organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(phenyl­sulfan­yl)meth­yl]-1-(phenyl­sulfon­yl)-1H-indole-3-carboxyl­ate

aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 22 December 2007; accepted 29 December 2007; online 9 January 2008)

In the title compound, C24H21NO4S2, the phenyl rings form dihedral angles of 85.77 (9) and 85.22 (9)° and the ester group forms an angle of 12.61 (10)° with the indane ring. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O inter­actions.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Satis Kumar et al. (2006[Satis Kumar, B. K., Gayathri, D., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2006). Acta Cryst. E62, o5388-o5389.]). A similar compound has been reported by Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21NO4S2

  • Mr = 451.56

  • Monoclinic, P 21 /c

  • a = 11.745 (1) Å

  • b = 7.7140 (2) Å

  • c = 26.770 (1) Å

  • β = 116.020 (2)°

  • V = 2179.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 (2) K

  • 0.24 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.947

  • 9731 measured reflections

  • 4116 independent reflections

  • 2128 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 0.82

  • 4116 reflections

  • 281 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1 0.97 2.38 2.813 (4) 107
C7—H7B⋯O3 0.97 2.26 2.977 (4) 130
C11—H11⋯O4 0.93 2.42 2.932 (3) 115
C14—H14⋯O2 0.93 2.41 2.966 (3) 119
C24—H24⋯O2 0.93 2.52 2.898 (3) 105

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The benzenesulfonamide derivatives exhibit significant biological activities, such as antibacterial (Nieto et al., 2005). In the molecule of title compound (I) (Fig. 1), the bond lengths and angles are agree with the reported similar structures (Allen et al. 1987; Chakkaravarthi et al., 2007; Satis Kumar et al., 2006).

The phenyl rings C1–C6 and C19–C24 form the dihedral angles with the indane ring system of 85.77 (9)° and 85.22 (9)°, respectively. The dihedral angle between these phenyl rings is 4.26 (9)°. The ester group C16/O3/O4/C17/C18 forms a dihedral angle with the indane ring system of 12.61 (10)°.

The molecular structure of (I) (Fig. 1) is stabilized by intramolecular C—H···O interactions. A similar compound has been reported by Chakkaravarthi et al. (2007).

Related literature top

For related literature, see: Allen et al. (1987); Nieto et al. (2005); Satis Kumar et al. (2006). A similar compound has been reported by Chakkaravarthi et al. (2007).

Experimental top

To a well stirred suspension of sodium hydride (0.17 g, 3.55 mmol) in dry tetrahydrofurane (THF) (10 ml) at 273 K, a solution of thiophenol (0.36 ml, 3.55 mmol) in dry THF (10 ml) was slowly added over a period of 10 min. After the evaluation of hydrogen gas ceased a solution of ethyl 2-(bromomethyl)-1-(phenylsulfonyl)-1H-indole-3-carboxylate (1 g, 2.36 mmol) in dry THF (10 ml) was added in dropwise with vigorous stirring. Then the reaction mixture was stirred for 2 h and then poured over crushed ice. The precipitated solid was filtered, washed with water and dried over calcium chloride. The crude sulfide was recrystallized from methanol. Single crystals suitable for X-ray analysis were grown by slow evaporation of a methanol solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2 and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The bond distances C19—C20, C19—24, C20—C21, C21—C22, C22—C23, C23—C24, C3—C4, C4—C5 and C5—C6 were restrained to be 1.39 (3) Å and the bond distance C17—C18 was restrained to be 1.55 (3) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Intramolecular H-bonds are shown as dotted lines.
Ethyl 2-[(phenylsulfanyl)methyl]-1-(phenylsulfonyl)-1H-indole- 3-carboxylate top
Crystal data top
C24H21NO4S2F(000) = 944
Mr = 451.56Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10291 reflections
a = 11.745 (1) Åθ = 2.8–26.0°
b = 7.7140 (2) ŵ = 0.28 mm1
c = 26.770 (1) ÅT = 295 K
β = 116.020 (2)°Block, colourless
V = 2179.6 (2) Å30.24 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEX2
diffractometer
4116 independent reflections
Radiation source: fine-focus sealed tube2128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω– and ϕ–scanθmax = 28.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.927, Tmax = 0.947k = 108
9731 measured reflectionsl = 3635
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
4116 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.23 e Å3
9 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H21NO4S2V = 2179.6 (2) Å3
Mr = 451.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.745 (1) ŵ = 0.28 mm1
b = 7.7140 (2) ÅT = 295 K
c = 26.770 (1) Å0.24 × 0.20 × 0.20 mm
β = 116.020 (2)°
Data collection top
Bruker Kappa APEX2
diffractometer
4116 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2128 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.947Rint = 0.037
9731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0489 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.82Δρmax = 0.23 e Å3
4116 reflectionsΔρmin = 0.18 e Å3
281 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75890 (7)0.46511 (8)0.02189 (3)0.03776 (17)
S21.06434 (7)0.72740 (9)0.09115 (4)0.0563 (2)
O10.84440 (19)0.5349 (2)0.00269 (8)0.0471 (5)
O20.64341 (19)0.5547 (2)0.01066 (8)0.0494 (5)
O31.2184 (2)0.3917 (3)0.22110 (10)0.0725 (6)
O41.11279 (18)0.3805 (3)0.27290 (8)0.0545 (5)
N10.8387 (2)0.4502 (2)0.09151 (9)0.0362 (5)
C11.2195 (3)0.7980 (3)0.13616 (12)0.0438 (6)
C21.2297 (3)0.9673 (4)0.15435 (13)0.0546 (7)
H21.15701.03290.14570.066*
C31.3477 (3)1.0396 (4)0.18538 (15)0.0661 (9)
H31.35371.15430.19700.079*
C41.4568 (3)0.9438 (4)0.19933 (15)0.0700 (10)
H41.53600.99270.22030.084*
C51.4459 (3)0.7738 (4)0.18144 (14)0.0628 (9)
H51.51840.70700.19110.075*
C61.3281 (2)0.7019 (4)0.14923 (13)0.0552 (7)
H61.32210.58860.13640.066*
C71.0649 (2)0.4937 (3)0.10300 (12)0.0423 (6)
H7A1.04530.43250.06850.051*
H7B1.14860.45810.13000.051*
C80.9695 (2)0.4468 (3)0.12382 (11)0.0362 (6)
C90.9929 (2)0.4064 (3)0.17792 (10)0.0367 (6)
C100.8719 (2)0.3803 (3)0.17934 (11)0.0368 (6)
C110.8367 (3)0.3384 (4)0.22147 (12)0.0470 (6)
H110.89780.32360.25790.056*
C120.7090 (3)0.3194 (4)0.20795 (13)0.0539 (7)
H120.68480.29030.23560.065*
C130.6167 (3)0.3430 (4)0.15376 (13)0.0513 (7)
H130.53180.32990.14590.062*
C140.6486 (3)0.3858 (3)0.11120 (12)0.0431 (6)
H140.58710.40080.07490.052*
C150.7775 (2)0.4055 (3)0.12549 (10)0.0358 (5)
C161.1197 (3)0.3927 (3)0.22444 (12)0.0442 (6)
C171.2305 (3)0.3585 (4)0.32177 (12)0.0626 (8)
H17A1.29320.44010.32160.075*
H17B1.26270.24190.32330.075*
C181.2026 (4)0.3919 (5)0.37179 (13)0.0733 (10)
H18A1.17880.51100.37170.110*
H18B1.27700.36760.40550.110*
H18C1.13460.31820.36940.110*
C190.7233 (2)0.2500 (3)0.00112 (10)0.0379 (5)
C200.8218 (3)0.1388 (3)0.00635 (12)0.0507 (7)
H200.90540.17550.02540.061*
C210.7946 (3)0.0279 (3)0.01486 (13)0.0594 (9)
H210.85970.10400.01050.071*
C220.6695 (3)0.0800 (4)0.04255 (13)0.0607 (9)
H220.65070.19150.05710.073*
C230.5720 (3)0.0317 (3)0.04881 (15)0.0663 (9)
H230.48850.00570.06740.080*
C240.5977 (2)0.1988 (3)0.02768 (14)0.0576 (8)
H240.53260.27390.03120.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0378 (4)0.0385 (3)0.0341 (4)0.0018 (3)0.0132 (3)0.0011 (3)
S20.0334 (4)0.0581 (4)0.0664 (6)0.0052 (3)0.0118 (4)0.0160 (4)
O10.0506 (12)0.0494 (10)0.0405 (11)0.0102 (9)0.0194 (11)0.0004 (8)
O20.0432 (12)0.0476 (10)0.0507 (13)0.0090 (8)0.0146 (11)0.0063 (9)
O30.0350 (12)0.1220 (18)0.0579 (15)0.0079 (12)0.0179 (12)0.0098 (13)
O40.0348 (11)0.0834 (14)0.0379 (11)0.0033 (10)0.0092 (10)0.0114 (10)
N10.0306 (11)0.0451 (10)0.0327 (12)0.0052 (9)0.0136 (11)0.0034 (9)
C10.0366 (15)0.0576 (16)0.0390 (15)0.0023 (12)0.0183 (14)0.0082 (12)
C20.0505 (19)0.0595 (17)0.0534 (19)0.0039 (14)0.0223 (18)0.0035 (14)
C30.072 (3)0.0648 (19)0.065 (2)0.0187 (18)0.032 (2)0.0098 (17)
C40.051 (2)0.097 (3)0.056 (2)0.0244 (18)0.019 (2)0.0037 (19)
C50.0363 (16)0.084 (2)0.067 (2)0.0003 (15)0.0225 (18)0.0078 (17)
C60.0403 (17)0.0656 (18)0.064 (2)0.0032 (14)0.0267 (17)0.0010 (15)
C70.0326 (15)0.0515 (13)0.0454 (16)0.0013 (11)0.0195 (15)0.0035 (12)
C80.0307 (14)0.0386 (12)0.0393 (15)0.0014 (10)0.0154 (13)0.0002 (10)
C90.0312 (14)0.0415 (12)0.0368 (15)0.0044 (10)0.0142 (13)0.0031 (10)
C100.0331 (14)0.0396 (12)0.0380 (15)0.0005 (10)0.0160 (13)0.0026 (11)
C110.0418 (16)0.0620 (16)0.0353 (15)0.0069 (13)0.0151 (14)0.0027 (12)
C120.0500 (18)0.0751 (18)0.0461 (18)0.0146 (15)0.0298 (17)0.0089 (14)
C130.0359 (16)0.0649 (17)0.059 (2)0.0088 (13)0.0263 (16)0.0090 (15)
C140.0309 (14)0.0548 (14)0.0408 (16)0.0034 (11)0.0132 (14)0.0052 (12)
C150.0363 (14)0.0374 (12)0.0349 (14)0.0072 (10)0.0166 (13)0.0060 (10)
C160.0366 (15)0.0502 (14)0.0431 (16)0.0009 (11)0.0150 (15)0.0036 (12)
C170.0382 (17)0.086 (2)0.0483 (19)0.0086 (15)0.0052 (17)0.0149 (17)
C180.060 (2)0.103 (3)0.045 (2)0.0090 (19)0.0121 (19)0.0156 (17)
C190.0389 (15)0.0421 (12)0.0274 (13)0.0013 (11)0.0095 (13)0.0045 (10)
C200.0489 (18)0.0488 (15)0.0510 (18)0.0011 (12)0.0186 (17)0.0036 (13)
C210.068 (2)0.0468 (15)0.057 (2)0.0111 (15)0.021 (2)0.0027 (14)
C220.079 (3)0.0418 (15)0.0470 (19)0.0043 (15)0.014 (2)0.0021 (13)
C230.051 (2)0.0597 (18)0.067 (2)0.0175 (15)0.007 (2)0.0056 (16)
C240.0490 (19)0.0538 (16)0.062 (2)0.0009 (13)0.0170 (18)0.0037 (15)
Geometric parameters (Å, º) top
S1—O11.4195 (18)C10—C151.393 (4)
S1—O21.4318 (19)C10—C111.398 (4)
S1—N11.683 (2)C11—C121.388 (4)
S1—C191.755 (2)C11—H110.9300
S2—C11.773 (3)C12—C131.390 (4)
S2—C71.830 (3)C12—H120.9300
O3—C161.201 (3)C13—C141.386 (4)
O4—C161.338 (3)C13—H130.9300
O4—C171.437 (3)C14—C151.398 (4)
N1—C81.394 (3)C14—H140.9300
N1—C151.427 (3)C17—C181.533 (3)
C1—C61.381 (4)C17—H17A0.9700
C1—C21.381 (4)C17—H17B0.9700
C2—C31.383 (4)C18—H18A0.9600
C2—H20.9300C18—H18B0.9600
C3—C41.381 (3)C18—H18C0.9600
C3—H30.9300C19—C201.383 (2)
C4—C51.383 (3)C19—C241.385 (2)
C4—H40.9300C20—C211.385 (2)
C5—C61.385 (3)C20—H200.9300
C5—H50.9300C21—C221.383 (4)
C6—H60.9300C21—H210.9300
C7—C81.498 (3)C22—C231.382 (3)
C7—H7A0.9700C22—H220.9300
C7—H7B0.9700C23—C241.387 (3)
C8—C91.386 (3)C23—H230.9300
C9—C101.453 (3)C24—H240.9300
C9—C161.467 (4)
O1—S1—O2119.78 (11)C10—C11—H11120.6
O1—S1—N1106.73 (11)C11—C12—C13121.1 (3)
O2—S1—N1106.35 (11)C11—C12—H12119.4
O1—S1—C19109.19 (11)C13—C12—H12119.4
O2—S1—C19108.93 (11)C14—C13—C12121.4 (3)
N1—S1—C19104.79 (10)C14—C13—H13119.3
C1—S2—C7105.10 (12)C12—C13—H13119.3
C16—O4—C17116.6 (2)C13—C14—C15116.8 (3)
C8—N1—C15109.02 (19)C13—C14—H14121.6
C8—N1—S1127.98 (17)C15—C14—H14121.6
C15—N1—S1122.05 (17)C10—C15—C14122.9 (2)
C6—C1—C2119.4 (3)C10—C15—N1107.4 (2)
C6—C1—S2124.5 (2)C14—C15—N1129.8 (2)
C2—C1—S2115.7 (2)O3—C16—O4122.9 (3)
C1—C2—C3120.1 (3)O3—C16—C9126.2 (3)
C1—C2—H2119.9O4—C16—C9110.9 (2)
C3—C2—H2119.9O4—C17—C18106.6 (2)
C4—C3—C2120.9 (3)O4—C17—H17A110.4
C4—C3—H3119.6C18—C17—H17A110.4
C2—C3—H3119.6O4—C17—H17B110.4
C3—C4—C5118.7 (3)C18—C17—H17B110.4
C3—C4—H4120.7H17A—C17—H17B108.6
C5—C4—H4120.7C17—C18—H18A109.5
C4—C5—C6120.8 (3)C17—C18—H18B109.5
C4—C5—H5119.6H18A—C18—H18B109.5
C6—C5—H5119.6C17—C18—H18C109.5
C1—C6—C5120.1 (3)H18A—C18—H18C109.5
C1—C6—H6120.0H18B—C18—H18C109.5
C5—C6—H6120.0C20—C19—C24122.2 (2)
C8—C7—S2110.86 (17)C20—C19—S1118.70 (18)
C8—C7—H7A109.5C24—C19—S1119.09 (17)
S2—C7—H7A109.5C19—C20—C21119.2 (3)
C8—C7—H7B109.5C19—C20—H20120.4
S2—C7—H7B109.5C21—C20—H20120.4
H7A—C7—H7B108.1C22—C21—C20119.3 (3)
C9—C8—N1108.2 (2)C22—C21—H21120.3
C9—C8—C7127.3 (2)C20—C21—H21120.3
N1—C8—C7124.4 (2)C23—C22—C21120.8 (3)
C8—C9—C10108.1 (2)C23—C22—H22119.6
C8—C9—C16124.4 (2)C21—C22—H22119.6
C10—C9—C16127.5 (2)C22—C23—C24120.6 (3)
C15—C10—C11119.0 (2)C22—C23—H23119.7
C15—C10—C9107.3 (2)C24—C23—H23119.7
C11—C10—C9133.8 (3)C19—C24—C23117.8 (2)
C12—C11—C10118.8 (3)C19—C24—H24121.1
C12—C11—H11120.6C23—C24—H24121.1
O1—S1—N1—C820.4 (2)C11—C12—C13—C140.2 (4)
O2—S1—N1—C8149.37 (19)C12—C13—C14—C150.5 (4)
C19—S1—N1—C895.3 (2)C11—C10—C15—C141.9 (3)
O1—S1—N1—C15171.99 (17)C9—C10—C15—C14178.2 (2)
O2—S1—N1—C1543.0 (2)C11—C10—C15—N1178.6 (2)
C19—S1—N1—C1572.3 (2)C9—C10—C15—N11.3 (2)
C7—S2—C1—C634.8 (3)C13—C14—C15—C101.4 (4)
C7—S2—C1—C2151.5 (2)C13—C14—C15—N1179.3 (2)
C6—C1—C2—C30.0 (4)C8—N1—C15—C102.0 (2)
S2—C1—C2—C3174.0 (2)S1—N1—C15—C10171.65 (15)
C1—C2—C3—C40.9 (5)C8—N1—C15—C14177.5 (2)
C2—C3—C4—C50.3 (5)S1—N1—C15—C147.8 (3)
C3—C4—C5—C61.3 (5)C17—O4—C16—O32.5 (4)
C2—C1—C6—C51.5 (4)C17—O4—C16—C9177.3 (2)
S2—C1—C6—C5175.0 (2)C8—C9—C16—O310.4 (4)
C4—C5—C6—C12.2 (5)C10—C9—C16—O3169.3 (3)
C1—S2—C7—C8119.3 (2)C8—C9—C16—O4169.8 (2)
C15—N1—C8—C91.9 (2)C10—C9—C16—O410.5 (3)
S1—N1—C8—C9170.77 (17)C16—O4—C17—C18166.6 (3)
C15—N1—C8—C7177.4 (2)O1—S1—C19—C2048.4 (2)
S1—N1—C8—C713.7 (3)O2—S1—C19—C20179.2 (2)
S2—C7—C8—C9103.3 (3)N1—S1—C19—C2065.7 (2)
S2—C7—C8—N171.4 (3)O1—S1—C19—C24129.6 (2)
N1—C8—C9—C101.1 (3)O2—S1—C19—C242.9 (3)
C7—C8—C9—C10176.5 (2)N1—S1—C19—C24116.4 (2)
N1—C8—C9—C16179.2 (2)C24—C19—C20—C212.1 (4)
C7—C8—C9—C163.8 (4)S1—C19—C20—C21175.8 (2)
C8—C9—C10—C150.2 (3)C19—C20—C21—C220.6 (4)
C16—C9—C10—C15179.6 (2)C20—C21—C22—C230.6 (5)
C8—C9—C10—C11179.7 (3)C21—C22—C23—C240.3 (5)
C16—C9—C10—C110.6 (4)C20—C19—C24—C232.3 (5)
C15—C10—C11—C121.5 (4)S1—C19—C24—C23175.6 (2)
C9—C10—C11—C12178.6 (3)C22—C23—C24—C191.0 (5)
C10—C11—C12—C130.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.972.382.813 (4)107
C7—H7B···O30.972.262.977 (4)130
C11—H11···O40.932.422.932 (3)115
C14—H14···O20.932.412.966 (3)119
C24—H24···O20.932.522.898 (3)105

Experimental details

Crystal data
Chemical formulaC24H21NO4S2
Mr451.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.745 (1), 7.7140 (2), 26.770 (1)
β (°) 116.020 (2)
V3)2179.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.927, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
9731, 4116, 2128
Rint0.037
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 0.82
No. of reflections4116
No. of parameters281
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.972.382.813 (4)107
C7—H7B···O30.972.262.977 (4)130
C11—H11···O40.932.422.932 (3)115
C14—H14···O20.932.412.966 (3)119
C24—H24···O20.932.522.898 (3)105
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSatis Kumar, B. K., Gayathri, D., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2006). Acta Cryst. E62, o5388–o5389.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds