organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­bromo-5,5′-di-tert-butyl-2,2′-di­meth­oxy­biphen­yl

aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand
*Correspondence e-mail: matthew.polson@canterbury.ac.nz

(Received 9 November 2007; accepted 22 January 2008; online 30 January 2008)

The title compound, C22H28Br2O2, crystallizes in a staggered arrangement to minimize the inter­actions of its ortho substituents, with a dihedral angle of 84.2 (3)° between the two aromatic rings. Short C—H⋯O hydrogen-bonding inter­actions between meth­oxy groups result in a one-dimensional polymeric chain of mol­ecules lying parallel to the b axis. One tert-butyl group is disordered equally over two positions.

Related literature

For a related structure, see: He & Ng (2006[He, L. & Ng, S. W. (2006). Acta Cryst. E62, o5517-o5519.]); Steiner (1996[Steiner, T. (1996). Cryst. Rev. 6, 1-57.]). For an alternative synthesis, see: Katagiri et al. (2006[Katagiri, H., Miyagawa, T., Furusho, Y. & Yashima, E. (2006). Angew. Chem. Int. Ed. 45, 1741-1744.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28Br2O2

  • Mr = 484.27

  • Monoclinic, C 2/c

  • a = 14.661 (2) Å

  • b = 13.408 (2) Å

  • c = 22.489 (3) Å

  • β = 96.104 (12)°

  • V = 4395.8 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.70 mm−1

  • T = 93 (2) K

  • 0.40 × 0.12 × 0.10 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A), SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.433, Tmax = 0.691

  • 14546 measured reflections

  • 3918 independent reflections

  • 2784 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.143

  • S = 1.10

  • 3918 reflections

  • 293 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31C⋯O10i 0.98 2.61 2.842 (15) 94
C41—H41C⋯O21ii 0.98 2.57 2.866 (14) 98
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A), SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A), SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Version 1.08; Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

During attempts to dilithiate 2,6-dibromo-4 - t-butylanisole, the title compound, (I), was serindipitously produced. Compared to the literature methods (Katagiri et al., 2006) this is a much simpler method, wherein the product was acheived in a single step rather than three and with a superior overall yield. The structure adopts a staggered arrangement with a dihedral angle of 84.2 (3)° between the two aromatic rings. A similar angle is found in the literature (80.1°, He & Ng, 2006). Two CH3···O hydrogen bonds involving both methoxy groups (Table 1) connect the molecules to form a one dimensional polymeric chain parallel to the b axis (Figure 2); similar type of interactions have already been reported (Steiner, 1996).

Related literature top

For a related structures, see: He & Ng (2006); Steiner, (1996). For an alternative synthesis, see: Katagiri et al. (2006).

Experimental top

2,6-Dibromo-4 - t-butylanisole (1 g) in THF (40 ml) at 193 K was treated with n-butyl lithium (1.6 M, 2.5 ml). The solution was stirred and allowed to warm up to room temp over 2 hr. The resulting solution was evaporated to dryness, treated with water and extracted with dichloromethane. The organic layer was seperated and purified by column chromotography (SiO2, dichloromethane). Yeild = 0.6 g (79%).

Refinement top

The methoxy groups are both evenly disordered over two sites. One tert-butyl group is disordered over two sites whilst the other is not. This breaks the potential symmetry between the two halves of the molecule. Both tert-butyl groups exhibited elongation of the thermal elipsoids and have been restrained (ISOR) to be more isotropic. The large redidual electron density (1.11 e/A*3) is located 0.64Å from H70A and is probably related to a small amount of unmodelled tert-butyl group disorder. All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic, and 0.98 Å, Uiso = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Version 1.08; Farrugia, 1997) and Mercury (Version 1.4; Bruno et al., 2002); software used to prepare material for publication: pubCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level. All hydrogen atoms have been omited for clarity. The bonds for one of the disordered parts are displayed as hollow bonds.
[Figure 2] Fig. 2. A diagram showing the hydrogen bonding which extends the structure into a 1-D polymer. The closest C—H···O bonds are shown as dashed lines.
3,3'-Dibromo-5,5'-di-tert-butyl-2,2'-dimethoxybiphenyl top
Crystal data top
C22H28Br2O2F(000) = 1968
Mr = 484.27Dx = 1.463 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4881 reflections
a = 14.661 (2) Åθ = 2.8–26.5°
b = 13.408 (2) ŵ = 3.70 mm1
c = 22.489 (3) ÅT = 93 K
β = 96.104 (12)°Shard, colourless
V = 4395.8 (11) Å30.40 × 0.12 × 0.10 mm
Z = 8
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3918 independent reflections
Radiation source: sealed tube2784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.433, Tmax = 0.691k = 1416
14546 measured reflectionsl = 1826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.5007P]
where P = (Fo2 + 2Fc2)/3
3918 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 1.11 e Å3
54 restraintsΔρmin = 0.93 e Å3
Crystal data top
C22H28Br2O2V = 4395.8 (11) Å3
Mr = 484.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.661 (2) ŵ = 3.70 mm1
b = 13.408 (2) ÅT = 93 K
c = 22.489 (3) Å0.40 × 0.12 × 0.10 mm
β = 96.104 (12)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3918 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2784 reflections with I > 2σ(I)
Tmin = 0.433, Tmax = 0.691Rint = 0.077
14546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06754 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.10Δρmax = 1.11 e Å3
3918 reflectionsΔρmin = 0.93 e Å3
293 parameters
Special details top

Experimental. Spectroscopic data: 1H NMR (CDCl3): δ 1.33 (18H, s, (CH3)3), 3.53 (6H, s, OCH3), 7.36 (2H, d, ArH), 7.57 (2H, d, ArH). Mass Spec: (ESI-TOF) 485.3 {M+} calc 485.05.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br100.15107 (7)0.73599 (8)0.05847 (4)0.0641 (3)
C100.2414 (5)0.7782 (5)0.1739 (3)0.0318 (16)
C110.2365 (5)0.8029 (6)0.1143 (3)0.0384 (18)
C120.2911 (5)0.8769 (6)0.0943 (3)0.0395 (18)
H120.28460.89370.05310.047*
C130.3553 (5)0.9273 (5)0.1330 (3)0.0319 (16)
C140.3623 (5)0.8991 (5)0.1932 (3)0.0305 (16)
H140.40730.93020.22060.037*
C150.3053 (4)0.8267 (5)0.2143 (3)0.0278 (15)
C160.4181 (6)1.0090 (5)0.1119 (3)0.0404 (18)
Br210.18307 (6)0.87188 (6)0.42817 (3)0.0464 (2)
C200.3129 (4)0.7995 (5)0.2790 (3)0.0264 (15)
C210.2538 (4)0.8409 (5)0.3166 (3)0.0264 (15)
C220.2626 (4)0.8137 (5)0.3765 (3)0.0268 (15)
C230.3269 (4)0.7445 (5)0.3990 (3)0.0285 (15)
H230.33080.72630.44000.034*
C240.3863 (4)0.7008 (5)0.3618 (3)0.0247 (14)
C250.3790 (4)0.7306 (5)0.3025 (3)0.0265 (14)
H250.42020.70350.27690.032*
C260.4557 (5)0.6205 (5)0.3860 (3)0.0317 (16)
O210.1887 (3)0.9095 (3)0.2945 (2)0.0332 (11)
C300.0955 (9)0.8615 (11)0.2798 (7)0.042 (4)0.50
H30A0.10090.80490.25280.062*0.50
H30B0.05260.91050.26030.062*0.50
H30C0.07260.83790.31670.062*0.50
C310.2269 (10)1.0158 (10)0.2987 (6)0.037 (3)0.50
H31A0.24691.03190.34050.055*0.50
H31B0.17901.06280.28300.055*0.50
H31C0.27921.02080.27510.055*0.50
O100.1857 (3)0.7052 (3)0.1937 (2)0.0349 (11)
C400.0985 (9)0.7443 (12)0.2011 (7)0.043 (4)0.50
H40A0.10450.79580.23220.064*0.50
H40B0.05870.69080.21300.064*0.50
H40C0.07160.77360.16340.064*0.50
C410.2209 (10)0.5993 (9)0.1949 (6)0.036 (3)0.50
H41A0.23060.57860.15420.054*0.50
H41B0.17600.55500.21050.054*0.50
H41C0.27910.59550.22060.054*0.50
C500.4475 (12)0.5886 (13)0.4517 (7)0.050 (4)0.50
H50A0.48770.53140.46190.075*0.50
H50B0.38380.56990.45590.075*0.50
H50C0.46570.64420.47860.075*0.50
C510.4383 (12)0.5241 (12)0.3484 (7)0.052 (4)0.50
H51A0.45760.53460.30850.078*0.50
H51B0.37280.50780.34490.078*0.50
H51C0.47350.46900.36820.078*0.50
C520.5535 (11)0.6565 (13)0.3834 (8)0.053 (4)0.50
H52A0.56350.71770.40700.080*0.50
H52B0.56360.66990.34180.080*0.50
H52C0.59650.60500.39990.080*0.50
C600.4038 (11)0.5287 (11)0.3985 (7)0.043 (4)0.50
H60A0.38810.49180.36120.065*0.50
H60B0.34740.54730.41550.065*0.50
H60C0.44160.48660.42690.065*0.50
C610.5257 (11)0.6015 (12)0.3413 (7)0.045 (4)0.50
H61A0.54650.66540.32640.067*0.50
H61B0.49710.56190.30770.067*0.50
H61C0.57840.56510.36120.067*0.50
C620.5094 (10)0.6633 (11)0.4442 (6)0.038 (3)0.50
H62A0.55270.61310.46180.057*0.50
H62B0.46610.68060.47280.057*0.50
H62C0.54310.72320.43430.057*0.50
C700.4117 (9)1.0992 (9)0.1512 (5)0.103 (4)
H70A0.44981.08890.18920.155*
H70B0.34771.10920.15880.155*
H70C0.43331.15820.13110.155*
C710.3892 (7)1.0442 (8)0.0495 (4)0.079 (3)
H71A0.42681.10150.04040.119*
H71B0.32451.06400.04610.119*
H71C0.39730.99020.02120.119*
C720.5157 (6)0.9717 (7)0.1155 (4)0.065 (3)
H72A0.55591.02560.10470.098*
H72B0.51930.91570.08790.098*
H72C0.53530.94950.15640.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br100.0766 (7)0.0720 (7)0.0396 (5)0.0096 (5)0.0125 (4)0.0105 (5)
C100.030 (4)0.038 (4)0.027 (4)0.015 (3)0.003 (3)0.001 (3)
C110.040 (4)0.046 (5)0.029 (4)0.013 (4)0.002 (3)0.007 (3)
C120.051 (5)0.049 (5)0.019 (3)0.008 (4)0.006 (3)0.004 (3)
C130.035 (4)0.034 (4)0.027 (4)0.008 (3)0.005 (3)0.003 (3)
C140.033 (4)0.028 (4)0.032 (4)0.002 (3)0.009 (3)0.001 (3)
C150.028 (4)0.026 (4)0.030 (4)0.010 (3)0.007 (3)0.000 (3)
C160.065 (5)0.029 (4)0.029 (4)0.004 (4)0.012 (4)0.004 (3)
Br210.0562 (5)0.0481 (5)0.0387 (4)0.0201 (4)0.0232 (3)0.0043 (4)
C200.026 (4)0.028 (4)0.025 (3)0.003 (3)0.002 (3)0.000 (3)
C210.020 (3)0.021 (3)0.039 (4)0.001 (3)0.007 (3)0.003 (3)
C220.026 (4)0.026 (4)0.029 (4)0.002 (3)0.004 (3)0.001 (3)
C230.035 (4)0.028 (4)0.023 (3)0.005 (3)0.007 (3)0.003 (3)
C240.028 (4)0.022 (3)0.024 (3)0.002 (3)0.005 (3)0.001 (3)
C250.028 (4)0.028 (4)0.023 (3)0.001 (3)0.001 (3)0.000 (3)
C260.035 (4)0.033 (4)0.028 (4)0.008 (3)0.006 (3)0.008 (3)
O210.032 (3)0.027 (3)0.041 (3)0.004 (2)0.008 (2)0.007 (2)
C300.035 (8)0.034 (9)0.054 (9)0.008 (7)0.009 (7)0.008 (7)
C310.057 (10)0.033 (8)0.022 (7)0.006 (7)0.009 (7)0.003 (6)
O100.033 (3)0.034 (3)0.038 (3)0.002 (2)0.006 (2)0.000 (2)
C400.027 (8)0.053 (10)0.046 (9)0.008 (7)0.004 (6)0.000 (8)
C410.039 (8)0.022 (8)0.047 (9)0.013 (6)0.004 (7)0.005 (6)
C500.059 (8)0.052 (8)0.039 (7)0.015 (7)0.008 (6)0.018 (6)
C510.062 (8)0.040 (7)0.050 (7)0.015 (7)0.006 (7)0.001 (6)
C520.045 (7)0.056 (8)0.059 (8)0.007 (7)0.008 (6)0.015 (7)
C600.047 (7)0.031 (7)0.052 (7)0.004 (6)0.004 (6)0.008 (6)
C610.042 (7)0.053 (8)0.039 (7)0.015 (6)0.007 (6)0.000 (6)
C620.046 (7)0.038 (7)0.029 (6)0.006 (6)0.001 (6)0.014 (6)
C700.126 (6)0.085 (5)0.104 (5)0.007 (4)0.035 (4)0.003 (4)
C710.075 (5)0.090 (5)0.072 (5)0.009 (4)0.010 (4)0.027 (4)
C720.059 (4)0.058 (4)0.078 (4)0.011 (4)0.005 (4)0.019 (4)
Geometric parameters (Å, º) top
Br10—C111.902 (7)C31—H31B0.9800
C10—C111.375 (9)C31—H31C0.9800
C10—O101.379 (8)O10—C401.408 (15)
C10—C151.394 (9)O10—C411.511 (14)
C11—C121.379 (10)C40—H40A0.9800
C12—C131.388 (10)C40—H40B0.9800
C12—H120.9500C40—H40C0.9800
C13—C141.398 (9)C41—H41A0.9800
C13—C161.539 (10)C41—H41B0.9800
C14—C151.397 (9)C41—H41C0.9800
C14—H140.9500C50—H50A0.9800
C15—C201.493 (9)C50—H50B0.9800
C16—C711.499 (11)C50—H50C0.9800
C16—C701.507 (13)C51—H51A0.9800
C16—C721.510 (11)C51—H51B0.9800
Br21—C221.899 (6)C51—H51C0.9800
C20—C211.390 (9)C52—H52A0.9800
C20—C251.401 (9)C52—H52B0.9800
C21—O211.380 (7)C52—H52C0.9800
C21—C221.388 (9)C60—H60A0.9800
C22—C231.380 (9)C60—H60B0.9800
C23—C241.398 (9)C60—H60C0.9800
C23—H230.9500C61—H61A0.9800
C24—C251.385 (8)C61—H61B0.9800
C24—C261.541 (9)C61—H61C0.9800
C25—H250.9500C62—H62A0.9800
C26—C601.489 (15)C62—H62B0.9800
C26—C521.519 (17)C62—H62C0.9800
C26—C611.533 (15)C70—H70A0.9800
C26—C511.550 (17)C70—H70B0.9800
C26—C501.555 (15)C70—H70C0.9800
C26—C621.563 (15)C71—H71A0.9800
O21—C301.516 (14)C71—H71B0.9800
O21—C311.530 (15)C71—H71C0.9800
C30—H30A0.9800C72—H72A0.9800
C30—H30B0.9800C72—H72B0.9800
C30—H30C0.9800C72—H72C0.9800
C31—H31A0.9800
C11—C10—O10121.0 (6)O21—C30—H30A109.5
C11—C10—C15119.0 (7)O21—C30—H30B109.5
O10—C10—C15120.0 (6)O21—C30—H30C109.5
C10—C11—C12121.3 (7)O21—C31—H31A109.5
C10—C11—Br10119.5 (6)O21—C31—H31B109.5
C12—C11—Br10119.2 (5)H31A—C31—H31B109.5
C11—C12—C13121.6 (6)O21—C31—H31C109.5
C11—C12—H12119.2H31A—C31—H31C109.5
C13—C12—H12119.2H31B—C31—H31C109.5
C12—C13—C14116.8 (6)C10—O10—C40110.5 (8)
C12—C13—C16122.8 (6)C10—O10—C41117.3 (7)
C14—C13—C16120.5 (6)C40—O10—C41131.4 (9)
C15—C14—C13122.1 (6)O10—C40—H40A109.5
C15—C14—H14118.9O10—C40—H40B109.5
C13—C14—H14118.9H40A—C40—H40B109.5
C10—C15—C14119.2 (6)O10—C40—H40C109.5
C10—C15—C20119.8 (6)H40A—C40—H40C109.5
C14—C15—C20121.1 (6)H40B—C40—H40C109.5
C71—C16—C70105.5 (8)O10—C41—H41A109.5
C71—C16—C72109.2 (7)O10—C41—H41B109.5
C70—C16—C72110.6 (8)O10—C41—H41C109.5
C71—C16—C13113.3 (7)C26—C50—H50A109.5
C70—C16—C13108.3 (7)C26—C50—H50B109.5
C72—C16—C13110.0 (6)C26—C50—H50C109.5
C21—C20—C25119.0 (6)C26—C51—H51A109.5
C21—C20—C15120.6 (6)C26—C51—H51B109.5
C25—C20—C15120.4 (6)C26—C51—H51C109.5
O21—C21—C22121.0 (5)C26—C52—H52A109.5
O21—C21—C20120.0 (6)C26—C52—H52B109.5
C22—C21—C20119.0 (6)C26—C52—H52C109.5
C23—C22—C21121.5 (6)C26—C60—H60A109.5
C23—C22—Br21119.5 (5)C26—C60—H60B109.5
C21—C22—Br21119.0 (5)H60A—C60—H60B109.5
C22—C23—C24120.4 (6)C26—C60—H60C109.5
C22—C23—H23119.8H60A—C60—H60C109.5
C24—C23—H23119.8H60B—C60—H60C109.5
C25—C24—C23117.8 (6)C26—C61—H61A109.5
C25—C24—C26121.5 (5)C26—C61—H61B109.5
C23—C24—C26120.7 (5)H61A—C61—H61B109.5
C24—C25—C20122.2 (6)C26—C61—H61C109.5
C24—C25—H25118.9H61A—C61—H61C109.5
C20—C25—H25118.9H61B—C61—H61C109.5
C60—C26—C52140.6 (10)C26—C62—H62A109.5
C60—C26—C61112.2 (10)C26—C62—H62B109.5
C52—C26—C6147.7 (9)H62A—C62—H62B109.5
C60—C26—C24108.2 (8)C26—C62—H62C109.5
C52—C26—C24110.8 (8)H62A—C62—H62C109.5
C61—C26—C24110.4 (7)H62B—C62—H62C109.5
C60—C26—C5149.9 (9)C16—C70—H70A109.5
C52—C26—C51110.2 (11)C16—C70—H70B109.5
C61—C26—C5165.6 (10)H70A—C70—H70B109.5
C24—C26—C51109.0 (8)C16—C70—H70C109.5
C60—C26—C5060.0 (9)H70A—C70—H70C109.5
C52—C26—C50107.0 (10)H70B—C70—H70C109.5
C61—C26—C50134.6 (9)C16—C71—H71A109.5
C24—C26—C50114.4 (7)C16—C71—H71B109.5
C51—C26—C50105.3 (10)H71A—C71—H71B109.5
C60—C26—C62111.6 (9)C16—C71—H71C109.5
C52—C26—C6261.4 (9)H71A—C71—H71C109.5
C61—C26—C62107.3 (9)H71B—C71—H71C109.5
C24—C26—C62107.1 (7)C16—C72—H72A109.5
C51—C26—C62143.3 (9)C16—C72—H72B109.5
C50—C26—C6252.4 (8)H72A—C72—H72B109.5
C21—O21—C30111.6 (7)C16—C72—H72C109.5
C21—O21—C31111.4 (7)H72A—C72—H72C109.5
C30—O21—C31136.5 (8)H72B—C72—H72C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31C···O10i0.982.612.842 (15)94
C41—H41C···O21ii0.982.572.866 (14)98
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H28Br2O2
Mr484.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)14.661 (2), 13.408 (2), 22.489 (3)
β (°) 96.104 (12)
V3)4395.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)3.70
Crystal size (mm)0.40 × 0.12 × 0.10
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.433, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
14546, 3918, 2784
Rint0.077
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.143, 1.10
No. of reflections3918
No. of parameters293
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.93

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Version 1.08; Farrugia, 1997) and Mercury (Version 1.4; Bruno et al., 2002), pubCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31C···O10i0.982.612.842 (15)94
C41—H41C···O21ii0.982.572.866 (14)98
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Foundation of Research Science and Technology for funding. PJS also thanks the Royal Society of New Zealand for the award of a James Cook Research Fellowship.

References

First citationBruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A), SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, L. & Ng, S. W. (2006). Acta Cryst. E62, o5517–o5519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatagiri, H., Miyagawa, T., Furusho, Y. & Yashima, E. (2006). Angew. Chem. Int. Ed. 45, 1741–1744.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1996). Cryst. Rev. 6, 1–57.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds