organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(3-Methyl-5-phen­­oxy-1-phenyl­pyrazol-4-yl)carbon­yl]-N′-(5-propyl-1,3,4-thia­diazol-2-yl)thio­urea

aKey Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, People's Republic of China, and bSchool of Sciences, Xi'an Jiaotong University, Xian 710049, People's Republic of China
*Correspondence e-mail: pxylcj@126.com

(Received 14 November 2007; accepted 24 December 2007; online 9 January 2008)

In the crystal structure of the title compound, C23H22N6O2S2, there are two intra­molecular N—H⋯O hydrogen bonds. The propyl chain is disordered over two sites, with occupancy factors of 0.639 (5) and 0.361 (5).

Related literature

For pharmacological and biological properties, see: Ranise et al. (2003[Ranise, A., Spallarossa, A., Bruno, O., Schenone, S., Fossa, P., Menozzi, G., Bondavalli, F., Mosti, L., Capuano, A., Mazzeo, F., Falcone, G. & Filippelli, W. (2003). Farmaco, 58, 765-780.]); Akbas et al. (2005[Akbas, E., Berber, I., Sener, A. & Hasanov, B. (2005). Farmaco, 60, 23-26.]); Daidone et al. (2004[Daidone, G., Maggio, B., Raffa, D., Plescia, S., Schillaci, D. & Raimondi, M. V. (2004). Farmaco, 59, 413-417.]); Park et al. (2005[Park, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]); Thomasco et al. (2003[Thomasco, L. M., Gadwood, R. C., Weaver, E. A., Ochoada, J. M., Ford, C. W., Zurenko, G. E., Hamel, J. C., Stapert, D., Moerman, J. K., Schaadt, R. D. & Yagi, B. H. (2003). Bioorg. Med. Chem. Lett. 13, 4193-4196.]); Foroumadi et al. (2002[Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). Farmaco, 57, 765-769.]); Supuran & Scozzafava (2000[Supuran, C. T. & Scozzafava, A. (2000). Eur. J. Med. Chem. 35, 867-874.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N6O2S2

  • Mr = 478.58

  • Triclinic, [P \overline 1]

  • a = 8.4489 (3) Å

  • b = 9.9099 (4) Å

  • c = 14.3492 (5) Å

  • α = 86.089 (1)°

  • β = 74.048 (1)°

  • γ = 81.591 (1)°

  • V = 1142.25 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 153 (2) K

  • 0.32 × 0.15 × 0.13 mm

Data collection
  • Rigaku R-AXIS SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.919, Tmax = 0.966

  • 11326 measured reflections

  • 5171 independent reflections

  • 3376 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.165

  • S = 1.05

  • 5171 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.88 2.18 2.917 (2) 141
N4—H4A⋯O2 0.88 1.89 2.623 (2) 139

Data collection: RAPID-AUTO (Rigaku 2004[Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In previous papers, aroylthioureas were reported to be endowed with various and interesting pharmacological properties (Ranize et al., 2003). Compounds including pyrazole ring are known to possess several biological properties, such as antisepsis, antileukosis, antitumor (Akbas et al., 2005; Daidone et al., 2004; Park et al., 2005). The 1,3,4-thiadiazoles also have widespread biological activity, such as antibacterial, antitubercular, antineoplastic activities (Thomasco et al., 2003; Foroumadi et al., 2002; Supuran & Scozzafava, 2000). Due to identical molecular including many heterocyclic nucleus can attain to effective superimposetion of biological activity, we designed and synthesized N-(2-propyl-1,3,4-thiodiazol-5-yl)-N'-(1-phenyl-3-methyl-5- phenoxylpyrazol-4-yl)-carbonylthiourea.

The molecule of the title complex (Fig. 1) has two intramolecular hydrogen bonds, which were formed between N3—H3A and O1 and between N4—H4A and O2, which lead to the formation of two six–membered closed loop. Creation of these (pseudo) rings is crucial for the molecular conformations, because it prevents free rotation within the central carbonylthiourea moiety and locks its atoms in a nearly planar arrangement.

Related literature top

Aroylthioureas are reported to be endowed with varied and interesting pharmacological properties (Ranize et al., 2003). Compounds including a pyrazole ring are known to possess several biological properties, such as antisepsis, antileukosis and antitumor properties (Akbas et al., 2005; Daidone et al., 2004; Park et al., 2005). 1,3,4-Thiadiazoles also have widespread biological activity, such as antibacterial, antitubercular and antineoplastic activities (Thomasco et al., 2003; Foroumadi et al., 2002; Supuran & Scozzafava, 2000).

Experimental top

A mixture of 1-phenyl-3-methyl-5-phenoxylpyrazole-4-isothiocyanate (1 mmol) and 5-propyl-2-amino-1,3,4-thiodiazole (1 mmol) in absolute acetonitrile was refluxed for 10 h at about 354–364 K, then the product was decanted from the hot solution in a funnel, and dried at room temperature for a yield 25.1% (0.12 g), m.p. 461–463 K. Block-like single-crystal of compound (I) was grown from solution of ethanol by slow evaporation.

Refinement top

All H atoms were found in difference electron maps and were subsequently refined in the riding-model approximation with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C); N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(N).

It is disordered in the propyl moiety of molecule. The propyl chain was splited into two chains and the restraints applied to the two chains and the two chains can share the same C21 atom. The ratio of occupancy factors is 0.639 (5)/0.361.

Computing details top

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO (Rigaku 2004); data reduction: RAPID-AUTO (Rigaku 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as spheres of arbitrary radus. The intramolecular H bond are marked as dashed lines. Only major fragment of propyl chain are drawn.
N-[(3-Methyl-5-phenoxy-1-phenylpyrazol-4-yl)carbonyl]-N'-(5-propyl-1,3,4- thiadiazol-2-yl)thiourea top
Crystal data top
C23H22N6O2S2Z = 2
Mr = 478.58F(000) = 500
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Melting point = 461–463 K
a = 8.4489 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9099 (4) ÅCell parameters from 7971 reflections
c = 14.3492 (5) Åθ = 3.1–27.5°
α = 86.089 (1)°µ = 0.27 mm1
β = 74.048 (1)°T = 153 K
γ = 81.591 (1)°Block, yellow
V = 1142.25 (7) Å30.32 × 0.15 × 0.13 mm
Data collection top
Rigaku R-AXIS Spider
diffractometer
5171 independent reflections
Radiation source: fine-focus sealed tube3376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.919, Tmax = 0.966k = 1212
11326 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1061P)2]
where P = (Fo2 + 2Fc2)/3
5171 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C23H22N6O2S2γ = 81.591 (1)°
Mr = 478.58V = 1142.25 (7) Å3
Triclinic, P1Z = 2
a = 8.4489 (3) ÅMo Kα radiation
b = 9.9099 (4) ŵ = 0.27 mm1
c = 14.3492 (5) ÅT = 153 K
α = 86.089 (1)°0.32 × 0.15 × 0.13 mm
β = 74.048 (1)°
Data collection top
Rigaku R-AXIS Spider
diffractometer
5171 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
3376 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.966Rint = 0.024
11326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
5171 reflectionsΔρmin = 0.54 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.56160 (7)0.15893 (6)0.37164 (4)0.04016 (19)
S20.56697 (9)0.18955 (7)0.58112 (5)0.0511 (2)
O10.72651 (18)0.43251 (15)0.78717 (10)0.0330 (3)
O20.7995 (2)0.57769 (18)0.48360 (11)0.0438 (4)
N10.8356 (2)0.63699 (19)0.78887 (13)0.0328 (4)
N20.8911 (2)0.74382 (19)0.72761 (13)0.0360 (4)
N30.6887 (2)0.4151 (2)0.59251 (13)0.0346 (4)
H3A0.66520.39160.65460.042*
N40.6649 (2)0.3756 (2)0.44130 (13)0.0357 (4)
H4A0.70850.45220.42610.043*
N50.6442 (3)0.3835 (2)0.28420 (14)0.0439 (5)
N60.6035 (3)0.3101 (2)0.21699 (14)0.0480 (5)
C10.9603 (3)0.6775 (3)0.91597 (18)0.0408 (5)
H1A1.05400.70370.86810.049*
C20.9530 (3)0.6782 (3)1.01344 (19)0.0467 (6)
H2B1.04200.70611.03260.056*
C30.8177 (3)0.6388 (3)1.08327 (18)0.0452 (6)
H3B0.81460.63891.15000.054*
C40.6870 (3)0.5994 (3)1.05608 (17)0.0418 (6)
H4B0.59460.57141.10410.050*
C50.6905 (3)0.6005 (2)0.95854 (16)0.0364 (5)
H5B0.59960.57610.93950.044*
C60.8294 (3)0.6380 (2)0.88941 (16)0.0336 (5)
C70.9194 (3)0.8149 (3)0.55833 (18)0.0433 (6)
H7A0.96350.89080.57860.065*
H7B0.82060.85020.53660.065*
H7C1.00400.76830.50500.065*
C80.8741 (3)0.7167 (2)0.64179 (16)0.0354 (5)
C90.8061 (3)0.5921 (2)0.64604 (15)0.0325 (5)
C100.7862 (3)0.5469 (2)0.74127 (16)0.0320 (5)
C110.8364 (3)0.3093 (2)0.77255 (14)0.0283 (4)
C120.7675 (3)0.1955 (3)0.81626 (19)0.0417 (6)
H12A0.65670.20360.85630.050*
C130.8630 (3)0.0697 (3)0.8006 (2)0.0516 (7)
H13A0.81780.01000.83020.062*
C141.0242 (3)0.0589 (3)0.7422 (2)0.0530 (7)
H14A1.08880.02820.73080.064*
C151.0906 (3)0.1736 (3)0.70074 (19)0.0473 (6)
H15A1.20160.16570.66090.057*
C160.9973 (3)0.3014 (3)0.71634 (16)0.0370 (5)
H16A1.04380.38140.68870.044*
C170.7669 (3)0.5307 (2)0.56726 (16)0.0329 (5)
C180.6421 (3)0.3310 (2)0.53439 (16)0.0335 (5)
C190.6281 (3)0.3158 (2)0.36680 (16)0.0351 (5)
C200.5602 (3)0.1932 (3)0.25151 (17)0.0428 (6)
C210.5096 (4)0.0933 (3)0.1944 (2)0.0555 (7)
H21A0.41530.05220.23830.067*
H21B0.46750.14550.14280.067*
C220.6339 (5)0.0172 (4)0.1491 (3)0.0465 (11)0.639 (5)
H22A0.58270.07670.11630.056*0.639 (5)
H22B0.67540.07300.19950.056*0.639 (5)
C230.7787 (7)0.0383 (5)0.0753 (3)0.0568 (13)0.639 (5)
H23A0.86160.03780.04650.085*0.639 (5)
H23B0.82930.09720.10770.085*0.639 (5)
H23C0.73810.09120.02430.085*0.639 (5)
C22'0.6510 (12)0.0828 (9)0.0931 (5)0.053 (2)0.361 (5)
H22C0.65630.17300.05910.064*0.361 (5)
H22D0.76110.04900.10380.064*0.361 (5)
C23'0.6019 (12)0.0149 (10)0.0362 (6)0.064 (3)0.361 (5)
H23D0.68450.02680.02670.096*0.361 (5)
H23E0.49310.02050.02600.096*0.361 (5)
H23F0.59540.10290.07150.096*0.361 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0411 (3)0.0325 (3)0.0431 (3)0.0066 (2)0.0042 (3)0.0007 (2)
S20.0611 (4)0.0503 (4)0.0486 (4)0.0317 (3)0.0178 (3)0.0171 (3)
O10.0335 (8)0.0240 (8)0.0338 (8)0.0074 (6)0.0049 (6)0.0028 (6)
O20.0581 (11)0.0374 (10)0.0327 (8)0.0179 (8)0.0026 (8)0.0059 (7)
N10.0345 (9)0.0273 (10)0.0335 (9)0.0100 (8)0.0016 (8)0.0017 (8)
N20.0399 (10)0.0260 (10)0.0380 (10)0.0109 (8)0.0015 (8)0.0055 (8)
N30.0350 (10)0.0361 (11)0.0306 (9)0.0125 (8)0.0027 (8)0.0046 (8)
N40.0368 (10)0.0328 (11)0.0341 (9)0.0113 (8)0.0009 (8)0.0025 (8)
N50.0511 (12)0.0401 (12)0.0344 (10)0.0093 (10)0.0008 (9)0.0035 (9)
N60.0606 (14)0.0455 (14)0.0335 (10)0.0092 (11)0.0020 (10)0.0095 (9)
C10.0337 (12)0.0384 (14)0.0479 (13)0.0099 (10)0.0050 (11)0.0007 (11)
C20.0472 (14)0.0464 (16)0.0520 (15)0.0117 (12)0.0202 (12)0.0003 (12)
C30.0545 (15)0.0401 (15)0.0429 (13)0.0073 (12)0.0157 (12)0.0015 (11)
C40.0441 (13)0.0412 (14)0.0363 (12)0.0096 (11)0.0024 (11)0.0015 (10)
C50.0322 (11)0.0381 (13)0.0357 (11)0.0091 (10)0.0016 (9)0.0014 (10)
C60.0359 (11)0.0248 (11)0.0356 (11)0.0041 (9)0.0029 (9)0.0021 (9)
C70.0466 (13)0.0353 (14)0.0425 (13)0.0110 (11)0.0026 (11)0.0099 (10)
C80.0352 (11)0.0273 (12)0.0376 (11)0.0055 (9)0.0004 (10)0.0014 (9)
C90.0313 (11)0.0259 (11)0.0332 (11)0.0043 (9)0.0029 (9)0.0013 (9)
C100.0296 (10)0.0242 (11)0.0367 (11)0.0054 (8)0.0007 (9)0.0005 (9)
C110.0316 (10)0.0262 (11)0.0272 (9)0.0060 (8)0.0065 (8)0.0029 (8)
C120.0357 (12)0.0302 (13)0.0578 (15)0.0106 (10)0.0077 (11)0.0013 (11)
C130.0462 (14)0.0266 (13)0.084 (2)0.0097 (11)0.0190 (14)0.0010 (13)
C140.0469 (15)0.0330 (14)0.080 (2)0.0041 (12)0.0211 (14)0.0101 (13)
C150.0344 (12)0.0494 (16)0.0518 (14)0.0023 (11)0.0049 (11)0.0035 (12)
C160.0361 (12)0.0368 (13)0.0359 (11)0.0075 (10)0.0057 (10)0.0041 (10)
C170.0287 (10)0.0288 (11)0.0342 (11)0.0025 (9)0.0028 (9)0.0005 (9)
C180.0266 (10)0.0362 (13)0.0346 (11)0.0069 (9)0.0024 (9)0.0031 (9)
C190.0318 (11)0.0286 (12)0.0372 (11)0.0041 (9)0.0035 (9)0.0013 (9)
C200.0478 (14)0.0350 (14)0.0384 (12)0.0033 (11)0.0005 (11)0.0074 (10)
C210.0705 (19)0.0468 (17)0.0462 (15)0.0094 (14)0.0078 (14)0.0112 (13)
C220.051 (2)0.038 (2)0.054 (2)0.0081 (18)0.019 (2)0.0067 (19)
C230.063 (3)0.052 (3)0.046 (2)0.013 (2)0.006 (2)0.015 (2)
C22'0.064 (6)0.050 (5)0.042 (4)0.015 (4)0.004 (4)0.013 (4)
C23'0.093 (6)0.064 (6)0.042 (4)0.034 (5)0.017 (4)0.006 (4)
Geometric parameters (Å, º) top
S1—C191.719 (2)C7—H7C0.9800
S1—C201.737 (2)C8—C91.427 (3)
S2—C181.648 (2)C9—C101.381 (3)
O1—C101.362 (3)C9—C171.455 (3)
O1—C111.411 (3)C11—C161.371 (3)
O2—C171.230 (3)C11—C121.378 (3)
N1—C101.337 (3)C12—C131.378 (4)
N1—N21.380 (2)C12—H12A0.9500
N1—C61.430 (3)C13—C141.382 (4)
N2—C81.328 (3)C13—H13A0.9500
N3—C171.383 (3)C14—C151.368 (4)
N3—C181.384 (3)C14—H14A0.9500
N3—H3A0.8800C15—C161.387 (3)
N4—C181.349 (3)C15—H15A0.9500
N4—C191.384 (3)C16—H16A0.9500
N4—H4A0.8800C20—C211.503 (4)
N5—C191.305 (3)C21—C221.453 (5)
N5—N61.389 (3)C21—C22'1.607 (8)
N6—C201.292 (3)C21—H21A0.9900
C1—C61.379 (3)C21—H21B0.9900
C1—C21.383 (3)C22—C231.525 (6)
C1—H1A0.9500C22—H22A0.9900
C2—C31.382 (4)C22—H22B0.9900
C2—H2B0.9500C23—H23A0.9800
C3—C41.381 (3)C23—H23B0.9800
C3—H3B0.9500C23—H23C0.9800
C4—C51.391 (3)C22'—C23'1.479 (10)
C4—H4B0.9500C22'—H22C0.9900
C5—C61.392 (3)C22'—H22D0.9900
C5—H5B0.9500C23'—H23D0.9800
C7—C81.492 (3)C23'—H23E0.9800
C7—H7A0.9800C23'—H23F0.9800
C7—H7B0.9800
C19—S1—C2085.87 (11)C15—C14—C13120.0 (2)
C10—O1—C11116.95 (16)C15—C14—H14A120.0
C10—N1—N2110.63 (17)C13—C14—H14A120.0
C10—N1—C6129.28 (19)C14—C15—C16120.6 (2)
N2—N1—C6120.00 (17)C14—C15—H15A119.7
C8—N2—N1105.57 (18)C16—C15—H15A119.7
C17—N3—C18129.42 (18)C11—C16—C15118.4 (2)
C17—N3—H3A115.3C11—C16—H16A120.8
C18—N3—H3A115.3C15—C16—H16A120.8
C18—N4—C19128.0 (2)O2—C17—N3121.6 (2)
C18—N4—H4A116.0O2—C17—C9122.9 (2)
C19—N4—H4A116.0N3—C17—C9115.49 (19)
C19—N5—N6111.0 (2)N4—C18—N3114.41 (19)
C20—N6—N5112.6 (2)N4—C18—S2125.85 (18)
C6—C1—C2118.9 (2)N3—C18—S2119.73 (16)
C6—C1—H1A120.5N5—C19—N4117.9 (2)
C2—C1—H1A120.5N5—C19—S1115.74 (18)
C3—C2—C1120.8 (2)N4—C19—S1126.40 (17)
C3—C2—H2B119.6N6—C20—C21123.7 (2)
C1—C2—H2B119.6N6—C20—S1114.75 (18)
C4—C3—C2120.0 (2)C21—C20—S1121.5 (2)
C4—C3—H3B120.0C22—C21—C20118.1 (3)
C2—C3—H3B120.0C22—C21—C22'47.1 (4)
C3—C4—C5120.1 (2)C20—C21—C22'104.9 (3)
C3—C4—H4B119.9C22—C21—H21A107.8
C5—C4—H4B119.9C20—C21—H21A107.8
C4—C5—C6118.9 (2)C22'—C21—H21A146.2
C4—C5—H5B120.6C22—C21—H21B107.8
C6—C5—H5B120.6C20—C21—H21B107.8
C1—C6—C5121.3 (2)C22'—C21—H21B69.9
C1—C6—N1119.4 (2)H21A—C21—H21B107.1
C5—C6—N1119.32 (19)C21—C22—C23110.9 (4)
C8—C7—H7A109.5C21—C22—H22A109.5
C8—C7—H7B109.5C23—C22—H22A109.5
H7A—C7—H7B109.5C21—C22—H22B109.5
C8—C7—H7C109.5C23—C22—H22B109.5
H7A—C7—H7C109.5H22A—C22—H22B108.0
H7B—C7—H7C109.5C22—C23—H23A109.5
N2—C8—C9111.13 (19)C22—C23—H23B109.5
N2—C8—C7119.6 (2)H23A—C23—H23B109.5
C9—C8—C7129.2 (2)C22—C23—H23C109.5
C10—C9—C8103.68 (19)H23A—C23—H23C109.5
C10—C9—C17129.3 (2)H23B—C23—H23C109.5
C8—C9—C17127.0 (2)C23'—C22'—C21105.3 (6)
N1—C10—O1121.07 (19)C23'—C22'—H22C110.7
N1—C10—C9108.98 (19)C21—C22'—H22C110.7
O1—C10—C9130.0 (2)C23'—C22'—H22D110.7
C16—C11—C12122.1 (2)C21—C22'—H22D110.7
C16—C11—O1123.2 (2)H22C—C22'—H22D108.8
C12—C11—O1114.70 (18)C22'—C23'—H23D109.5
C11—C12—C13118.6 (2)C22'—C23'—H23E109.5
C11—C12—H12A120.7H23D—C23'—H23E109.5
C13—C12—H12A120.7C22'—C23'—H23F109.5
C12—C13—C14120.3 (2)H23D—C23'—H23F109.5
C12—C13—H13A119.8H23E—C23'—H23F109.5
C14—C13—H13A119.8
C10—N1—N2—C80.1 (2)C11—C12—C13—C140.1 (4)
C6—N1—N2—C8176.87 (19)C12—C13—C14—C151.1 (4)
C19—N5—N6—C200.2 (3)C13—C14—C15—C160.4 (4)
C6—C1—C2—C30.6 (4)C12—C11—C16—C152.3 (3)
C1—C2—C3—C40.6 (4)O1—C11—C16—C15175.1 (2)
C2—C3—C4—C50.6 (4)C14—C15—C16—C111.3 (4)
C3—C4—C5—C61.9 (4)C18—N3—C17—O23.3 (4)
C2—C1—C6—C50.6 (4)C18—N3—C17—C9177.0 (2)
C2—C1—C6—N1179.9 (2)C10—C9—C17—O2175.8 (2)
C4—C5—C6—C11.9 (4)C8—C9—C17—O25.0 (4)
C4—C5—C6—N1178.8 (2)C10—C9—C17—N34.6 (3)
C10—N1—C6—C1140.6 (2)C8—C9—C17—N3174.7 (2)
N2—N1—C6—C143.1 (3)C19—N4—C18—N3178.9 (2)
C10—N1—C6—C540.1 (3)C19—N4—C18—S21.5 (3)
N2—N1—C6—C5136.3 (2)C17—N3—C18—N45.9 (3)
N1—N2—C8—C90.4 (2)C17—N3—C18—S2173.78 (18)
N1—N2—C8—C7178.47 (19)N6—N5—C19—N4179.78 (19)
N2—C8—C9—C100.7 (2)N6—N5—C19—S10.4 (3)
C7—C8—C9—C10178.6 (2)C18—N4—C19—N5173.0 (2)
N2—C8—C9—C17178.7 (2)C18—N4—C19—S16.8 (3)
C7—C8—C9—C170.9 (4)C20—S1—C19—N50.63 (19)
N2—N1—C10—O1179.90 (18)C20—S1—C19—N4179.6 (2)
C6—N1—C10—O13.5 (3)N5—N6—C20—C21179.9 (2)
N2—N1—C10—C90.6 (2)N5—N6—C20—S10.7 (3)
C6—N1—C10—C9176.1 (2)C19—S1—C20—N60.7 (2)
C11—O1—C10—N1101.1 (2)C19—S1—C20—C21179.9 (2)
C11—O1—C10—C979.5 (3)N6—C20—C21—C2297.3 (4)
C8—C9—C10—N10.7 (2)S1—C20—C21—C2283.6 (3)
C17—C9—C10—N1178.7 (2)N6—C20—C21—C22'48.3 (5)
C8—C9—C10—O1179.8 (2)S1—C20—C21—C22'132.6 (4)
C17—C9—C10—O10.8 (4)C20—C21—C22—C2361.3 (4)
C10—O1—C11—C160.9 (3)C22'—C21—C22—C2323.1 (5)
C10—O1—C11—C12176.69 (18)C22—C21—C22'—C23'65.6 (6)
C16—C11—C12—C131.7 (4)C20—C21—C22'—C23'179.7 (6)
O1—C11—C12—C13175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.882.182.917 (2)141
N4—H4A···O20.881.892.623 (2)139

Experimental details

Crystal data
Chemical formulaC23H22N6O2S2
Mr478.58
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.4489 (3), 9.9099 (4), 14.3492 (5)
α, β, γ (°)86.089 (1), 74.048 (1), 81.591 (1)
V3)1142.25 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.32 × 0.15 × 0.13
Data collection
DiffractometerRigaku R-AXIS Spider
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.919, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
11326, 5171, 3376
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.165, 1.05
No. of reflections5171
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.54

Computer programs: RAPID-AUTO (Rigaku 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.882.182.917 (2)140.6
N4—H4A···O20.881.892.623 (2)139.2
 

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (grant No. 20662009), the Program for Century Excellent Talents in Universities (grant No. NCET-04-0987) and the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20050755003).

References

First citationAkbas, E., Berber, I., Sener, A. & Hasanov, B. (2005). Farmaco, 60, 23–26.  CrossRef PubMed CAS Google Scholar
First citationDaidone, G., Maggio, B., Raffa, D., Plescia, S., Schillaci, D. & Raimondi, M. V. (2004). Farmaco, 59, 413–417.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). Farmaco, 57, 765–769.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPark, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanise, A., Spallarossa, A., Bruno, O., Schenone, S., Fossa, P., Menozzi, G., Bondavalli, F., Mosti, L., Capuano, A., Mazzeo, F., Falcone, G. & Filippelli, W. (2003). Farmaco, 58, 765–780.  CrossRef PubMed CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2000). Eur. J. Med. Chem. 35, 867–874.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThomasco, L. M., Gadwood, R. C., Weaver, E. A., Ochoada, J. M., Ford, C. W., Zurenko, G. E., Hamel, J. C., Stapert, D., Moerman, J. K., Schaadt, R. D. & Yagi, B. H. (2003). Bioorg. Med. Chem. Lett. 13, 4193–4196.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds