metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(2,2′-bi­imidazole)cobalt(II) dichloride

aKey Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Institute of Polyoxometalate Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and cInstitute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: wangenbo@public.cc.jl.cn

(Received 4 November 2007; accepted 24 December 2007; online 9 January 2008)

There are independent cations and four chloride anions in the crystal structure of the title complex, [Co(C6H6N4)2(H2O)2]Cl2. In each cation, the CoII cation is coordinated by four N atoms from two biimidazole and two O atoms of two water mol­ecules; one Co atom is at a position of site symmetry m, the other at a position of site symmetry 2/m. All Cl ions and water mol­ecules are also located on the mirror plane. Each structural unit is connected through O—H⋯Cl and N—H⋯Cl inter­molecular hydrogen bonds, forming a three–dimensional supramolecular structure.

Related literature

For related literature, see: Barquin et al. (2003[Barquin, M., Gonzalez Garmendia, M. J. & Bellido, V. (2003). Transition Met. Chem. 28, 356-360.]); Hirotoshi & Eisaku (2005[Hirotoshi, M. & Eisaku, M. (2005). J. Theor. Cancer Chem. 4, 2078-2084.]); Tadokoro & Nakasuji (2000[Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205-218.]; Roth et al. (2000[Roth, J. P., Lovell, S. & Mayer, J. M. (2000). J. Am. Chem. Soc. 122, 5486-5498.]); Fieselmann et al. (1978[Fieselmann, B. F., Hendrickson, D. N. & Stucky, G. D. (1978). Inorg. Chem. 17, 333-334.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H6N4)2(H2O)2]Cl2

  • Mr = 434.16

  • Monoclinic, C 2/m

  • a = 22.037 (3) Å

  • b = 12.5321 (17) Å

  • c = 9.6421 (13) Å

  • β = 95.848 (2)°

  • V = 2649.0 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 298 (2) K

  • 0.16 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.819, Tmax = 0.903

  • 8119 measured reflections

  • 3205 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.04

  • 3205 reflections

  • 200 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯Cl1i 0.86 2.40 3.213 (2) 157
N5—H5B⋯Cl3ii 0.86 2.42 3.2091 (19) 153
N6—H6B⋯Cl2i 0.86 2.42 3.210 (2) 154
O3W—H3C⋯Cl1i 0.86 (3) 2.29 (3) 3.150 (2) 175 (4)
O2W—H2B⋯Cl3iii 0.86 (3) 2.34 (3) 3.180 (3) 166 (4)
O2W—H2C⋯Cl3iv 0.860 (10) 2.236 (11) 3.096 (3) 178 (3)
O1W—H1A⋯Cl2 0.857 (10) 2.259 (11) 3.114 (2) 175 (3)
O1W—H1B⋯Cl1 0.857 (10) 2.285 (11) 3.139 (2) 174 (3)
O3W—H3B⋯Cl2 0.859 (10) 2.239 (11) 3.096 (2) 177 (3)
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The imidazole coordinated complexes have various structures and extensive uses in the field of catalysis, materials and bioactivity (Barquin et al., 2003; Hirotoshi & Eisaku, 2005). The bis(2,2'–biimidazole)dihydrate cobalt dichloride was synthesized. The 2,2'–biimidazole is an interesting dicyclo–ligand of containing four N atoms: the two N atoms forming coordinate bonds and the other two - uncoordinated N atoms of biimidazole form N—H···Cl hydrogen bonds. This crystal structure are constructed by intermolecular hydrogen bonds (Tadokoro & Nakasuji, 2000; Roth et al., 2000).

The average bond distance Co—N is of 2.1563 (18) Å, the average bond angle N—Co—N is 101.50 (8)°, the average bond distance Co—O is 2.091 (2) Å. These parameters show, that the polihedron configuration is distorted octahedron (Fig. 1.). The biimidazole moieties and Cl atoms are linked by N—H···Cl and the water molecules and Cl atoms are linked by O—H···Cl hydrogen bonds, which shown on Fig. 2.

Related literature top

For related literature, see: Barquin et al., 2003; Hirotoshi & Eisaku, 2005; Tadokoro & Nakasuji, 2000; Roth et al., 2000; Fieselmann et al., 1978.

Experimental top

The 2,2'–biimidazole was prepared according to (Fieselmann et al., 1978). 2,2'–Biimidazole (0.1 mmol) was mixed with 0.1 mmol CoCl2.6H2O in solution. After 10 min of stirring, the precipitate was filtered off, the resulting clear solution was allowed to stand at room temperature, after a few days yellow block–shaped crystals were obtained.

Refinement top

H atoms of water molecules are located in a difference map and refined with distance restraints of O—H = 0.86 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of title complex - viewed down the b axis. Dashed lines show hydrogen bonds.
Diaquabis(2,2'-biimidazole)cobalt(II) dichloride top
Crystal data top
[Co(C6H6N4)2(H2O)2]Cl2F(000) = 1326
Mr = 434.16Dx = 1.633 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2062 reflections
a = 22.037 (3) Åθ = 2.7–26.7°
b = 12.5321 (17) ŵ = 1.30 mm1
c = 9.6421 (13) ÅT = 298 K
β = 95.848 (2)°Block, yellow
V = 2649.0 (6) Å30.16 × 0.12 × 0.08 mm
Z = 6
Data collection top
Bruker SMART CCD area-detector
diffractometer
3205 independent reflections
Radiation source: fine–focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2428
Tmin = 0.819, Tmax = 0.903k = 1615
8119 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
3205 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Co(C6H6N4)2(H2O)2]Cl2V = 2649.0 (6) Å3
Mr = 434.16Z = 6
Monoclinic, C2/mMo Kα radiation
a = 22.037 (3) ŵ = 1.30 mm1
b = 12.5321 (17) ÅT = 298 K
c = 9.6421 (13) Å0.16 × 0.12 × 0.08 mm
β = 95.848 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3205 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2291 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.903Rint = 0.026
8119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0336 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
3205 reflectionsΔρmin = 0.24 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.50000.03508 (16)
Co20.332770 (17)0.00000.08867 (4)0.03888 (14)
O1W0.09155 (10)0.00000.5815 (2)0.0493 (6)
H1A0.1231 (9)0.00000.536 (3)0.049 (10)*
H1B0.0984 (16)0.00000.6706 (11)0.071 (12)*
O2W0.42387 (11)0.00000.0446 (2)0.0836 (10)
H2B0.4517 (13)0.00000.114 (3)0.090 (14)*
H2C0.4321 (16)0.00000.0407 (16)0.074 (12)*
O3W0.24136 (10)0.00000.1289 (2)0.0544 (6)
H3B0.2314 (15)0.00000.2127 (16)0.065 (12)*
H3C0.2115 (12)0.00000.064 (3)0.083 (13)*
N10.01986 (7)0.10903 (15)0.33535 (16)0.0378 (4)
N20.35622 (8)0.10868 (16)0.25695 (16)0.0413 (4)
N30.30994 (8)0.10867 (16)0.07959 (16)0.0420 (4)
N40.05671 (8)0.12463 (16)0.13273 (17)0.0458 (5)
H4B0.07190.10740.05710.055*
N50.38823 (8)0.12580 (16)0.47968 (18)0.0471 (5)
H5B0.40070.10930.56440.056*
N60.27788 (8)0.12601 (17)0.30166 (17)0.0494 (5)
H6B0.26530.10970.38640.059*
C10.04173 (8)0.05762 (17)0.23184 (19)0.0363 (5)
C20.02053 (10)0.2150 (2)0.2986 (2)0.0446 (5)
H2A0.00730.27100.35110.054*
C30.04345 (11)0.2251 (2)0.1741 (2)0.0516 (6)
H3A0.04900.28830.12640.062*
C40.37410 (9)0.05749 (18)0.37374 (19)0.0379 (5)
C50.35969 (10)0.2148 (2)0.2901 (2)0.0509 (6)
H5A0.35020.27040.22770.061*
C60.37892 (11)0.2268 (2)0.4267 (2)0.0546 (6)
H6A0.38470.29070.47520.066*
C70.29209 (9)0.05720 (19)0.19698 (19)0.0397 (5)
C80.30664 (10)0.2147 (2)0.1125 (2)0.0526 (6)
H8A0.31640.27020.05010.063*
C90.28699 (10)0.2271 (2)0.2492 (3)0.0564 (6)
H9A0.28090.29100.29760.068*
Cl10.12670 (4)0.00000.90521 (8)0.0602 (3)
Cl20.21127 (4)0.00000.43563 (7)0.0551 (2)
Cl30.04319 (4)0.50000.25997 (7)0.0501 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0382 (3)0.0427 (4)0.0243 (3)0.0000.0025 (2)0.000
Co20.0385 (2)0.0531 (3)0.0243 (2)0.0000.00013 (16)0.000
O1W0.0386 (13)0.0814 (19)0.0279 (12)0.0000.0031 (10)0.000
O2W0.0386 (14)0.181 (3)0.0307 (14)0.0000.0011 (11)0.000
O3W0.0406 (13)0.093 (2)0.0289 (12)0.0000.0017 (10)0.000
N10.0417 (10)0.0429 (12)0.0285 (8)0.0017 (8)0.0025 (7)0.0009 (8)
N20.0435 (10)0.0495 (13)0.0293 (9)0.0028 (9)0.0034 (7)0.0027 (8)
N30.0447 (10)0.0503 (13)0.0304 (9)0.0030 (9)0.0008 (7)0.0019 (8)
N40.0582 (12)0.0493 (13)0.0309 (9)0.0039 (10)0.0096 (8)0.0030 (8)
N50.0574 (12)0.0506 (13)0.0307 (9)0.0015 (10)0.0080 (8)0.0006 (9)
N60.0546 (12)0.0630 (15)0.0296 (9)0.0007 (10)0.0002 (8)0.0054 (9)
C10.0365 (11)0.0453 (13)0.0265 (10)0.0024 (9)0.0003 (8)0.0024 (9)
C20.0488 (13)0.0448 (15)0.0397 (12)0.0014 (11)0.0018 (9)0.0037 (10)
C30.0629 (15)0.0451 (16)0.0468 (14)0.0034 (13)0.0055 (11)0.0066 (11)
C40.0372 (11)0.0476 (13)0.0283 (10)0.0022 (10)0.0003 (8)0.0015 (9)
C50.0551 (14)0.0509 (16)0.0445 (13)0.0044 (12)0.0059 (10)0.0076 (11)
C60.0637 (15)0.0473 (16)0.0504 (14)0.0053 (13)0.0066 (11)0.0051 (12)
C70.0364 (11)0.0540 (14)0.0287 (10)0.0006 (10)0.0030 (8)0.0037 (9)
C80.0546 (14)0.0570 (18)0.0459 (13)0.0091 (12)0.0040 (11)0.0014 (12)
C90.0639 (16)0.0559 (18)0.0489 (14)0.0009 (13)0.0032 (12)0.0097 (12)
Cl10.0536 (5)0.0994 (8)0.0274 (4)0.0000.0029 (3)0.000
Cl20.0528 (5)0.0848 (7)0.0280 (4)0.0000.0056 (3)0.000
Cl30.0622 (5)0.0554 (6)0.0305 (4)0.0000.0065 (3)0.000
Geometric parameters (Å, º) top
Co1—O1W2.089 (2)N3—C81.366 (3)
Co1—O1Wi2.089 (2)N4—C11.338 (3)
Co1—N1ii2.1727 (17)N4—C31.362 (3)
Co1—N1i2.1727 (17)N4—H4B0.8600
Co1—N1iii2.1727 (17)N5—C41.345 (3)
Co1—N12.1727 (17)N5—C61.372 (3)
Co2—O3W2.090 (2)N5—H5B0.8600
Co2—O2W2.094 (2)N6—C71.340 (3)
Co2—N3iii2.1386 (18)N6—C91.371 (3)
Co2—N32.1386 (18)N6—H6B0.8600
Co2—N22.1410 (18)C1—C1iii1.444 (4)
Co2—N2iii2.1410 (18)C2—C31.355 (3)
O1W—H1A0.857 (10)C2—H2A0.9300
O1W—H1B0.857 (10)C3—H3A0.9300
O2W—H2B0.86 (3)C4—C4iii1.441 (4)
O2W—H2C0.860 (10)C5—C61.351 (3)
O3W—H3B0.859 (10)C5—H5A0.9300
O3W—H3C0.86 (3)C6—H6A0.9300
N1—C11.320 (2)C7—C7iii1.434 (5)
N1—C21.374 (3)C8—C91.354 (3)
N2—C41.321 (3)C8—H8A0.9300
N2—C51.368 (3)C9—H9A0.9300
N3—C71.327 (3)
O1W—Co1—O1Wi180.00 (4)C4—N2—C5105.57 (17)
O1W—Co1—N1ii89.08 (6)C4—N2—Co2111.42 (15)
O1Wi—Co1—N1ii90.92 (6)C5—N2—Co2143.01 (14)
O1W—Co1—N1i89.08 (6)C7—N3—C8105.70 (18)
O1Wi—Co1—N1i90.92 (6)C7—N3—Co2111.34 (16)
N1ii—Co1—N1i77.93 (9)C8—N3—Co2142.96 (15)
O1W—Co1—N1iii90.92 (6)C1—N4—C3107.16 (18)
O1Wi—Co1—N1iii89.08 (6)C1—N4—H4B126.4
N1ii—Co1—N1iii180.0C3—N4—H4B126.4
N1i—Co1—N1iii102.07 (9)C4—N5—C6106.87 (18)
O1W—Co1—N190.92 (6)C4—N5—H5B126.6
O1Wi—Co1—N189.08 (6)C6—N5—H5B126.6
N1ii—Co1—N1102.07 (9)C7—N6—C9107.62 (19)
N1i—Co1—N1180.0C7—N6—H6B126.2
N1iii—Co1—N177.93 (9)C9—N6—H6B126.2
O3W—Co2—O2W179.00 (9)N1—C1—N4111.7 (2)
O3W—Co2—N3iii89.09 (6)N1—C1—C1iii119.22 (12)
O2W—Co2—N3iii90.14 (7)N4—C1—C1iii128.86 (12)
O3W—Co2—N389.09 (6)C3—C2—N1109.5 (2)
O2W—Co2—N390.14 (7)C3—C2—H2A125.2
N3iii—Co2—N379.11 (10)N1—C2—H2A125.2
O3W—Co2—N291.27 (7)C2—C3—N4106.4 (2)
O2W—Co2—N289.50 (7)C2—C3—H3A126.8
N3iii—Co2—N2179.64 (7)N4—C3—H3A126.8
N3—Co2—N2100.94 (7)N2—C4—N5111.4 (2)
O3W—Co2—N2iii91.27 (7)N2—C4—C4iii119.06 (12)
O2W—Co2—N2iii89.50 (7)N5—C4—C4iii129.54 (12)
N3iii—Co2—N2iii100.94 (7)C6—C5—N2109.9 (2)
N3—Co2—N2iii179.64 (7)C6—C5—H5A125.0
N2—Co2—N2iii79.01 (10)N2—C5—H5A125.0
Co1—O1W—H1A128 (2)C5—C6—N5106.3 (2)
Co1—O1W—H1B116 (2)C5—C6—H6A126.9
H1A—O1W—H1B116 (3)N5—C6—H6A126.9
Co2—O2W—H2B118 (3)N3—C7—N6110.8 (2)
Co2—O2W—H2C120 (2)N3—C7—C7iii119.08 (13)
H2B—O2W—H2C123 (4)N6—C7—C7iii130.05 (13)
Co2—O3W—H3B121 (2)C9—C8—N3110.0 (2)
Co2—O3W—H3C123 (3)C9—C8—H8A125.0
H3B—O3W—H3C116 (3)N3—C8—H8A125.0
C1—N1—C2105.19 (17)C8—C9—N6105.8 (2)
C1—N1—Co1111.22 (14)C8—C9—H9A127.1
C2—N1—Co1143.52 (14)N6—C9—H9A127.1
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···Cl1iv0.862.403.213 (2)157
N5—H5B···Cl3v0.862.423.2091 (19)153
N6—H6B···Cl2iv0.862.423.210 (2)154
O3W—H3C···Cl1iv0.86 (3)2.29 (3)3.150 (2)175 (4)
O2W—H2B···Cl3vi0.86 (3)2.34 (3)3.180 (3)166 (4)
O2W—H2C···Cl3vii0.86 (1)2.24 (1)3.096 (3)178 (3)
O1W—H1A···Cl20.86 (1)2.26 (1)3.114 (2)175 (3)
O1W—H1B···Cl10.86 (1)2.29 (1)3.139 (2)174 (3)
O3W—H3B···Cl20.86 (1)2.24 (1)3.096 (2)177 (3)
Symmetry codes: (iv) x, y, z1; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C6H6N4)2(H2O)2]Cl2
Mr434.16
Crystal system, space groupMonoclinic, C2/m
Temperature (K)298
a, b, c (Å)22.037 (3), 12.5321 (17), 9.6421 (13)
β (°) 95.848 (2)
V3)2649.0 (6)
Z6
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.819, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
8119, 3205, 2291
Rint0.026
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.05
No. of reflections3205
No. of parameters200
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···Cl1i0.862.403.213 (2)156.9
N5—H5B···Cl3ii0.862.423.2091 (19)153.2
N6—H6B···Cl2i0.862.423.210 (2)153.8
O3W—H3C···Cl1i0.86 (3)2.29 (3)3.150 (2)175 (4)
O2W—H2B···Cl3iii0.86 (3)2.34 (3)3.180 (3)166 (4)
O2W—H2C···Cl3iv0.860 (10)2.236 (11)3.096 (3)178 (3)
O1W—H1A···Cl20.857 (10)2.259 (11)3.114 (2)175 (3)
O1W—H1B···Cl10.857 (10)2.285 (11)3.139 (2)174 (3)
O3W—H3B···Cl20.859 (10)2.239 (11)3.096 (2)177 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Professor Guang-Ning Zhang for his selfless help with our work.

References

First citationBarquin, M., Gonzalez Garmendia, M. J. & Bellido, V. (2003). Transition Met. Chem. 28, 356–360.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationFieselmann, B. F., Hendrickson, D. N. & Stucky, G. D. (1978). Inorg. Chem. 17, 333–334.  Google Scholar
First citationHirotoshi, M. & Eisaku, M. (2005). J. Theor. Cancer Chem. 4, 2078–2084.  Google Scholar
First citationRoth, J. P., Lovell, S. & Mayer, J. M. (2000). J. Am. Chem. Soc. 122, 5486–5498.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205–218.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds