F8N2

  • Mr = 366.22

  • Monoclinic, P 21 /c

  • a = 8.075 (3) Å

  • b = 10.469 (2) Å

  • c = 17.628 (6) Å

  • β = 117.15 (2)°

  • V = 1326.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 290 (1) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius MACH3 diffractometer

  • Absorption correction: none

  • 5028 measured reflections

  • 2412 independent reflections

  • 1353 reflections with I > 2σ(I)

  • Rint = 0.078

  • 3 standard reflections every 73 reflections intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.03

  • 2412 reflections

  • 251 parameters

  • All H-atom parameters refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
C—H ⋯ F contacts (Å, °)

C—H⋯F C—H H⋯F C⋯F C—H⋯F
C13—H132⋯F10i 0.93 (3) 2.41 (3) 3.257 (4) 151 (3)
C13—H131⋯F1ii 0.98 (4) 2.46 (3) 3.287 (5) 143 (2)
C12—H122⋯F7iii 0.98 (3) 2.52 (3) 3.336 (4) 141 (3)
Symmetry codes: (i) [-x, -{1\over 2}+y, {1\over 2}-z], (ii) x-1, y, z, (iii) [x, {1\over 2}-y, -{1\over 2}+z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,2,3,4,7,8,9,10-Octafluoro-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine is a fluorinated derivative of Tröger's base (Tröger, 1887; Spielman, 1935), a polycyclic diamine which is chiral due to severely hindered inversion at the bridgehead N-atoms (Prelog & Wieland, 1944). For recent reviews on its chemistry, see Valík et al. (2005) and Dolensky et al. (2007). Recently, a considerable interest has developed in relatively unfunctionalized receptors with concave aromatic surfaces (termed molecular clefts or tweezers). Wilcox et al. (1987) pioneered the incorporation of the Tröger's base framework in chiral molecular clefts by fusing the methanodiazocine core of Tröger's base with two bicyclic aromatic building blocks. Later, molecular clefts comprising two or three fused methanodiazocine cores have been reported (Artacho et al., 2006, and references cited therein). Our interest in the title compound was raised due to the prospect of using highly fluorinated aromatic systems in the design of molecular clefts, thus providing a possibility to explore different supramolecular interactions.

Synthesis of halo-derivatives of Tröger's base was pioneered by Wärnmark (Jensen & Wärnmark, 2001). Later, a number of fluoro-, chloro-, bromo-, and iodo-derivatives of Tröger's base, with the halogen atoms in different positions on the aromatic rings were reported (Sergeyev & Diederich, 2004 and Hansson et al., 2003). However, they typically contain only one halogen atom on each aromatic ring of the methanodiazocine skeleton. Exceptions are the recently reported 2,4,8,10-tetrafluoro- (Li et al., 2005) and tetrabromo-analogs (Faroughi et al., 2006) of Tröger's base. However, polyhalo-analogs of Tröger's base such as the octafluoro analog presented here are unprecedented. To the best of our knowledge, no X-ray crystal structure of a Tröger's base analog with fluorine in the aromatic ring has been reported.

The racemic octafluoro analog of Tröger's base crystallizes in the centrosymmetric space group P21/c with one molecule in the asymmetric unit. The molecule has a non-crystallographic twofold symmetry axis through the bridging carbon C13. The CSM (Continuous Symmetry Measure) is 0.0183 (Zabrodsky et al., 1993). Bond lengths and angles are within expectations. TLS analysis returns quasi-isotropic values for the librational amplitudes, and the values for the resulting corrections of the bond lengths are all below the 2σ level. The dihedral angle between the two benzene rings is 98.4 (2)°, which lies within the normal range for analogs of Tröger's base (Dolensky et al., 2007). Cohesion in the structure appears to be mainly provided by aromatic π-π interactions between the fluorinated benzene rings, leading to pairwise ordering of enantiomers around the centers of inversion, with an interplanar distance of under 4 Å. The most clear examples of this in the structure are Cg(2)···Cg(2)i (i=-x,1 - y,1 - z), 3.713 (2) Å, 3.476 (3)Å perp., with a slippage of 1.305 (3) Å, and Cg(1) ··· Cg(1)ii (ii=1 - x,-y,1 - z), 4.805 (2) Å, 3.538 (3)Å perp., with a slippage of 3.251 (3) Å. Cg(x) indicates the centroid of benzene ring x, perp. indicates the perpendicular distance between the ring planes. Due to the lack of suitable hydrogen bond donors, the N-atoms display no close contacts whatsoever. There are a number of F-π contacts in the structure, e.g. F(3)···Cg(2)ii 3.672 (3) Å, C3—F3···Cg(2)ii 161.7 (2)°. Also, H—F contacts occur that are substantially shorter than the van der Waals radii, but these are not usually understood as hydrogen bonds. They are given in Table 1.

Related literature top

For recent reviews on the chemistry of Tröger's base (Tröger, 1887; Spielman, 1935), see Valík et al. (2005) and Dolensky et al. (2007). For related literature on the chirality of Tröger's base, see Prelog & Wieland (1944); for molecular clefts, see Wilcox et al. (1987) and Artacho et al. (2006) and references cited therein; for (poly)halo-substituted Tröger's base analogues, see Jensen & Wärnmark (2001), Sergeyev & Diederich (2004), Hansson et al. (2003), Li et al. (2005) and Faroughi et al. (2006).

For related literature, see: Zabrodsky et al. (1993).

Experimental top

2,3,4,5-Tetrafluoroaniline (330 mg, 2 mmol) and paraformaldehyde (120 mg, 4 mmol) were added under vigorous stirring to CF3COOH (4 ml) at -15°C. The resulting mixture was allowed to reach room temperature and stirred for 14 days, then slowly added to a stirred mixture of ice and 30% aqueous NH3 (7 ml). Extraction with CH2Cl2 (2 x 20 ml), drying of the organic layer over MgSO4, and removal of the solvent in vacuo gave a crude product which was purified by flash chromatography (SiO2/CH2Cl2). Yield of the title compound: 135 mg (37%). Crystals suitable for X-ray diffraction were grown by slow evaporation from CHCl3 solution.

1H NMR (300 MHz, CDCl3, 25°C): d = 4.20–4.30 (m, 4H, H61, H62, H121, H122), 4.50 (d, J = 17.5 Hz, 2H, H131, H132); 13C NMR (75 MHz, CDCl3, 25°C): d = 50.1, 66.5, 111.9 (ddt, J =17.7, 3.4, 1.7 Hz), 130.8 (dddd, J = 10.6, 5.2, 3.7, 1.9 Hz), 137.3 (dddd, J = 252.0, 16.5, 13.0, 3.1 Hz), 140.2 (dddd, J = 251.3, 14.9, 13.0, 5.0 Hz), 141.7 (dddd, J = 248.2, 11.2, 4.1, 1.3 Hz), 144.0 (ddt, J = 245.2, 10.9, 3.7 Hz). HR—EI—MS: m/z: calcd. for C15H6F8N2 ([M]+): 366.0403; found: 366.0405.

Refinement top

Hydrogen atoms were located in the Fourier difference map and refined freely. (C—H 0.93 (3)–1.03 (3) Å)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the structure with 50% probability displacement ellipsoids. H atoms are numbered according to their attached C-atoms.
[Figure 2] Fig. 2. View of the unit cell down the b axis.
1,2,3,4,7,8,9,10-octafluoro-5,6,11,12-tetrahydro-5,11-µethanodibenzo[b,f][1,5]diazocine top
Crystal data top
C15H6F8N2F(000) = 728
Mr = 366.22Dx = 1.834 Mg m3
Monoclinic, P21/cMelting point: 192(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.075 (3) ÅCell parameters from 25 reflections
b = 10.469 (2) Åθ = 5–12°
c = 17.628 (6) ŵ = 0.19 mm1
β = 117.15 (2)°T = 290 K
V = 1326.0 (8) Å3Rhomb, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Enraf–Nonius MACH3
diffractometer
Rint = 0.078
Radiation source: sealed tubeθmax = 25.3°, θmin = 2.3°
Pyrolytic graphite monochromatorh = 09
profiled ω/2θ scansk = 1212
5028 measured reflectionsl = 2118
2412 independent reflections3 standard reflections every 73 reflections
1353 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2412 reflectionsΔρmax = 0.20 e Å3
251 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.008 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H6F8N2V = 1326.0 (8) Å3
Mr = 366.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.075 (3) ŵ = 0.19 mm1
b = 10.469 (2) ÅT = 290 K
c = 17.628 (6) Å0.3 × 0.2 × 0.2 mm
β = 117.15 (2)°
Data collection top
Enraf–Nonius MACH3
diffractometer
Rint = 0.078
5028 measured reflections3 standard reflections every 73 reflections
2412 independent reflections intensity decay: 4%
1353 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128All H-atom parameters refined
S = 1.03Δρmax = 0.20 e Å3
2412 reflectionsΔρmin = 0.25 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1310.193 (4)0.216 (3)0.8025 (17)0.051 (8)*
H1210.305 (4)0.121 (3)0.810 (2)0.069 (9)*
H1220.136 (5)0.176 (3)0.726 (2)0.077 (10)*
H620.105 (5)0.310 (3)0.9326 (17)0.057 (9)*
H1320.111 (4)0.269 (3)0.741 (2)0.060 (9)*
H610.092 (4)0.374 (3)0.9788 (19)0.053 (9)*
F70.1474 (3)0.21118 (18)1.10195 (11)0.0715 (6)
F100.2539 (3)0.08189 (16)0.87533 (11)0.0699 (6)
F10.5029 (3)0.29145 (19)0.78363 (12)0.0679 (6)
F90.3839 (3)0.15905 (16)1.03755 (11)0.0729 (6)
N110.0509 (3)0.1395 (2)0.81513 (13)0.0506 (6)
F80.3308 (3)0.01382 (19)1.15148 (10)0.0730 (6)
C12A0.2581 (4)0.3151 (3)0.81963 (16)0.0467 (7)
F40.1600 (3)0.58222 (17)0.92368 (14)0.0845 (7)
F30.4753 (3)0.66558 (18)0.92211 (15)0.0919 (7)
C10A0.1288 (4)0.1067 (3)0.90262 (15)0.0417 (6)
C90.2933 (4)0.0464 (3)1.01318 (17)0.0489 (7)
F20.6451 (3)0.5220 (2)0.85025 (14)0.0852 (6)
C70.1727 (4)0.1397 (3)1.04471 (16)0.0471 (7)
N50.0035 (3)0.3514 (2)0.85287 (15)0.0570 (7)
C4A0.1674 (4)0.3903 (3)0.85490 (17)0.0488 (7)
C10.4148 (4)0.3626 (3)0.81791 (18)0.0510 (8)
C80.2668 (4)0.0260 (3)1.07054 (16)0.0491 (7)
C100.2252 (4)0.0074 (3)0.93048 (16)0.0450 (7)
C6A0.1055 (4)0.1831 (3)0.96176 (17)0.0460 (7)
C130.0834 (5)0.2423 (4)0.7960 (2)0.0611 (9)
C20.4898 (4)0.4799 (3)0.8519 (2)0.0583 (8)
C40.2450 (5)0.5081 (3)0.88958 (18)0.0584 (8)
C30.4040 (5)0.5512 (3)0.8886 (2)0.0616 (9)
C60.0168 (5)0.3137 (3)0.9374 (2)0.0577 (9)
C120.1908 (5)0.1805 (3)0.78815 (19)0.0530 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F70.1095 (15)0.0648 (11)0.0538 (10)0.0031 (11)0.0490 (11)0.0071 (9)
F100.1081 (15)0.0474 (10)0.0537 (10)0.0049 (10)0.0364 (10)0.0103 (8)
F10.0709 (12)0.0683 (12)0.0764 (12)0.0122 (10)0.0440 (10)0.0101 (10)
F90.0981 (15)0.0433 (10)0.0660 (12)0.0137 (10)0.0276 (10)0.0114 (9)
N110.0534 (14)0.0571 (16)0.0335 (12)0.0002 (13)0.0130 (10)0.0035 (11)
F80.1033 (15)0.0666 (12)0.0379 (9)0.0000 (11)0.0224 (9)0.0098 (9)
C12A0.0484 (17)0.0506 (16)0.0352 (14)0.0092 (14)0.0139 (12)0.0113 (13)
F40.1074 (17)0.0539 (11)0.1061 (16)0.0224 (11)0.0607 (14)0.0004 (11)
F30.1082 (17)0.0477 (11)0.1105 (17)0.0089 (12)0.0419 (14)0.0055 (12)
C10A0.0435 (15)0.0430 (14)0.0348 (14)0.0044 (13)0.0144 (12)0.0002 (12)
C90.0557 (17)0.0351 (15)0.0481 (16)0.0008 (14)0.0170 (14)0.0039 (13)
F20.0694 (13)0.0731 (13)0.1142 (16)0.0077 (11)0.0429 (12)0.0129 (12)
C70.0589 (18)0.0477 (17)0.0397 (15)0.0058 (15)0.0268 (13)0.0068 (13)
N50.0536 (15)0.0572 (15)0.0577 (15)0.0156 (14)0.0233 (12)0.0161 (13)
C4A0.0512 (17)0.0468 (17)0.0455 (16)0.0137 (15)0.0195 (14)0.0172 (14)
C10.0523 (17)0.0547 (19)0.0478 (16)0.0145 (16)0.0244 (14)0.0120 (14)
C80.0609 (18)0.0467 (16)0.0316 (14)0.0078 (15)0.0140 (13)0.0058 (13)
C100.0570 (17)0.0389 (15)0.0376 (14)0.0047 (14)0.0201 (13)0.0074 (13)
C6A0.0489 (17)0.0457 (16)0.0443 (15)0.0000 (13)0.0220 (13)0.0014 (13)
C130.0468 (19)0.078 (2)0.0480 (19)0.0021 (17)0.0123 (15)0.0164 (18)
C20.0519 (19)0.0541 (18)0.067 (2)0.0070 (16)0.0250 (16)0.0183 (16)
C40.072 (2)0.0476 (18)0.0587 (19)0.0222 (17)0.0330 (17)0.0108 (16)
C30.067 (2)0.0402 (17)0.067 (2)0.0048 (16)0.0217 (17)0.0091 (15)
C60.058 (2)0.058 (2)0.064 (2)0.0141 (17)0.0335 (18)0.0116 (17)
C120.063 (2)0.0587 (19)0.0358 (15)0.0005 (16)0.0215 (15)0.0011 (14)
Geometric parameters (Å, º) top
F7—C71.345 (3)F2—C21.342 (3)
F10—C101.347 (3)C7—C81.373 (4)
F1—C11.348 (3)C7—C6A1.384 (4)
F9—C91.350 (3)N5—C4A1.423 (4)
N11—C10A1.417 (3)N5—C131.461 (4)
N11—C131.454 (4)N5—C61.476 (4)
N11—C121.476 (4)C4A—C41.393 (5)
F8—C81.343 (3)C1—C21.380 (5)
C12A—C11.372 (4)C6A—C61.513 (4)
C12A—C4A1.400 (4)C13—H1310.98 (3)
C12A—C121.520 (4)C13—H1320.93 (3)
F4—C41.346 (3)C2—C31.365 (5)
F3—C31.343 (4)C4—C31.368 (5)
C10A—C101.387 (4)C6—H620.95 (3)
C10A—C6A1.393 (4)C6—H610.95 (3)
C9—C81.357 (4)C12—H1211.03 (3)
C9—C101.365 (4)C12—H1220.98 (3)
C10A—N11—C13110.2 (2)C7—C6A—C10A118.7 (3)
C10A—N11—C12113.3 (2)C7—C6A—C6120.2 (3)
C13—N11—C12108.1 (3)C10A—C6A—C6121.0 (3)
C1—C12A—C4A118.7 (3)N11—C13—N5111.7 (2)
C1—C12A—C12120.5 (3)N11—C13—H131112.5 (18)
C4A—C12A—C12120.7 (3)N5—C13—H131106.2 (17)
C10—C10A—C6A118.3 (2)N11—C13—H132105.1 (19)
C10—C10A—N11119.5 (2)N5—C13—H132107 (2)
C6A—C10A—N11122.1 (3)H131—C13—H132114 (3)
F9—C9—C8119.9 (3)F2—C2—C3120.8 (3)
F9—C9—C10119.8 (3)F2—C2—C1120.8 (3)
C8—C9—C10120.3 (3)C3—C2—C1118.4 (3)
F7—C7—C8119.0 (2)F4—C4—C3119.3 (3)
F7—C7—C6A119.3 (3)F4—C4—C4A119.2 (3)
C8—C7—C6A121.7 (3)C3—C4—C4A121.6 (3)
C4A—N5—C13111.1 (3)F3—C3—C2119.2 (3)
C4A—N5—C6113.0 (2)F3—C3—C4120.3 (3)
C13—N5—C6107.1 (3)C2—C3—C4120.5 (3)
C4—C4A—C12A118.1 (3)N5—C6—C6A110.4 (3)
C4—C4A—N5120.1 (3)N5—C6—H62106.7 (17)
C12A—C4A—N5121.8 (3)C6A—C6—H62109 (2)
F1—C1—C12A119.3 (3)N5—C6—H61109.5 (17)
F1—C1—C2118.0 (3)C6A—C6—H61109.4 (18)
C12A—C1—C2122.7 (3)H62—C6—H61112 (2)
F8—C8—C9120.2 (3)N11—C12—C12A110.5 (3)
F8—C8—C7120.5 (3)N11—C12—H121113.2 (18)
C9—C8—C7119.3 (2)C12A—C12—H121107.9 (19)
F10—C10—C9118.6 (3)N11—C12—H122109 (2)
F10—C10—C10A119.8 (2)C12A—C12—H122111 (2)
C9—C10—C10A121.6 (3)H121—C12—H122105 (3)
C13—N11—C10A—C10164.7 (3)F7—C7—C6A—C64.4 (4)
C12—N11—C10A—C1074.1 (3)C8—C7—C6A—C6174.9 (3)
C13—N11—C10A—C6A12.6 (4)C10—C10A—C6A—C72.5 (4)
C12—N11—C10A—C6A108.7 (3)N11—C10A—C6A—C7174.8 (2)
C1—C12A—C4A—C42.4 (4)C10—C10A—C6A—C6174.6 (3)
C12—C12A—C4A—C4174.4 (3)N11—C10A—C6A—C68.1 (4)
C1—C12A—C4A—N5175.1 (2)C10A—N11—C13—N553.2 (3)
C12—C12A—C4A—N58.2 (4)C12—N11—C13—N571.2 (3)
C13—N5—C4A—C4165.8 (3)C4A—N5—C13—N1151.4 (3)
C6—N5—C4A—C473.8 (3)C6—N5—C13—N1172.5 (3)
C13—N5—C4A—C12A11.6 (3)F1—C1—C2—F20.4 (4)
C6—N5—C4A—C12A108.8 (3)C12A—C1—C2—F2178.8 (3)
C4A—C12A—C1—F1179.6 (2)F1—C1—C2—C3178.4 (3)
C12—C12A—C1—F13.7 (4)C12A—C1—C2—C30.0 (4)
C4A—C12A—C1—C22.0 (4)C12A—C4A—C4—F4179.9 (2)
C12—C12A—C1—C2174.7 (3)N5—C4A—C4—F42.4 (4)
F9—C9—C8—F80.1 (4)C12A—C4A—C4—C30.9 (4)
C10—C9—C8—F8178.7 (3)N5—C4A—C4—C3176.6 (3)
F9—C9—C8—C7179.3 (3)F2—C2—C3—F31.1 (5)
C10—C9—C8—C70.8 (4)C1—C2—C3—F3179.9 (3)
F7—C7—C8—F80.7 (4)F2—C2—C3—C4179.6 (3)
C6A—C7—C8—F8179.9 (3)C1—C2—C3—C41.6 (5)
F7—C7—C8—C9179.8 (3)F4—C4—C3—F30.7 (4)
C6A—C7—C8—C90.6 (4)C4A—C4—C3—F3179.7 (3)
F9—C9—C10—F101.3 (4)F4—C4—C3—C2177.8 (3)
C8—C9—C10—F10179.9 (3)C4A—C4—C3—C21.2 (5)
F9—C9—C10—C10A179.0 (3)C4A—N5—C6—C6A75.7 (4)
C8—C9—C10—C10A0.5 (4)C13—N5—C6—C6A47.0 (3)
C6A—C10A—C10—F10178.4 (2)C7—C6A—C6—N5166.7 (3)
N11—C10A—C10—F104.2 (4)C10A—C6A—C6—N510.4 (4)
C6A—C10A—C10—C91.2 (4)C10A—N11—C12—C12A75.3 (3)
N11—C10A—C10—C9176.2 (3)C13—N11—C12—C12A47.2 (3)
F7—C7—C6A—C10A178.5 (3)C1—C12A—C12—N11166.2 (2)
C8—C7—C6A—C10A2.3 (4)C4A—C12A—C12—N1110.5 (4)

Experimental details

Crystal data
Chemical formulaC15H6F8N2
Mr366.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.075 (3), 10.469 (2), 17.628 (6)
β (°) 117.15 (2)
V3)1326.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius MACH3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5028, 2412, 1353
Rint0.078
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.03
No. of reflections2412
No. of parameters251
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

C—H ··· F contacts (Å, °) (i) -x, -1/2+y, 1/2-z (ii) x-1, y, z (iii) x, 1/2-y, -1/2+z top
C—H···FC—HH···FC···FC—H···F
C13—H132···F10i0.93 (3)2.41 (3)3.257 (4)151 (3)
C13—H131···F1ii0.98 (4)2.46 (3)3.287 (5)143 (2)
C12—H122···F7iii0.98 (3)2.52 (3)3.336 (4)141 (3)
 

Acknowledgements

S. Sergeyev is grateful to Professor Y. Geerts (Université Libre de Bruxelles) for the opportunity to conduct an independent research programme in his laboratory and for generous financial support.

References

First citationArtacho, J., Nilsson, P., Bergquist, K.-E., Wendt, O. F. & Wärnmark, K. (2006). Chem. Eur. J. 12, 2692–2701.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolensky, B., Elguero, J., Král, V., Pardo, C. & Valík, M. (2007). Adv. Heterocycl. Chem. 93, 1–56.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2006). Acta Cryst. E62, o3893–o3894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHansson, A., Jensen, J., Wendt, O. F. & Wärnmark, K. (2003). Eur. J. Org. Chem. pp. 3179–3188.  Web of Science CSD CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJensen, J. & Wärnmark, K. (2001). Synthesis, pp. 1873–1877.  CrossRef Google Scholar
First citationLi, Z., Xu, X., Peng, Y., Jiang, Z., Ding, C. & Qian, X. (2005). Synthesis, pp. 1228–1230.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrelog, V. & Wieland, P. (1944). Helv. Chim. Acta, 27, 1127–1134.  CrossRef CAS Google Scholar
First citationSergeyev, S. & Diederich, F. (2004). Angew. Chem. Int. Ed. 43, 1738–1740.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpielman, M. A. (1935). J. Am. Chem. Soc. 57, 583–585.  CrossRef CAS Google Scholar
First citationTröger, J. (1887). J. Prakt. Chem. 36, 225–245.  CrossRef Google Scholar
First citationValík, M., Strongin, R. M. & Král, V. (2005). Supramol. Chem. 17, 347–367.  Google Scholar
First citationWilcox, C. S., Greer, L. M. & Lynch, V. (1987). J. Am. Chem. Soc. 109, 1865–1867.  CSD CrossRef CAS Web of Science Google Scholar
First citationZabrodsky, H., Peleg, S. & Avnir, D. (1993). J. Am. Chem. Soc. 115, 8278–8289.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds