metal-organic compounds
trans-(1,8-Dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane)diisonicotinatonickel(II)
aDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University, Chinju 660-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr
In the centrosymmetric title compound, [Ni(C6H4NO2)2(C22H34N6)], the NiII ion is bonded to the four secondary N atoms of the macrocyclic ligand in a square-planar fashion and two carboxylate O atoms of the isonicotinate ions in axial positions, resulting in a tetragonally distorted octahedron. An offset face-to-face π–π stacking interaction [centroid–centroid distance = 3.674(4) Å] and N—H⋯N and N—H⋯O hydrogen-bonding interactions give rise to a one-dimensional supramolecular structure in the solid state.
Related literature
For related literature, see Hancock (1990); Jung et al. (1989); Larionova et al. (2003); Lee & Suh (2004); Shetty et al. (1996); Tsuge et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808001116/pk2081sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001116/pk2081Isup2.hkl
The starting complex, [Ni(C22H34N6)Cl2], used in this work was prepared by a literature procedure (Jung et al., 1989). To a DMF/H2O (v/v; 1:1, 20 ml) solution of [Ni(C22H34N6)Cl2] (0.20 g, 0.40 mmol) was added dropwise an MeCN solution (10 ml) containing isonicotinic acid (0.10 g, 0.80 mmol) and excess triethylamine (0.08 g, 0.80 mmol) at room temperature. The color of the solution turned from yellow to pale pink. The mixture solution was stirred for 1 h during which time a pink precipitate of formed which was collected by filtration, washed with MeCN, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were obtained by layering of the MeCN solution of isonicotinate on the DMF/H2O solution of [Ni(C22H34N6)Cl2] for several days. Yield 0.21 g (77%).
All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C6H4NO2)2(C22H34N6)] | F(000) = 724 |
Mr = 685.45 | Dx = 1.439 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5240 reflections |
a = 8.3418 (5) Å | θ = 2.2–28.1° |
b = 17.3104 (9) Å | µ = 0.67 mm−1 |
c = 10.9596 (6) Å | T = 173 K |
β = 91.892 (1)° | Block, pink |
V = 1581.70 (15) Å3 | 0.40 × 0.20 × 0.20 mm |
Z = 2 |
Siemens SMART CCD diffractometer | 3671 independent reflections |
Radiation source: fine-focus sealed tube | 3288 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→9 |
Tmin = 0.778, Tmax = 0.875 | k = −22→19 |
9843 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.29 | w = 1/[σ2(Fo2) + (0.0189P)2 + 2.8532P] where P = (Fo2 + 2Fc2)/3 |
3671 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
[Ni(C6H4NO2)2(C22H34N6)] | V = 1581.70 (15) Å3 |
Mr = 685.45 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3418 (5) Å | µ = 0.67 mm−1 |
b = 17.3104 (9) Å | T = 173 K |
c = 10.9596 (6) Å | 0.40 × 0.20 × 0.20 mm |
β = 91.892 (1)° |
Siemens SMART CCD diffractometer | 3671 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3288 reflections with I > 2σ(I) |
Tmin = 0.778, Tmax = 0.875 | Rint = 0.022 |
9843 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.29 | Δρmax = 0.52 e Å−3 |
3671 reflections | Δρmin = −0.56 e Å−3 |
214 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 1.0000 | 0.01570 (13) | |
O1 | 0.4295 (2) | 0.54216 (12) | 0.82075 (17) | 0.0223 (4) | |
O2 | 0.1901 (3) | 0.48759 (12) | 0.77448 (18) | 0.0279 (5) | |
N1 | 0.2943 (3) | 0.43532 (13) | 1.0093 (2) | 0.0185 (5) | |
H1 | 0.2407 | 0.4385 | 0.9337 | 0.022* | |
N2 | 0.3733 (3) | 0.58652 (13) | 1.0846 (2) | 0.0195 (5) | |
H2 | 0.4031 | 0.5862 | 1.1671 | 0.023* | |
N3 | 0.5746 (3) | 0.68651 (14) | 1.0464 (2) | 0.0216 (5) | |
N4 | 0.3459 (3) | 0.59376 (16) | 0.3712 (2) | 0.0295 (6) | |
C1 | 0.3199 (4) | 0.35247 (17) | 1.0367 (3) | 0.0231 (6) | |
H1A | 0.3657 | 0.3476 | 1.1209 | 0.028* | |
H1B | 0.2147 | 0.3260 | 1.0340 | 0.028* | |
C2 | 0.1956 (3) | 0.47603 (17) | 1.0988 (2) | 0.0216 (6) | |
H2A | 0.2370 | 0.4653 | 1.1828 | 0.026* | |
H2B | 0.0832 | 0.4579 | 1.0915 | 0.026* | |
C3 | 0.2034 (3) | 0.56208 (17) | 1.0729 (3) | 0.0228 (6) | |
H3A | 0.1603 | 0.5730 | 0.9895 | 0.027* | |
H3B | 0.1385 | 0.5908 | 1.1318 | 0.027* | |
C4 | 0.4065 (3) | 0.66490 (17) | 1.0359 (3) | 0.0239 (6) | |
H4A | 0.3711 | 0.6669 | 0.9488 | 0.029* | |
H4B | 0.3425 | 0.7032 | 1.0805 | 0.029* | |
C5 | 0.6325 (3) | 0.68978 (17) | 1.1745 (2) | 0.0226 (6) | |
H5A | 0.6392 | 0.6365 | 1.2069 | 0.027* | |
H5B | 0.5527 | 0.7181 | 1.2223 | 0.027* | |
C6 | 0.7938 (3) | 0.72810 (16) | 1.1938 (3) | 0.0220 (6) | |
C7 | 0.9015 (4) | 0.69899 (18) | 1.2817 (3) | 0.0299 (7) | |
H7 | 0.8761 | 0.6531 | 1.3244 | 0.036* | |
C8 | 1.0459 (4) | 0.7364 (2) | 1.3077 (3) | 0.0361 (8) | |
H8 | 1.1184 | 0.7161 | 1.3681 | 0.043* | |
C9 | 1.0843 (4) | 0.8026 (2) | 1.2465 (3) | 0.0367 (8) | |
H9 | 1.1830 | 0.8282 | 1.2645 | 0.044* | |
C10 | 0.9780 (4) | 0.8320 (2) | 1.1580 (3) | 0.0386 (8) | |
H10 | 1.0045 | 0.8777 | 1.1150 | 0.046* | |
C11 | 0.8342 (4) | 0.79516 (18) | 1.1324 (3) | 0.0291 (7) | |
H11 | 0.7620 | 0.8159 | 1.0720 | 0.035* | |
C12 | 0.3141 (3) | 0.52339 (16) | 0.7488 (2) | 0.0200 (6) | |
C13 | 0.3282 (3) | 0.54825 (16) | 0.6159 (2) | 0.0206 (6) | |
C14 | 0.4444 (4) | 0.59945 (18) | 0.5799 (3) | 0.0268 (6) | |
H14 | 0.5202 | 0.6200 | 0.6378 | 0.032* | |
C15 | 0.4485 (4) | 0.6204 (2) | 0.4576 (3) | 0.0300 (7) | |
H15 | 0.5290 | 0.6558 | 0.4340 | 0.036* | |
C16 | 0.2331 (4) | 0.54476 (19) | 0.4082 (3) | 0.0280 (7) | |
H16 | 0.1572 | 0.5258 | 0.3490 | 0.034* | |
C17 | 0.2206 (4) | 0.52022 (17) | 0.5277 (3) | 0.0231 (6) | |
H17 | 0.1394 | 0.4846 | 0.5489 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0150 (2) | 0.0204 (2) | 0.0117 (2) | −0.0036 (2) | −0.00054 (16) | 0.00087 (19) |
O1 | 0.0235 (10) | 0.0286 (11) | 0.0145 (9) | −0.0042 (8) | −0.0035 (7) | 0.0012 (8) |
O2 | 0.0286 (11) | 0.0330 (12) | 0.0216 (10) | −0.0085 (9) | −0.0051 (8) | 0.0058 (9) |
N1 | 0.0199 (11) | 0.0240 (12) | 0.0116 (10) | −0.0038 (9) | −0.0006 (9) | −0.0001 (9) |
N2 | 0.0185 (11) | 0.0245 (12) | 0.0153 (11) | −0.0030 (9) | −0.0017 (9) | 0.0005 (9) |
N3 | 0.0226 (12) | 0.0229 (12) | 0.0190 (12) | −0.0041 (10) | −0.0021 (9) | −0.0005 (9) |
N4 | 0.0334 (14) | 0.0398 (16) | 0.0154 (12) | 0.0069 (12) | 0.0004 (10) | 0.0028 (11) |
C1 | 0.0277 (15) | 0.0266 (15) | 0.0150 (13) | −0.0063 (12) | 0.0015 (11) | 0.0025 (11) |
C2 | 0.0186 (13) | 0.0308 (15) | 0.0155 (13) | −0.0044 (11) | 0.0008 (10) | −0.0033 (11) |
C3 | 0.0185 (14) | 0.0298 (16) | 0.0201 (14) | −0.0013 (12) | 0.0003 (11) | −0.0023 (11) |
C4 | 0.0223 (14) | 0.0260 (15) | 0.0233 (15) | 0.0005 (12) | −0.0027 (11) | 0.0022 (12) |
C5 | 0.0256 (15) | 0.0257 (15) | 0.0166 (13) | −0.0043 (12) | 0.0004 (11) | −0.0016 (11) |
C6 | 0.0236 (15) | 0.0222 (14) | 0.0204 (14) | −0.0019 (11) | 0.0016 (11) | −0.0065 (11) |
C7 | 0.0361 (18) | 0.0229 (15) | 0.0304 (16) | −0.0040 (13) | −0.0032 (13) | 0.0029 (13) |
C8 | 0.0323 (18) | 0.0322 (18) | 0.043 (2) | −0.0009 (14) | −0.0156 (15) | 0.0015 (15) |
C9 | 0.0275 (17) | 0.039 (2) | 0.043 (2) | −0.0089 (15) | −0.0075 (14) | −0.0031 (16) |
C10 | 0.0380 (19) | 0.0323 (18) | 0.045 (2) | −0.0127 (15) | −0.0030 (16) | 0.0091 (15) |
C11 | 0.0291 (16) | 0.0286 (16) | 0.0292 (16) | −0.0034 (13) | −0.0052 (13) | 0.0047 (13) |
C12 | 0.0248 (14) | 0.0204 (13) | 0.0146 (12) | 0.0026 (11) | −0.0015 (10) | −0.0002 (10) |
C13 | 0.0223 (14) | 0.0217 (14) | 0.0178 (13) | 0.0070 (11) | −0.0007 (10) | −0.0019 (11) |
C14 | 0.0297 (16) | 0.0338 (17) | 0.0166 (14) | −0.0012 (13) | −0.0032 (11) | −0.0001 (12) |
C15 | 0.0321 (17) | 0.0389 (18) | 0.0192 (14) | −0.0034 (14) | 0.0008 (12) | 0.0033 (13) |
C16 | 0.0267 (16) | 0.0387 (18) | 0.0184 (14) | 0.0055 (13) | −0.0046 (12) | −0.0060 (12) |
C17 | 0.0236 (14) | 0.0253 (15) | 0.0204 (14) | 0.0018 (11) | −0.0002 (11) | −0.0019 (11) |
Ni1—N1i | 2.054 (2) | C3—H3B | 0.9900 |
Ni1—N1 | 2.054 (2) | C4—H4A | 0.9900 |
Ni1—N2i | 2.070 (2) | C4—H4B | 0.9900 |
Ni1—N2 | 2.070 (2) | C5—C6 | 1.509 (4) |
Ni1—O1i | 2.1591 (19) | C5—H5A | 0.9900 |
Ni1—O1 | 2.1591 (19) | C5—H5B | 0.9900 |
O1—C12 | 1.266 (3) | C6—C11 | 1.389 (4) |
O2—C12 | 1.246 (4) | C6—C7 | 1.390 (4) |
N1—C2 | 1.479 (3) | C7—C8 | 1.389 (5) |
N1—C1 | 1.479 (4) | C7—H7 | 0.9500 |
N1—H1 | 0.9300 | C8—C9 | 1.371 (5) |
N2—C3 | 1.480 (3) | C8—H8 | 0.9500 |
N2—C4 | 1.487 (4) | C9—C10 | 1.388 (5) |
N2—H2 | 0.9300 | C9—H9 | 0.9500 |
N3—C4 | 1.452 (4) | C10—C11 | 1.380 (4) |
N3—C1i | 1.453 (4) | C10—H10 | 0.9500 |
N3—C5 | 1.470 (4) | C11—H11 | 0.9500 |
N4—C15 | 1.337 (4) | C12—C13 | 1.527 (4) |
N4—C16 | 1.340 (4) | C13—C14 | 1.380 (4) |
C1—N3i | 1.453 (4) | C13—C17 | 1.386 (4) |
C1—H1A | 0.9900 | C14—C15 | 1.391 (4) |
C1—H1B | 0.9900 | C14—H14 | 0.9500 |
C2—C3 | 1.518 (4) | C15—H15 | 0.9500 |
C2—H2A | 0.9900 | C16—C17 | 1.384 (4) |
C2—H2B | 0.9900 | C16—H16 | 0.9500 |
C3—H3A | 0.9900 | C17—H17 | 0.9500 |
N1i—Ni1—N1 | 180.00 (11) | H3A—C3—H3B | 108.4 |
N1i—Ni1—N2i | 86.12 (9) | N3—C4—N2 | 113.4 (2) |
N1—Ni1—N2i | 93.88 (9) | N3—C4—H4A | 108.9 |
N1i—Ni1—N2 | 93.88 (9) | N2—C4—H4A | 108.9 |
N1—Ni1—N2 | 86.12 (9) | N3—C4—H4B | 108.9 |
N2i—Ni1—N2 | 180.000 (1) | N2—C4—H4B | 108.9 |
N1i—Ni1—O1i | 91.53 (8) | H4A—C4—H4B | 107.7 |
N1—Ni1—O1i | 88.47 (8) | N3—C5—C6 | 114.5 (2) |
N2i—Ni1—O1i | 92.00 (8) | N3—C5—H5A | 108.6 |
N2—Ni1—O1i | 88.00 (8) | C6—C5—H5A | 108.6 |
N1i—Ni1—O1 | 88.47 (8) | N3—C5—H5B | 108.6 |
N1—Ni1—O1 | 91.53 (8) | C6—C5—H5B | 108.6 |
N2i—Ni1—O1 | 88.00 (8) | H5A—C5—H5B | 107.6 |
N2—Ni1—O1 | 92.00 (8) | C11—C6—C7 | 118.5 (3) |
O1i—Ni1—O1 | 180.000 (1) | C11—C6—C5 | 121.9 (3) |
C12—O1—Ni1 | 131.18 (18) | C7—C6—C5 | 119.4 (3) |
C2—N1—C1 | 114.0 (2) | C8—C7—C6 | 120.6 (3) |
C2—N1—Ni1 | 104.91 (16) | C8—C7—H7 | 119.7 |
C1—N1—Ni1 | 115.03 (18) | C6—C7—H7 | 119.7 |
C2—N1—H1 | 107.5 | C9—C8—C7 | 120.3 (3) |
C1—N1—H1 | 107.5 | C9—C8—H8 | 119.8 |
Ni1—N1—H1 | 107.5 | C7—C8—H8 | 119.8 |
C3—N2—C4 | 114.8 (2) | C8—C9—C10 | 119.6 (3) |
C3—N2—Ni1 | 104.84 (17) | C8—C9—H9 | 120.2 |
C4—N2—Ni1 | 113.30 (17) | C10—C9—H9 | 120.2 |
C3—N2—H2 | 107.9 | C11—C10—C9 | 120.3 (3) |
C4—N2—H2 | 107.9 | C11—C10—H10 | 119.9 |
Ni1—N2—H2 | 107.9 | C9—C10—H10 | 119.9 |
C4—N3—C1i | 115.7 (2) | C10—C11—C6 | 120.7 (3) |
C4—N3—C5 | 111.8 (2) | C10—C11—H11 | 119.6 |
C1i—N3—C5 | 115.5 (2) | C6—C11—H11 | 119.6 |
C15—N4—C16 | 116.4 (3) | O2—C12—O1 | 127.4 (3) |
N3i—C1—N1 | 114.2 (2) | O2—C12—C13 | 116.5 (2) |
N3i—C1—H1A | 108.7 | O1—C12—C13 | 116.1 (2) |
N1—C1—H1A | 108.7 | C14—C13—C17 | 118.0 (3) |
N3i—C1—H1B | 108.7 | C14—C13—C12 | 122.1 (3) |
N1—C1—H1B | 108.7 | C17—C13—C12 | 119.9 (3) |
H1A—C1—H1B | 107.6 | C13—C14—C15 | 118.9 (3) |
N1—C2—C3 | 108.4 (2) | C13—C14—H14 | 120.5 |
N1—C2—H2A | 110.0 | C15—C14—H14 | 120.5 |
C3—C2—H2A | 110.0 | N4—C15—C14 | 123.8 (3) |
N1—C2—H2B | 110.0 | N4—C15—H15 | 118.1 |
C3—C2—H2B | 110.0 | C14—C15—H15 | 118.1 |
H2A—C2—H2B | 108.4 | N4—C16—C17 | 123.8 (3) |
N2—C3—C2 | 108.1 (2) | N4—C16—H16 | 118.1 |
N2—C3—H3A | 110.1 | C17—C16—H16 | 118.1 |
C2—C3—H3A | 110.1 | C16—C17—C13 | 119.1 (3) |
N2—C3—H3B | 110.1 | C16—C17—H17 | 120.4 |
C2—C3—H3B | 110.1 | C13—C17—H17 | 120.4 |
N1i—Ni1—O1—C12 | 172.2 (2) | C3—N2—C4—N3 | −178.8 (2) |
N1—Ni1—O1—C12 | −7.8 (2) | Ni1—N2—C4—N3 | −58.4 (3) |
N2i—Ni1—O1—C12 | 86.0 (2) | C4—N3—C5—C6 | −167.4 (2) |
N2—Ni1—O1—C12 | −94.0 (2) | C1i—N3—C5—C6 | 57.5 (3) |
N2i—Ni1—N1—C2 | 164.18 (17) | N3—C5—C6—C11 | 42.2 (4) |
N2—Ni1—N1—C2 | −15.82 (17) | N3—C5—C6—C7 | −142.4 (3) |
O1i—Ni1—N1—C2 | 72.27 (17) | C11—C6—C7—C8 | 0.3 (5) |
O1—Ni1—N1—C2 | −107.73 (17) | C5—C6—C7—C8 | −175.3 (3) |
N2i—Ni1—N1—C1 | 38.05 (18) | C6—C7—C8—C9 | −0.2 (5) |
N2—Ni1—N1—C1 | −141.95 (18) | C7—C8—C9—C10 | −0.2 (6) |
O1i—Ni1—N1—C1 | −53.85 (18) | C8—C9—C10—C11 | 0.4 (6) |
O1—Ni1—N1—C1 | 126.15 (18) | C9—C10—C11—C6 | −0.4 (5) |
N1i—Ni1—N2—C3 | 165.31 (17) | C7—C6—C11—C10 | 0.0 (5) |
N1—Ni1—N2—C3 | −14.69 (17) | C5—C6—C11—C10 | 175.4 (3) |
O1i—Ni1—N2—C3 | −103.29 (17) | Ni1—O1—C12—O2 | 17.8 (4) |
O1—Ni1—N2—C3 | 76.71 (17) | Ni1—O1—C12—C13 | −162.89 (18) |
N1i—Ni1—N2—C4 | 39.44 (19) | O2—C12—C13—C14 | 168.4 (3) |
N1—Ni1—N2—C4 | −140.56 (19) | O1—C12—C13—C14 | −11.0 (4) |
O1i—Ni1—N2—C4 | 130.83 (18) | O2—C12—C13—C17 | −10.5 (4) |
O1—Ni1—N2—C4 | −49.17 (18) | O1—C12—C13—C17 | 170.1 (3) |
C2—N1—C1—N3i | −176.2 (2) | C17—C13—C14—C15 | −0.1 (4) |
Ni1—N1—C1—N3i | −54.9 (3) | C12—C13—C14—C15 | −179.0 (3) |
C1—N1—C2—C3 | 170.1 (2) | C16—N4—C15—C14 | 0.7 (5) |
Ni1—N1—C2—C3 | 43.4 (2) | C13—C14—C15—N4 | −0.1 (5) |
C4—N2—C3—C2 | 167.2 (2) | C15—N4—C16—C17 | −1.3 (5) |
Ni1—N2—C3—C2 | 42.2 (2) | N4—C16—C17—C13 | 1.1 (5) |
N1—C2—C3—N2 | −59.6 (3) | C14—C13—C17—C16 | −0.4 (4) |
C1i—N3—C4—N2 | 72.6 (3) | C12—C13—C17—C16 | 178.6 (3) |
C5—N3—C4—N2 | −62.3 (3) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.93 | 1.97 | 2.838 (3) | 154 |
N2—H2···N4ii | 0.93 | 2.31 | 3.160 (3) | 152 |
Symmetry code: (ii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C6H4NO2)2(C22H34N6)] |
Mr | 685.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 8.3418 (5), 17.3104 (9), 10.9596 (6) |
β (°) | 91.892 (1) |
V (Å3) | 1581.70 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.40 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.778, 0.875 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9843, 3671, 3288 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.116, 1.29 |
No. of reflections | 3671 |
No. of parameters | 214 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.56 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.93 | 1.97 | 2.838 (3) | 154 |
N2—H2···N4i | 0.93 | 2.31 | 3.160 (3) | 152 |
Symmetry code: (i) x, y, z+1. |
Acknowledgements
This research was supported by Kyungpook National University Research Fund, 2007.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hancock, R. D. (1990). Acc. Chem. Res. 23, 253–257. CrossRef CAS Web of Science Google Scholar
Jung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc. 10, 362–366. CAS Google Scholar
Larionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Cryst. Growth Des. 3, 267–272. Web of Science CSD CrossRef CAS Google Scholar
Lee, E. Y. & Suh, M. P. (2004). Angew. Chem. Int. Ed. 43, 2798–2801. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shetty, A. S., Zhang, J. & Moore, J. S. (1996). J. Am. Chem. Soc. 118, 1019–1027. CrossRef CAS Web of Science Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc. 126, 6564–6565. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of tetraaza macrocyclic ligands has been extensively studied in the context of metalloenzymes and the construction of extended supramolecular networks (Tsuge et al., 2004; Larionova et al., 2003). In particular, NiII macrocyclic complexes with vacant axial positions are good candidates for assembling novel multi-dimensional materials in which they can possess interesting properties (Lee & Suh, 2004). Here, we report the synthesis and structure of the title compound.
As shown in Fig. 1, the NiII ion is coordinated by the four secondary amine N atoms of the macrocyclic ligand in a square-planar fashion and two oxygen atoms from isonicotinate ions at the axial positions, resulting in a tetragonally distorted octahedron. The average Ni—N and Ni—O bond distances are 2.062 (1) and 2.159 (1) Å, respectively. The axial Ni—O bond distance is longer than the equatorial Fe—N bond lengths, which can be attributed to the Jahn-Teller distortion of the NiII ion and/or the ring contraction of the macrocyclic ligand. Two CO bond distances of the carboxylate group are not significantly different although one is coordinated (1.246 (4) Å) and the other is uncoordinated (1.266 (3) Å) to the NiII ion. The complex has an inversion center at the Ni atom and the azamacrocyclic ligand adopts thermodynamically the most stable R,R,S,S configuration (Hancock, 1990). The geometry of the tertiary nitrogen atom N3 is normal; C—N distances average 1.458 (2) Å and C—N—C angles are in the range 111.8 (2)–115.7 (2)°, which is indicative of significant contribution of sp2 hybridization for the nitrogen atom. The shortest Ni···Ni intrachain separation within the one-dimensional chain is 10.960 (1) Å and is 31% greater than the shortest interchain Ni···Ni distance of 8.342 (1) Å.
All pyridine groups of the isonicotinates coordinating NiII ions axially are involved in offset face-to-face π-π stacking interactions (centroid···centroid 3.674 (4) Å), which leads to a supramolecular one-dimensional polymer propagating along the c axis (Fig. 2). The pyridine rings are positioned completely parallel to each other (dihedral angle of 0.0°). The interplanar separation and the offset angle between the ring planes of isonicotinate ions are 3.545 (4) Å and 9.71 (9)°, respectively (Shetty et al., 1996).
Within a one-dimensional chain, the non-coordinated carbonyl oxygen atom of the carboxylate ion forms an intramolecular hydrogen bond with the secondary amine (N1) of the macrocycle. In addition, the nitrogen atom of isonicotinate ion forms an intermolecular hydrogen bond with the secondary amine (N2) of the macrocycle which joins the molecules into a robust one-dimensional polymer (Table 1).