metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-(1,8-Di­benzyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­deca­ne)diisonicotinatonickel(II)

aDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University, Chinju 660-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr

(Received 7 January 2008; accepted 11 January 2008; online 16 January 2008)

In the centrosymmetric title compound, [Ni(C6H4NO2)2(C22H34N6)], the NiII ion is bonded to the four secondary N atoms of the macrocyclic ligand in a square-planar fashion and two carboxyl­ate O atoms of the isonicotinate ions in axial positions, resulting in a tetra­gonally distorted octa­hedron. An offset face-to-face ππ stacking inter­action [centroid–centroid distance = 3.674(4) Å] and N—H⋯N and N—H⋯O hydrogen-bonding inter­actions give rise to a one-dimensional supra­molecular structure in the solid state.

Related literature

For related literature, see Hancock (1990[Hancock, R. D. (1990). Acc. Chem. Res. 23, 253-257.]); Jung et al. (1989[Jung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc. 10, 362-366.]); Larionova et al. (2003[Larionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Cryst. Growth Des. 3, 267-272.]); Lee & Suh (2004[Lee, E. Y. & Suh, M. P. (2004). Angew. Chem. Int. Ed. 43, 2798-2801.]); Shetty et al. (1996[Shetty, A. S., Zhang, J. & Moore, J. S. (1996). J. Am. Chem. Soc. 118, 1019-1027.]); Tsuge et al. (2004[Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc. 126, 6564-6565.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H4NO2)2(C22H34N6)]

  • Mr = 685.45

  • Monoclinic, P 21 /c

  • a = 8.3418 (5) Å

  • b = 17.3104 (9) Å

  • c = 10.9596 (6) Å

  • β = 91.892 (1)°

  • V = 1581.70 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 173 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 0.875

  • 9843 measured reflections

  • 3671 independent reflections

  • 3288 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.116

  • S = 1.29

  • 3671 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.93 1.97 2.838 (3) 154
N2—H2⋯N4i 0.93 2.31 3.160 (3) 152
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The coordination chemistry of tetraaza macrocyclic ligands has been extensively studied in the context of metalloenzymes and the construction of extended supramolecular networks (Tsuge et al., 2004; Larionova et al., 2003). In particular, NiII macrocyclic complexes with vacant axial positions are good candidates for assembling novel multi-dimensional materials in which they can possess interesting properties (Lee & Suh, 2004). Here, we report the synthesis and structure of the title compound.

As shown in Fig. 1, the NiII ion is coordinated by the four secondary amine N atoms of the macrocyclic ligand in a square-planar fashion and two oxygen atoms from isonicotinate ions at the axial positions, resulting in a tetragonally distorted octahedron. The average Ni—N and Ni—O bond distances are 2.062 (1) and 2.159 (1) Å, respectively. The axial Ni—O bond distance is longer than the equatorial Fe—N bond lengths, which can be attributed to the Jahn-Teller distortion of the NiII ion and/or the ring contraction of the macrocyclic ligand. Two CO bond distances of the carboxylate group are not significantly different although one is coordinated (1.246 (4) Å) and the other is uncoordinated (1.266 (3) Å) to the NiII ion. The complex has an inversion center at the Ni atom and the azamacrocyclic ligand adopts thermodynamically the most stable R,R,S,S configuration (Hancock, 1990). The geometry of the tertiary nitrogen atom N3 is normal; C—N distances average 1.458 (2) Å and C—N—C angles are in the range 111.8 (2)–115.7 (2)°, which is indicative of significant contribution of sp2 hybridization for the nitrogen atom. The shortest Ni···Ni intrachain separation within the one-dimensional chain is 10.960 (1) Å and is 31% greater than the shortest interchain Ni···Ni distance of 8.342 (1) Å.

All pyridine groups of the isonicotinates coordinating NiII ions axially are involved in offset face-to-face π-π stacking interactions (centroid···centroid 3.674 (4) Å), which leads to a supramolecular one-dimensional polymer propagating along the c axis (Fig. 2). The pyridine rings are positioned completely parallel to each other (dihedral angle of 0.0°). The interplanar separation and the offset angle between the ring planes of isonicotinate ions are 3.545 (4) Å and 9.71 (9)°, respectively (Shetty et al., 1996).

Within a one-dimensional chain, the non-coordinated carbonyl oxygen atom of the carboxylate ion forms an intramolecular hydrogen bond with the secondary amine (N1) of the macrocycle. In addition, the nitrogen atom of isonicotinate ion forms an intermolecular hydrogen bond with the secondary amine (N2) of the macrocycle which joins the molecules into a robust one-dimensional polymer (Table 1).

Related literature top

For related literature, see Hancock (1990); Jung et al. (1989); Larionova et al. (2003); Lee & Suh (2004); Shetty et al. (1996); Tsuge et al. (2004).

Experimental top

The starting complex, [Ni(C22H34N6)Cl2], used in this work was prepared by a literature procedure (Jung et al., 1989). To a DMF/H2O (v/v; 1:1, 20 ml) solution of [Ni(C22H34N6)Cl2] (0.20 g, 0.40 mmol) was added dropwise an MeCN solution (10 ml) containing isonicotinic acid (0.10 g, 0.80 mmol) and excess triethylamine (0.08 g, 0.80 mmol) at room temperature. The color of the solution turned from yellow to pale pink. The mixture solution was stirred for 1 h during which time a pink precipitate of formed which was collected by filtration, washed with MeCN, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were obtained by layering of the MeCN solution of isonicotinate on the DMF/H2O solution of [Ni(C22H34N6)Cl2] for several days. Yield 0.21 g (77%).

Refinement top

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound showing 50% displacement ellipsoids for the non-hydrogen atoms. Atoms labeled with the suffix a are at the symmetry position (1 - x, 1 - y, 2 - z).
[Figure 2] Fig. 2. Perspective view of the title compound showing a 1-D chain along the c axis by hydrogen bonding interactions (black circles) and offset face-to-face π-π interactions (black squares).
trans-(1,8-Dibenzyl-1,3,6,8,10,13- hexaazacyclotetradecane)diisonicotinatonickel(II) top
Crystal data top
[Ni(C6H4NO2)2(C22H34N6)]F(000) = 724
Mr = 685.45Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5240 reflections
a = 8.3418 (5) Åθ = 2.2–28.1°
b = 17.3104 (9) ŵ = 0.67 mm1
c = 10.9596 (6) ÅT = 173 K
β = 91.892 (1)°Block, pink
V = 1581.70 (15) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
3671 independent reflections
Radiation source: fine-focus sealed tube3288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.778, Tmax = 0.875k = 2219
9843 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0189P)2 + 2.8532P]
where P = (Fo2 + 2Fc2)/3
3671 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Ni(C6H4NO2)2(C22H34N6)]V = 1581.70 (15) Å3
Mr = 685.45Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3418 (5) ŵ = 0.67 mm1
b = 17.3104 (9) ÅT = 173 K
c = 10.9596 (6) Å0.40 × 0.20 × 0.20 mm
β = 91.892 (1)°
Data collection top
Siemens SMART CCD
diffractometer
3671 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3288 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.875Rint = 0.022
9843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.29Δρmax = 0.52 e Å3
3671 reflectionsΔρmin = 0.56 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50001.00000.01570 (13)
O10.4295 (2)0.54216 (12)0.82075 (17)0.0223 (4)
O20.1901 (3)0.48759 (12)0.77448 (18)0.0279 (5)
N10.2943 (3)0.43532 (13)1.0093 (2)0.0185 (5)
H10.24070.43850.93370.022*
N20.3733 (3)0.58652 (13)1.0846 (2)0.0195 (5)
H20.40310.58621.16710.023*
N30.5746 (3)0.68651 (14)1.0464 (2)0.0216 (5)
N40.3459 (3)0.59376 (16)0.3712 (2)0.0295 (6)
C10.3199 (4)0.35247 (17)1.0367 (3)0.0231 (6)
H1A0.36570.34761.12090.028*
H1B0.21470.32601.03400.028*
C20.1956 (3)0.47603 (17)1.0988 (2)0.0216 (6)
H2A0.23700.46531.18280.026*
H2B0.08320.45791.09150.026*
C30.2034 (3)0.56208 (17)1.0729 (3)0.0228 (6)
H3A0.16030.57300.98950.027*
H3B0.13850.59081.13180.027*
C40.4065 (3)0.66490 (17)1.0359 (3)0.0239 (6)
H4A0.37110.66690.94880.029*
H4B0.34250.70321.08050.029*
C50.6325 (3)0.68978 (17)1.1745 (2)0.0226 (6)
H5A0.63920.63651.20690.027*
H5B0.55270.71811.22230.027*
C60.7938 (3)0.72810 (16)1.1938 (3)0.0220 (6)
C70.9015 (4)0.69899 (18)1.2817 (3)0.0299 (7)
H70.87610.65311.32440.036*
C81.0459 (4)0.7364 (2)1.3077 (3)0.0361 (8)
H81.11840.71611.36810.043*
C91.0843 (4)0.8026 (2)1.2465 (3)0.0367 (8)
H91.18300.82821.26450.044*
C100.9780 (4)0.8320 (2)1.1580 (3)0.0386 (8)
H101.00450.87771.11500.046*
C110.8342 (4)0.79516 (18)1.1324 (3)0.0291 (7)
H110.76200.81591.07200.035*
C120.3141 (3)0.52339 (16)0.7488 (2)0.0200 (6)
C130.3282 (3)0.54825 (16)0.6159 (2)0.0206 (6)
C140.4444 (4)0.59945 (18)0.5799 (3)0.0268 (6)
H140.52020.62000.63780.032*
C150.4485 (4)0.6204 (2)0.4576 (3)0.0300 (7)
H150.52900.65580.43400.036*
C160.2331 (4)0.54476 (19)0.4082 (3)0.0280 (7)
H160.15720.52580.34900.034*
C170.2206 (4)0.52022 (17)0.5277 (3)0.0231 (6)
H170.13940.48460.54890.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0150 (2)0.0204 (2)0.0117 (2)0.0036 (2)0.00054 (16)0.00087 (19)
O10.0235 (10)0.0286 (11)0.0145 (9)0.0042 (8)0.0035 (7)0.0012 (8)
O20.0286 (11)0.0330 (12)0.0216 (10)0.0085 (9)0.0051 (8)0.0058 (9)
N10.0199 (11)0.0240 (12)0.0116 (10)0.0038 (9)0.0006 (9)0.0001 (9)
N20.0185 (11)0.0245 (12)0.0153 (11)0.0030 (9)0.0017 (9)0.0005 (9)
N30.0226 (12)0.0229 (12)0.0190 (12)0.0041 (10)0.0021 (9)0.0005 (9)
N40.0334 (14)0.0398 (16)0.0154 (12)0.0069 (12)0.0004 (10)0.0028 (11)
C10.0277 (15)0.0266 (15)0.0150 (13)0.0063 (12)0.0015 (11)0.0025 (11)
C20.0186 (13)0.0308 (15)0.0155 (13)0.0044 (11)0.0008 (10)0.0033 (11)
C30.0185 (14)0.0298 (16)0.0201 (14)0.0013 (12)0.0003 (11)0.0023 (11)
C40.0223 (14)0.0260 (15)0.0233 (15)0.0005 (12)0.0027 (11)0.0022 (12)
C50.0256 (15)0.0257 (15)0.0166 (13)0.0043 (12)0.0004 (11)0.0016 (11)
C60.0236 (15)0.0222 (14)0.0204 (14)0.0019 (11)0.0016 (11)0.0065 (11)
C70.0361 (18)0.0229 (15)0.0304 (16)0.0040 (13)0.0032 (13)0.0029 (13)
C80.0323 (18)0.0322 (18)0.043 (2)0.0009 (14)0.0156 (15)0.0015 (15)
C90.0275 (17)0.039 (2)0.043 (2)0.0089 (15)0.0075 (14)0.0031 (16)
C100.0380 (19)0.0323 (18)0.045 (2)0.0127 (15)0.0030 (16)0.0091 (15)
C110.0291 (16)0.0286 (16)0.0292 (16)0.0034 (13)0.0052 (13)0.0047 (13)
C120.0248 (14)0.0204 (13)0.0146 (12)0.0026 (11)0.0015 (10)0.0002 (10)
C130.0223 (14)0.0217 (14)0.0178 (13)0.0070 (11)0.0007 (10)0.0019 (11)
C140.0297 (16)0.0338 (17)0.0166 (14)0.0012 (13)0.0032 (11)0.0001 (12)
C150.0321 (17)0.0389 (18)0.0192 (14)0.0034 (14)0.0008 (12)0.0033 (13)
C160.0267 (16)0.0387 (18)0.0184 (14)0.0055 (13)0.0046 (12)0.0060 (12)
C170.0236 (14)0.0253 (15)0.0204 (14)0.0018 (11)0.0002 (11)0.0019 (11)
Geometric parameters (Å, º) top
Ni1—N1i2.054 (2)C3—H3B0.9900
Ni1—N12.054 (2)C4—H4A0.9900
Ni1—N2i2.070 (2)C4—H4B0.9900
Ni1—N22.070 (2)C5—C61.509 (4)
Ni1—O1i2.1591 (19)C5—H5A0.9900
Ni1—O12.1591 (19)C5—H5B0.9900
O1—C121.266 (3)C6—C111.389 (4)
O2—C121.246 (4)C6—C71.390 (4)
N1—C21.479 (3)C7—C81.389 (5)
N1—C11.479 (4)C7—H70.9500
N1—H10.9300C8—C91.371 (5)
N2—C31.480 (3)C8—H80.9500
N2—C41.487 (4)C9—C101.388 (5)
N2—H20.9300C9—H90.9500
N3—C41.452 (4)C10—C111.380 (4)
N3—C1i1.453 (4)C10—H100.9500
N3—C51.470 (4)C11—H110.9500
N4—C151.337 (4)C12—C131.527 (4)
N4—C161.340 (4)C13—C141.380 (4)
C1—N3i1.453 (4)C13—C171.386 (4)
C1—H1A0.9900C14—C151.391 (4)
C1—H1B0.9900C14—H140.9500
C2—C31.518 (4)C15—H150.9500
C2—H2A0.9900C16—C171.384 (4)
C2—H2B0.9900C16—H160.9500
C3—H3A0.9900C17—H170.9500
N1i—Ni1—N1180.00 (11)H3A—C3—H3B108.4
N1i—Ni1—N2i86.12 (9)N3—C4—N2113.4 (2)
N1—Ni1—N2i93.88 (9)N3—C4—H4A108.9
N1i—Ni1—N293.88 (9)N2—C4—H4A108.9
N1—Ni1—N286.12 (9)N3—C4—H4B108.9
N2i—Ni1—N2180.000 (1)N2—C4—H4B108.9
N1i—Ni1—O1i91.53 (8)H4A—C4—H4B107.7
N1—Ni1—O1i88.47 (8)N3—C5—C6114.5 (2)
N2i—Ni1—O1i92.00 (8)N3—C5—H5A108.6
N2—Ni1—O1i88.00 (8)C6—C5—H5A108.6
N1i—Ni1—O188.47 (8)N3—C5—H5B108.6
N1—Ni1—O191.53 (8)C6—C5—H5B108.6
N2i—Ni1—O188.00 (8)H5A—C5—H5B107.6
N2—Ni1—O192.00 (8)C11—C6—C7118.5 (3)
O1i—Ni1—O1180.000 (1)C11—C6—C5121.9 (3)
C12—O1—Ni1131.18 (18)C7—C6—C5119.4 (3)
C2—N1—C1114.0 (2)C8—C7—C6120.6 (3)
C2—N1—Ni1104.91 (16)C8—C7—H7119.7
C1—N1—Ni1115.03 (18)C6—C7—H7119.7
C2—N1—H1107.5C9—C8—C7120.3 (3)
C1—N1—H1107.5C9—C8—H8119.8
Ni1—N1—H1107.5C7—C8—H8119.8
C3—N2—C4114.8 (2)C8—C9—C10119.6 (3)
C3—N2—Ni1104.84 (17)C8—C9—H9120.2
C4—N2—Ni1113.30 (17)C10—C9—H9120.2
C3—N2—H2107.9C11—C10—C9120.3 (3)
C4—N2—H2107.9C11—C10—H10119.9
Ni1—N2—H2107.9C9—C10—H10119.9
C4—N3—C1i115.7 (2)C10—C11—C6120.7 (3)
C4—N3—C5111.8 (2)C10—C11—H11119.6
C1i—N3—C5115.5 (2)C6—C11—H11119.6
C15—N4—C16116.4 (3)O2—C12—O1127.4 (3)
N3i—C1—N1114.2 (2)O2—C12—C13116.5 (2)
N3i—C1—H1A108.7O1—C12—C13116.1 (2)
N1—C1—H1A108.7C14—C13—C17118.0 (3)
N3i—C1—H1B108.7C14—C13—C12122.1 (3)
N1—C1—H1B108.7C17—C13—C12119.9 (3)
H1A—C1—H1B107.6C13—C14—C15118.9 (3)
N1—C2—C3108.4 (2)C13—C14—H14120.5
N1—C2—H2A110.0C15—C14—H14120.5
C3—C2—H2A110.0N4—C15—C14123.8 (3)
N1—C2—H2B110.0N4—C15—H15118.1
C3—C2—H2B110.0C14—C15—H15118.1
H2A—C2—H2B108.4N4—C16—C17123.8 (3)
N2—C3—C2108.1 (2)N4—C16—H16118.1
N2—C3—H3A110.1C17—C16—H16118.1
C2—C3—H3A110.1C16—C17—C13119.1 (3)
N2—C3—H3B110.1C16—C17—H17120.4
C2—C3—H3B110.1C13—C17—H17120.4
N1i—Ni1—O1—C12172.2 (2)C3—N2—C4—N3178.8 (2)
N1—Ni1—O1—C127.8 (2)Ni1—N2—C4—N358.4 (3)
N2i—Ni1—O1—C1286.0 (2)C4—N3—C5—C6167.4 (2)
N2—Ni1—O1—C1294.0 (2)C1i—N3—C5—C657.5 (3)
N2i—Ni1—N1—C2164.18 (17)N3—C5—C6—C1142.2 (4)
N2—Ni1—N1—C215.82 (17)N3—C5—C6—C7142.4 (3)
O1i—Ni1—N1—C272.27 (17)C11—C6—C7—C80.3 (5)
O1—Ni1—N1—C2107.73 (17)C5—C6—C7—C8175.3 (3)
N2i—Ni1—N1—C138.05 (18)C6—C7—C8—C90.2 (5)
N2—Ni1—N1—C1141.95 (18)C7—C8—C9—C100.2 (6)
O1i—Ni1—N1—C153.85 (18)C8—C9—C10—C110.4 (6)
O1—Ni1—N1—C1126.15 (18)C9—C10—C11—C60.4 (5)
N1i—Ni1—N2—C3165.31 (17)C7—C6—C11—C100.0 (5)
N1—Ni1—N2—C314.69 (17)C5—C6—C11—C10175.4 (3)
O1i—Ni1—N2—C3103.29 (17)Ni1—O1—C12—O217.8 (4)
O1—Ni1—N2—C376.71 (17)Ni1—O1—C12—C13162.89 (18)
N1i—Ni1—N2—C439.44 (19)O2—C12—C13—C14168.4 (3)
N1—Ni1—N2—C4140.56 (19)O1—C12—C13—C1411.0 (4)
O1i—Ni1—N2—C4130.83 (18)O2—C12—C13—C1710.5 (4)
O1—Ni1—N2—C449.17 (18)O1—C12—C13—C17170.1 (3)
C2—N1—C1—N3i176.2 (2)C17—C13—C14—C150.1 (4)
Ni1—N1—C1—N3i54.9 (3)C12—C13—C14—C15179.0 (3)
C1—N1—C2—C3170.1 (2)C16—N4—C15—C140.7 (5)
Ni1—N1—C2—C343.4 (2)C13—C14—C15—N40.1 (5)
C4—N2—C3—C2167.2 (2)C15—N4—C16—C171.3 (5)
Ni1—N2—C3—C242.2 (2)N4—C16—C17—C131.1 (5)
N1—C2—C3—N259.6 (3)C14—C13—C17—C160.4 (4)
C1i—N3—C4—N272.6 (3)C12—C13—C17—C16178.6 (3)
C5—N3—C4—N262.3 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.931.972.838 (3)154
N2—H2···N4ii0.932.313.160 (3)152
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C6H4NO2)2(C22H34N6)]
Mr685.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.3418 (5), 17.3104 (9), 10.9596 (6)
β (°) 91.892 (1)
V3)1581.70 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.778, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
9843, 3671, 3288
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.116, 1.29
No. of reflections3671
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.56

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.931.972.838 (3)154
N2—H2···N4i0.932.313.160 (3)152
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This research was supported by Kyungpook National University Research Fund, 2007.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHancock, R. D. (1990). Acc. Chem. Res. 23, 253–257.  CrossRef CAS Web of Science Google Scholar
First citationJung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc. 10, 362–366.  CAS Google Scholar
First citationLarionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Cryst. Growth Des. 3, 267–272.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, E. Y. & Suh, M. P. (2004). Angew. Chem. Int. Ed. 43, 2798–2801.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, A. S., Zhang, J. & Moore, J. S. (1996). J. Am. Chem. Soc. 118, 1019–1027.  CrossRef CAS Web of Science Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc. 126, 6564–6565.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds