organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 3-(2-fluoro­anilino)-2-(4-meth­oxy­phen­yl)acrylate

aInstitute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hailiang_zhu@163.com

(Received 10 January 2008; accepted 17 January 2008; online 23 January 2008)

The title compound, C18H18FNO3, consists of three individually planar subunits, namely two substituted benzene rings and one amino­acrylate group. The dihedral angle between the two benzene rings is 47.48 (8)°. The amino­acrylate group forms dihedral angles of 57.95 (7) and 11.27 (6)° with the methoxy­phenyl and fluorophenyl rings, respectively.

Related literature

For related literature, see: Xiao et al. (2007[Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212-4219.], 2008[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. In the press. DOI 10.1016/j.ejmech.2007.11.026.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18FNO3

  • Mr = 315.33

  • Triclinic, [P \overline 1]

  • a = 6.3630 (13) Å

  • b = 9.4700 (19) Å

  • c = 13.981 (3) Å

  • α = 97.68 (3)°

  • β = 97.38 (3)°

  • γ = 95.40 (3)°

  • V = 822.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.963, Tmax = 0.981

  • 3273 measured reflections

  • 2980 independent reflections

  • 1922 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.175

  • S = 1.09

  • 2980 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.91 (3) 2.65 (3) 3.256 (3) 125 (3)
C12—H12⋯O1ii 0.93 2.53 3.394 (3) 155
N1—H1⋯F1 0.91 (3) 2.26 (3) 2.654 (3) 102 (2)
C13—H13⋯O2 93.0 2.26 2.649 (3) 104
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

An enamine, a tautomer of a Schiff base, shows a high similarity to the corresponding Schiff base in chemical structure which shows diverse biological activities. Our recent work affirmed that enamine, like Schiff base, exhibited high antibacterial activity (Xiao et al., 2007; Xiao et al., 2008). We herein report the crystal structure of the title compound, (I), an enamine.

As shown in Fig. 1, (I) is structurally divided into three subunits, and each moiety forms a plane, namely, C1 to C6 forms a plane with the mean deviation of 0.0037 Å, defined as plane I; C7 to C12 forms a plane with the mean deviation of 0.0028 Å, defined as plane II; N1, C13, C14, C15, O1 and O2 is nearly coplanar with the mean deviation of 0.0119 Å, defined as plane III. Plane II and plane III make a dihedral angle with plane I of 47.48 (8) and 11.27 (6) °, and the dihedral angle between plane II and plane III is 57.95 (7) °. The bond distance C13—C14 (1.351 (4) Å) falls in the range of a typical double bond, and C13—N1 bond (1.340 (4) Å) is shorter than the standard C—N single bond (1.48 Å), but longer than a C—N double bond (1.28 Å). This clearly indicates that the p orbital of N1 seems to be conjugated with the π molecular orbital of C13—C14 double bond. All other double bonds and single bonds in the molecule fall in normal range of bond lengths. The structure is stabilized by intramolecular interactions involving rather weak hydrogen bonds of the types N—H···O and C—H···0 as well as intermolecular interactions amino-H···F and C13—H···O2; details of hydrogen-bond geometry are given in Table 1.

Related literature top

For related literature, see: Xiao et al. (2007, 2008).

Experimental top

Equimolar quantities (6 mmol) of ethyl 2-(4-methoxyphenyl)-3- oxopropanoate (1.33 g) and 2-fluorobenzenamine (0.67 g) in absolute alcohol (18 ml) were heated at 344–354 K for 2 h. The excess solvent was removed under reduced pressure. The residue was purified by a flash chromatography with EtOAc-petrolum ether to afford two fractions. The first fraction gave a Z-isomer, and the second fraction, after partial solvent evaporated, furnished colorless blocks of (I) suitable for single-crystal structure determination.

Refinement top

The H atom bonded to N1 was located in a difference Fourier map. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93, 0.96 and 0.97 Å for the aromatic, CH3 and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for amino, aromatic and CH2 type H-atoms and 1.5Ueq(parent atoms) for CH3 type H-atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(E)-Ethyl 3-(2-fluoroanilino)-2-(4-methoxyphenyl)acrylate top
Crystal data top
C18H18FNO3Z = 2
Mr = 315.33F(000) = 332
Triclinic, P1Dx = 1.273 Mg m3
a = 6.3630 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4700 (19) ÅCell parameters from 1625 reflections
c = 13.981 (3) Åθ = 1.5–25.0°
α = 97.68 (3)°µ = 0.09 mm1
β = 97.38 (3)°T = 298 K
γ = 95.40 (3)°Block, colorless
V = 822.7 (3) Å30.40 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2980 independent reflections
Radiation source: fine-focus sealed tube1922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω/2θ scansθmax = 25.3°, θmin = 1.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 07
Tmin = 0.963, Tmax = 0.981k = 1111
3273 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.314P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2980 reflectionsΔρmax = 0.26 e Å3
209 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.107 (9)
Crystal data top
C18H18FNO3γ = 95.40 (3)°
Mr = 315.33V = 822.7 (3) Å3
Triclinic, P1Z = 2
a = 6.3630 (13) ÅMo Kα radiation
b = 9.4700 (19) ŵ = 0.09 mm1
c = 13.981 (3) ÅT = 298 K
α = 97.68 (3)°0.40 × 0.20 × 0.20 mm
β = 97.38 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2980 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1922 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.981Rint = 0.044
3273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.26 e Å3
2980 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.4465 (3)0.2358 (2)0.49646 (15)0.0698 (6)
O20.0514 (3)0.6582 (2)0.10142 (15)0.0714 (6)
O10.1278 (3)0.4580 (2)0.16366 (17)0.0771 (7)
F10.9092 (3)0.8076 (2)0.36459 (16)0.090
C140.2001 (4)0.6001 (3)0.2237 (2)0.0519 (7)
C70.2661 (4)0.5043 (3)0.29442 (19)0.0490 (6)
C120.4551 (4)0.4418 (3)0.2923 (2)0.0555 (7)
H120.53950.46040.24480.067*
N10.5153 (4)0.7686 (3)0.26886 (18)0.0571 (6)
C90.2078 (4)0.3844 (3)0.4321 (2)0.0566 (7)
H90.12440.36560.47990.068*
C150.0076 (4)0.5629 (3)0.1627 (2)0.0557 (7)
C10.6532 (4)0.8864 (3)0.25557 (19)0.0508 (7)
C100.3977 (4)0.3237 (3)0.4281 (2)0.0507 (7)
C80.1423 (4)0.4720 (3)0.3660 (2)0.0533 (7)
H80.01370.51050.36890.064*
C130.3239 (4)0.7195 (3)0.2132 (2)0.0543 (7)
H130.27520.77170.16460.065*
C51.0048 (5)1.0171 (3)0.2990 (3)0.0709 (9)
H51.14001.02670.33510.085*
C110.5217 (4)0.3533 (3)0.3579 (2)0.0589 (8)
H110.64960.31390.35490.071*
C60.8571 (4)0.9063 (3)0.3057 (2)0.0580 (7)
C20.6015 (5)0.9858 (3)0.1961 (2)0.0691 (9)
H20.46520.97760.16120.083*
C40.9513 (5)1.1144 (3)0.2383 (2)0.0738 (9)
H41.05021.19020.23190.089*
C30.7505 (6)1.0982 (3)0.1874 (3)0.0780 (10)
H30.71301.16380.14610.094*
C180.6409 (5)0.1735 (4)0.4950 (3)0.0800 (10)
H18A0.63840.11530.43300.120*
H18B0.65750.11510.54590.120*
H18C0.75810.24800.50500.120*
C160.2489 (5)0.6276 (4)0.0363 (3)0.0823 (10)
H16A0.36830.62660.07310.099*
H16B0.25520.53440.00310.099*
C170.2589 (7)0.7410 (5)0.0268 (3)0.1111 (15)
H17A0.25680.83230.01280.167*
H17B0.38810.72180.07240.167*
H17C0.13840.74250.06160.167*
H10.567 (5)0.714 (4)0.313 (3)0.089 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0550 (12)0.0796 (14)0.0784 (14)0.0045 (10)0.0128 (10)0.0239 (12)
O20.0526 (12)0.0798 (15)0.0765 (14)0.0031 (10)0.0079 (10)0.0156 (12)
O10.0451 (12)0.0827 (15)0.0974 (17)0.0184 (11)0.0068 (11)0.0121 (12)
F10.0540.0960.1210.0070.0080.048
C140.0367 (14)0.0573 (16)0.0594 (17)0.0039 (12)0.0121 (12)0.0024 (13)
C70.0382 (14)0.0497 (15)0.0562 (16)0.0067 (11)0.0083 (12)0.0041 (12)
C120.0409 (15)0.0671 (18)0.0596 (17)0.0034 (13)0.0197 (13)0.0080 (15)
N10.0470 (13)0.0586 (15)0.0633 (15)0.0110 (11)0.0012 (11)0.0207 (12)
C90.0448 (16)0.0693 (18)0.0545 (17)0.0053 (13)0.0166 (13)0.0043 (14)
C150.0419 (15)0.0633 (18)0.0626 (18)0.0018 (14)0.0141 (13)0.0089 (15)
C10.0462 (15)0.0485 (15)0.0563 (16)0.0034 (12)0.0086 (12)0.0084 (13)
C100.0418 (15)0.0516 (15)0.0560 (16)0.0051 (12)0.0060 (12)0.0072 (13)
C80.0366 (14)0.0622 (17)0.0602 (17)0.0019 (12)0.0151 (12)0.0037 (14)
C130.0442 (15)0.0602 (17)0.0574 (17)0.0025 (13)0.0080 (13)0.0098 (13)
C50.0482 (17)0.0658 (19)0.093 (2)0.0126 (15)0.0047 (16)0.0110 (18)
C110.0365 (14)0.0654 (18)0.074 (2)0.0014 (13)0.0133 (14)0.0038 (15)
C60.0461 (16)0.0542 (16)0.075 (2)0.0027 (13)0.0055 (14)0.0190 (15)
C20.0575 (19)0.068 (2)0.078 (2)0.0089 (15)0.0015 (16)0.0184 (17)
C40.070 (2)0.0584 (19)0.088 (2)0.0192 (16)0.0142 (18)0.0082 (17)
C30.087 (3)0.058 (2)0.088 (2)0.0072 (17)0.004 (2)0.0278 (18)
C180.063 (2)0.081 (2)0.097 (3)0.0125 (17)0.0042 (18)0.020 (2)
C160.0512 (19)0.113 (3)0.074 (2)0.0140 (18)0.0053 (16)0.005 (2)
C170.112 (3)0.133 (4)0.085 (3)0.041 (3)0.017 (2)0.018 (3)
Geometric parameters (Å, º) top
O3—C101.374 (3)C10—C111.376 (4)
O3—C181.421 (4)C8—H80.9300
O2—C151.349 (3)C13—H130.9300
O2—C161.435 (4)C5—C61.363 (4)
O1—C151.198 (3)C5—C41.370 (4)
F1—C61.362 (3)C5—H50.9300
C14—C131.351 (4)C11—H110.9300
C14—C151.463 (4)C2—C31.386 (4)
C14—C71.478 (4)C2—H20.9300
C7—C121.392 (4)C4—C31.365 (5)
C7—C81.397 (4)C4—H40.9300
C12—C111.377 (4)C3—H30.9300
C12—H120.9300C18—H18A0.9600
N1—C131.364 (3)C18—H18B0.9600
N1—C11.400 (3)C18—H18C0.9600
N1—H10.91 (3)C16—C171.479 (5)
C9—C81.374 (4)C16—H16A0.9700
C9—C101.391 (4)C16—H16B0.9700
C9—H90.9300C17—H17A0.9600
C1—C21.373 (4)C17—H17B0.9600
C1—C61.377 (4)C17—H17C0.9600
C10—O3—C18117.1 (2)C4—C5—H5120.5
C15—O2—C16116.8 (3)C10—C11—C12119.5 (3)
C13—C14—C15119.2 (3)C10—C11—H11120.2
C13—C14—C7122.7 (2)C12—C11—H11120.2
C15—C14—C7118.2 (2)F1—C6—C5119.7 (3)
C12—C7—C8117.1 (3)F1—C6—C1116.6 (2)
C12—C7—C14121.1 (2)C5—C6—C1123.7 (3)
C8—C7—C14121.8 (2)C1—C2—C3120.7 (3)
C11—C12—C7122.4 (2)C1—C2—H2119.7
C11—C12—H12118.8C3—C2—H2119.7
C7—C12—H12118.8C3—C4—C5118.9 (3)
C13—N1—C1125.7 (2)C3—C4—H4120.6
C13—N1—H1117 (2)C5—C4—H4120.6
C1—N1—H1116 (2)C4—C3—C2121.2 (3)
C8—C9—C10120.5 (3)C4—C3—H3119.4
C8—C9—H9119.8C2—C3—H3119.4
C10—C9—H9119.8O3—C18—H18A109.5
O1—C15—O2122.0 (3)O3—C18—H18B109.5
O1—C15—C14125.0 (3)H18A—C18—H18B109.5
O2—C15—C14113.0 (2)O3—C18—H18C109.5
C2—C1—C6116.4 (2)H18A—C18—H18C109.5
C2—C1—N1125.1 (3)H18B—C18—H18C109.5
C6—C1—N1118.5 (2)O2—C16—C17107.6 (3)
O3—C10—C11124.7 (3)O2—C16—H16A110.2
O3—C10—C9115.8 (2)C17—C16—H16A110.2
C11—C10—C9119.5 (3)O2—C16—H16B110.2
C9—C8—C7121.0 (3)C17—C16—H16B110.2
C9—C8—H8119.5H16A—C16—H16B108.5
C7—C8—H8119.5C16—C17—H17A109.5
C14—C13—N1124.4 (3)C16—C17—H17B109.5
C14—C13—H13117.8H17A—C17—H17B109.5
N1—C13—H13117.8C16—C17—H17C109.5
C6—C5—C4119.1 (3)H17A—C17—H17C109.5
C6—C5—H5120.5H17B—C17—H17C109.5
C13—C14—C7—C1256.8 (4)C14—C7—C8—C9179.0 (2)
C15—C14—C7—C12122.9 (3)C15—C14—C13—N1176.7 (3)
C13—C14—C7—C8123.3 (3)C7—C14—C13—N13.5 (4)
C15—C14—C7—C857.0 (3)C1—N1—C13—C14175.6 (3)
C8—C7—C12—C110.8 (4)O3—C10—C11—C12179.2 (2)
C14—C7—C12—C11179.3 (2)C9—C10—C11—C120.5 (4)
C16—O2—C15—O10.6 (4)C7—C12—C11—C100.5 (4)
C16—O2—C15—C14177.9 (2)C4—C5—C6—F1179.0 (3)
C13—C14—C15—O1177.8 (3)C4—C5—C6—C10.9 (5)
C7—C14—C15—O12.0 (4)C2—C1—C6—F1179.8 (3)
C13—C14—C15—O20.6 (4)N1—C1—C6—F10.4 (4)
C7—C14—C15—O2179.7 (2)C2—C1—C6—C50.1 (5)
C13—N1—C1—C212.3 (5)N1—C1—C6—C5179.7 (3)
C13—N1—C1—C6168.0 (3)C6—C1—C2—C30.7 (5)
C18—O3—C10—C111.1 (4)N1—C1—C2—C3179.5 (3)
C18—O3—C10—C9179.3 (3)C6—C5—C4—C30.9 (5)
C8—C9—C10—O3178.9 (2)C5—C4—C3—C20.1 (5)
C8—C9—C10—C110.8 (4)C1—C2—C3—C40.8 (5)
C10—C9—C8—C71.1 (4)C15—O2—C16—C17177.3 (3)
C12—C7—C8—C91.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.91 (3)2.65 (3)3.256 (3)125 (3)
C12—H12···O1ii0.932.533.394 (3)155
N1—H1···F10.91 (3)2.26 (3)2.654 (3)102 (2)
C13—H13···O293.02.262.649 (3)104
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18FNO3
Mr315.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.3630 (13), 9.4700 (19), 13.981 (3)
α, β, γ (°)97.68 (3), 97.38 (3), 95.40 (3)
V3)822.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.963, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3273, 2980, 1922
Rint0.044
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.175, 1.09
No. of reflections2980
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.91 (3)2.65 (3)3.256 (3)125 (3)
C12—H12···O1ii0.932.533.394 (3)155
N1—H1···F10.91 (3)2.26 (3)2.654 (3)102 (2)
C13—H13···O293.02.262.649 (3)104
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was financed by the National Natural Science Foundation of China (grant No. 30772627).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. In the press. DOI 10.1016/j.ejmech.2007.11.026.  Google Scholar
First citationXiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212–4219.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds