metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m284-m285

Bis[3-chloro-6-(3,5-di­methyl-1H-pyrazol-1-yl)picolinato-κ3O,N,N′]copper(II) tetra­hydrate

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 7 October 2007; accepted 21 December 2007; online 4 January 2008)

In the title complex, [Cu(C11H9ClN3O2)2]·4H2O, the CuII atom is in a distorted octa­hedral coordination environment, coordinated by four N atoms and two O atoms from two tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The mol­ecules are linked via inter­molecular O—H⋯O hydrogen bonds involving water mol­ecules to form extended chains along [010], and there are short Cl⋯Cl contacts [3.153 (4) Å].

Related literature

For related literature, see: Aliev et al. (1988[Aliev, Z. G., Atovmyan, L. O. & Saratovskikh, E. A. (1988). lzv. Akad. Nauk. SSSR Khim. pp. 2495-2501.]); Bhatia et al. (1981[Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.]); Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67-88.]); Kai et al. (2007[Kai, Z., Yin, X.-H., Zhang, S.-S., Zhuang, Y. & Hu, F.-L. (2007). Acta Cryst. E63, o4801.]); Kuang et al. (1997[Kuang, S. M., Zhang, Z. Z. & Wang, Q. G. (1997). J. Chem. Soc. Dalton Trans. pp. 4477-4478.]); Ramazani et al. (2002[Ramazani, A., Morsali, A. & Jamali, F. (2002). Z. Kristallogr. New Cryst. Struct. 217, 228-229.]); Xu et al. (2001[Xu, A.-W., Su, C.-Y., Zhang, Z.-F., Cai, Y.-P. & Chen, C.-L. (2001). New J. Chem. 25, 479-482.]); Yaghi & Li (1996[Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295-296.]); Yin et al. (2007[Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.]); Zhao et al. (2007[Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3023.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H9ClN3O2)2]·4H2O

  • Mr = 636.93

  • Triclinic, [P \overline 1]

  • a = 9.6578 (9) Å

  • b = 11.2637 (14) Å

  • c = 14.3127 (18) Å

  • α = 92.349 (2)°

  • β = 106.090 (2)°

  • γ = 114.065 (3)°

  • V = 1344.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 298 (2) K

  • 0.59 × 0.52 × 0.50 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.571, Tmax = 0.617 (expected range = 0.543–0.586)

  • 7014 measured reflections

  • 4664 independent reflections

  • 3789 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.03

  • 4664 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6 0.85 1.96 2.804 (4) 170
O5—H5B⋯O4i 0.85 1.98 2.818 (4) 170
O6—H6A⋯O2 0.85 2.24 3.090 (5) 176
O6—H6B⋯O7ii 0.85 1.85 2.697 (4) 176
O8—H8A⋯O5 0.85 2.10 2.947 (5) 178
O8—H8B⋯O5iii 0.85 1.98 2.825 (5) 179
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal compounds containing pyrazolyl pyridine ligands have been of great interest for many years (Kuang et al., 1997; Ramazani et al., 2002). These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). Inorganic supramolecular chemistry, and in particular the construction of polymeric coordination networks, is an extremely topical area of research (Xu et al.., 2001; Yaghi et al.., 1996) and the construction of a wide variety of network topologies has been achieved through ligand design and the use of different counter-anions. Our work is aimed at obtaining multidimensional metal complexes. On the basis of the above-mentioned considerations, we designed and synthesized the flexible tridentate ligand 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) (Kai et al., 2007), which offers advantages over rigid ligands in that it can adopt a different coordination modes according to the geometric needs of the coordination environment of the transition metal. Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II)trihydrate (Yin et al., 2007). As a continuation of these investigations, we report in this paper the crystal structure of bis(6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinato) copper(II)tetra-hydrate, (I), Fig. 1.

The title complex, (I), is an asymmetric electronically neutral mononuclear compound with four uncoordinated water molecules (Fig. 1). The CuII atom is coordinated by four N atoms and two O atoms from two tridentate, 6-(3-chloro-(3,5-dimethyl-1H-pyrazol- 1-yl))picolinic acid (CDPA) ligands, respectively. that define a distorted octahedral environment for the copper atom. The Cu—O bond length is 2.073 (2)and 2.176 (2) Å, The Cu—N distances range from 1.969 (2) to 2.214 (2) Å, the C5—C6 and C9—C10 bond lengths are 1.388 (4) and 1.398 (5) Å; they are longer than the normal C=C bond length (1.38 Å) because they participate in the C—N conjugated system. There are many stacking interactions involving the CDPA ligand forming a supramolecular structure.

In the crystal structure, all oxygen atoms, except O1 and O3, bound to the metal center, contribute to the formation of intermolecular hydrogen bonds involving the solvate water molecules (Zhao et al., 2007), and there are short Cl···Cl contacts (Cl2—Cl2= 3.153 Å), their distances are much shorter than the van der Waal distance(Aliev et al., 1988). (Fig.2. for symmetry codes see Table 2). A great number of H-bonds and short Cl···Cl contacts join the complex to form a three-dimensional supramolecular network structure along b axis.

Related literature top

For related literature, see: Aliev et al. (1988); Bhatia et al. (1981); Costamagna et al. (1992); Kai et al. (2007); Kuang et al. (1997); Ramazani et al. (2002); Xu et al. (2001); Yaghi & Li (1996); Yin et al. (2007); Zhao et al. (2007).

Experimental top

6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid, and CuSO4. 6H2O were available commercially and were used without further purification. Equimolar 6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid (1 mmol, 217 mg) was dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, To this solution was added CuSO4.6H2O (0.5 mmol, 119 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, blue blocks of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 72%). Elemental analysis: found: C, 53.708; H, 4.20; N, 17.04;; calc. for C22H20CuClN6O4: C, 53.78; H, 4.10; N, 17.10.

Refinement top

H atoms on C atoms were positoned geometrically and refined using a riding model with C—H =0.96Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps and the O—H distances were constrained 0.85 Å, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme, H atoms have been omitted for clarity
[Figure 2] Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines, H atoms have been omitted for clarity.
Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato-κ3O,N,N']copper(II) tetrahydrate top
Crystal data top
[Cu(C11H9ClN3O2)2]·4H2OZ = 2
Mr = 636.93F(000) = 654
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6578 (9) ÅCell parameters from 3642 reflections
b = 11.2637 (14) Åθ = 2.4–27.8°
c = 14.3127 (18) ŵ = 1.07 mm1
α = 92.349 (2)°T = 298 K
β = 106.090 (2)°Block, blue
γ = 114.065 (3)°0.59 × 0.52 × 0.50 mm
V = 1344.7 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4664 independent reflections
Radiation source: fine-focus sealed tube3789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.571, Tmax = 0.617k = 713
7014 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.138P]
where P = (Fo2 + 2Fc2)/3
4664 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(C11H9ClN3O2)2]·4H2Oγ = 114.065 (3)°
Mr = 636.93V = 1344.7 (3) Å3
Triclinic, P1Z = 2
a = 9.6578 (9) ÅMo Kα radiation
b = 11.2637 (14) ŵ = 1.07 mm1
c = 14.3127 (18) ÅT = 298 K
α = 92.349 (2)°0.59 × 0.52 × 0.50 mm
β = 106.090 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4664 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3789 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 0.617Rint = 0.016
7014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
4664 reflectionsΔρmin = 0.48 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26465 (4)0.01979 (4)0.24804 (3)0.03700 (13)
Cl10.05694 (11)0.41095 (9)0.17347 (7)0.0574 (2)
Cl20.08351 (12)0.43064 (9)0.42400 (7)0.0646 (3)
N10.2134 (3)0.1366 (2)0.16023 (16)0.0305 (5)
N20.2500 (3)0.0211 (2)0.04162 (17)0.0352 (5)
N30.2667 (3)0.0574 (2)0.11161 (18)0.0395 (6)
N40.3193 (3)0.0982 (2)0.33689 (16)0.0324 (5)
N50.5845 (3)0.0389 (2)0.36071 (17)0.0347 (5)
N60.5287 (3)0.1231 (2)0.31390 (18)0.0376 (6)
O10.2253 (3)0.1378 (2)0.34278 (16)0.0530 (6)
O20.1882 (3)0.3198 (3)0.35335 (17)0.0664 (7)
O30.0307 (3)0.1408 (3)0.22898 (19)0.0631 (7)
O40.0869 (3)0.2981 (3)0.3052 (2)0.0967 (12)
O50.6077 (3)0.6078 (3)0.1622 (2)0.0812 (9)
H5A0.54840.58810.19870.097*
H5B0.70460.63790.19910.097*
O60.4476 (4)0.5544 (4)0.3027 (2)0.1041 (11)
H6A0.38010.49030.31960.125*
H6B0.53710.58490.34870.125*
O70.2625 (4)0.3401 (4)0.5565 (2)0.1128 (14)
H7D0.21740.32870.49460.135*
H7E0.19200.32340.58510.135*
O80.5577 (6)0.3762 (5)0.0299 (3)0.151 (2)
H8A0.57270.44230.06900.182*
H8B0.50760.37980.02820.182*
C10.1974 (4)0.2295 (3)0.3083 (2)0.0409 (7)
C20.1742 (3)0.2257 (3)0.1976 (2)0.0324 (6)
C30.1224 (3)0.3012 (3)0.1356 (2)0.0381 (7)
C40.1170 (4)0.2856 (3)0.0382 (2)0.0479 (8)
H40.08410.33710.00340.057*
C50.1595 (4)0.1955 (3)0.0018 (2)0.0453 (8)
H50.15590.18470.06370.054*
C60.2079 (3)0.1210 (3)0.0667 (2)0.0331 (6)
C70.2632 (5)0.0403 (4)0.1324 (3)0.0605 (10)
H7A0.15460.02380.16640.091*
H7B0.30210.00370.17540.091*
H7C0.32890.13380.11340.091*
C80.2695 (4)0.0226 (3)0.0424 (2)0.0421 (7)
C90.2988 (4)0.1298 (3)0.0245 (3)0.0484 (8)
H90.31810.18060.06760.058*
C100.2944 (4)0.1488 (3)0.0707 (3)0.0444 (8)
C110.3113 (5)0.2561 (4)0.1247 (3)0.0666 (11)
H11A0.41860.22380.16940.100*
H11B0.28920.33040.07800.100*
H11C0.23700.28280.16110.100*
C120.0307 (4)0.2160 (3)0.2893 (2)0.0481 (8)
C130.1965 (3)0.2044 (3)0.3486 (2)0.0359 (7)
C140.2302 (4)0.2895 (3)0.4077 (2)0.0405 (7)
C150.3880 (4)0.2626 (3)0.4558 (2)0.0466 (8)
H150.41080.31890.49660.056*
C160.5106 (4)0.1545 (3)0.4443 (2)0.0446 (8)
H160.61690.13540.47710.054*
C170.4708 (3)0.0740 (3)0.3816 (2)0.0331 (6)
C180.6426 (4)0.3362 (3)0.2609 (3)0.0595 (10)
H18A0.53170.31780.23490.089*
H18B0.68860.34860.20850.089*
H18C0.69860.41490.31010.089*
C190.6568 (4)0.2227 (3)0.3066 (2)0.0407 (7)
C200.7943 (4)0.2036 (3)0.3471 (2)0.0456 (8)
H200.89810.25980.35020.055*
C210.7478 (3)0.0879 (3)0.3812 (2)0.0398 (7)
C220.8476 (4)0.0199 (4)0.4272 (3)0.0674 (11)
H22A0.95400.06680.42410.101*
H22B0.80080.06890.39190.101*
H22C0.85190.01810.49490.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0349 (2)0.0417 (2)0.0385 (2)0.01931 (17)0.01275 (16)0.01578 (16)
Cl10.0640 (5)0.0492 (5)0.0682 (6)0.0368 (4)0.0159 (5)0.0117 (4)
Cl20.0792 (7)0.0425 (5)0.0685 (6)0.0132 (4)0.0369 (5)0.0254 (4)
N10.0250 (11)0.0347 (13)0.0303 (12)0.0120 (10)0.0074 (10)0.0088 (10)
N20.0373 (13)0.0372 (14)0.0299 (13)0.0158 (11)0.0096 (11)0.0087 (10)
N30.0433 (14)0.0409 (14)0.0388 (14)0.0223 (12)0.0131 (12)0.0136 (11)
N40.0308 (12)0.0356 (13)0.0313 (12)0.0144 (11)0.0101 (10)0.0109 (10)
N50.0297 (12)0.0386 (14)0.0354 (13)0.0172 (11)0.0058 (10)0.0105 (11)
N60.0317 (13)0.0386 (14)0.0432 (14)0.0171 (11)0.0093 (11)0.0151 (11)
O10.0644 (15)0.0755 (17)0.0426 (13)0.0471 (14)0.0236 (11)0.0286 (12)
O20.094 (2)0.087 (2)0.0413 (14)0.0615 (17)0.0213 (14)0.0092 (13)
O30.0385 (12)0.0869 (19)0.0636 (16)0.0240 (13)0.0163 (11)0.0444 (15)
O40.0394 (15)0.117 (3)0.111 (3)0.0099 (16)0.0215 (15)0.069 (2)
O50.0692 (18)0.104 (2)0.0615 (17)0.0372 (17)0.0076 (15)0.0196 (16)
O60.0652 (19)0.133 (3)0.080 (2)0.019 (2)0.0139 (17)0.007 (2)
O70.072 (2)0.211 (4)0.0474 (17)0.059 (2)0.0128 (15)0.008 (2)
O80.246 (6)0.188 (5)0.074 (2)0.163 (4)0.027 (3)0.014 (3)
C10.0380 (16)0.054 (2)0.0366 (16)0.0244 (15)0.0141 (14)0.0125 (15)
C20.0257 (14)0.0333 (15)0.0353 (15)0.0110 (12)0.0085 (12)0.0059 (12)
C30.0320 (15)0.0339 (16)0.0462 (18)0.0147 (13)0.0083 (13)0.0091 (13)
C40.053 (2)0.049 (2)0.0448 (19)0.0280 (17)0.0092 (16)0.0218 (16)
C50.0541 (19)0.052 (2)0.0303 (16)0.0250 (16)0.0103 (14)0.0120 (14)
C60.0276 (14)0.0341 (15)0.0316 (15)0.0103 (12)0.0052 (12)0.0074 (12)
C70.077 (3)0.069 (3)0.043 (2)0.034 (2)0.0275 (19)0.0136 (18)
C80.0354 (16)0.0464 (19)0.0366 (17)0.0109 (14)0.0112 (13)0.0033 (14)
C90.0469 (19)0.0461 (19)0.053 (2)0.0185 (16)0.0208 (16)0.0001 (16)
C100.0394 (17)0.0386 (18)0.057 (2)0.0178 (14)0.0177 (15)0.0094 (15)
C110.084 (3)0.053 (2)0.086 (3)0.043 (2)0.041 (2)0.025 (2)
C120.0336 (17)0.055 (2)0.0461 (19)0.0095 (16)0.0134 (14)0.0179 (16)
C130.0392 (16)0.0363 (16)0.0313 (15)0.0129 (13)0.0152 (13)0.0094 (12)
C140.0547 (19)0.0350 (16)0.0340 (16)0.0164 (15)0.0216 (15)0.0121 (13)
C150.066 (2)0.0470 (19)0.0388 (17)0.0337 (17)0.0184 (16)0.0209 (15)
C160.0451 (18)0.054 (2)0.0394 (17)0.0282 (16)0.0082 (14)0.0178 (15)
C170.0323 (15)0.0373 (16)0.0302 (14)0.0164 (13)0.0087 (12)0.0078 (12)
C180.057 (2)0.047 (2)0.076 (3)0.0202 (17)0.025 (2)0.0254 (19)
C190.0402 (17)0.0364 (17)0.0423 (17)0.0142 (14)0.0122 (14)0.0088 (14)
C200.0285 (15)0.0469 (19)0.054 (2)0.0098 (14)0.0124 (14)0.0057 (15)
C210.0283 (15)0.0466 (18)0.0399 (17)0.0165 (14)0.0047 (13)0.0035 (14)
C220.0401 (19)0.086 (3)0.088 (3)0.039 (2)0.0181 (19)0.035 (2)
Geometric parameters (Å, º) top
Cu1—N11.969 (2)C3—C41.382 (4)
Cu1—N42.000 (2)C4—C51.373 (5)
Cu1—O12.073 (2)C4—H40.9300
Cu1—N32.113 (3)C5—C61.388 (4)
Cu1—O32.176 (2)C5—H50.9300
Cu1—N62.214 (2)C7—C81.495 (4)
Cl1—C31.730 (3)C7—H7A0.9600
Cl2—C141.722 (3)C7—H7B0.9600
N1—C61.327 (4)C7—H7C0.9600
N1—C21.347 (4)C8—C91.366 (5)
N2—C81.370 (4)C9—C101.398 (5)
N2—N31.382 (3)C9—H90.9300
N2—C61.408 (4)C10—C111.500 (4)
N3—C101.318 (4)C11—H11A0.9600
N4—C171.329 (3)C11—H11B0.9600
N4—C131.354 (3)C11—H11C0.9600
N5—C211.378 (4)C12—C131.538 (4)
N5—N61.381 (3)C13—C141.382 (4)
N5—C171.409 (4)C14—C151.383 (4)
N6—C191.323 (4)C15—C161.364 (4)
O1—C11.256 (4)C15—H150.9300
O2—C11.229 (4)C16—C171.392 (4)
O3—C121.235 (4)C16—H160.9300
O4—C121.225 (4)C18—C191.497 (4)
O5—H5A0.8500C18—H18A0.9600
O5—H5B0.8500C18—H18B0.9600
O6—H6A0.8501C18—H18C0.9600
O6—H6B0.8500C19—C201.400 (4)
O7—H7D0.8499C20—C211.353 (4)
O7—H7E0.8501C20—H200.9300
O8—H8A0.8501C21—C221.497 (4)
O8—H8B0.8500C22—H22A0.9600
C1—C21.534 (4)C22—H22B0.9600
C2—C31.386 (4)C22—H22C0.9600
N1—Cu1—N4179.30 (9)H7A—C7—H7B109.5
N1—Cu1—O179.35 (9)C8—C7—H7C109.5
N4—Cu1—O1101.05 (9)H7A—C7—H7C109.5
N1—Cu1—N377.32 (9)H7B—C7—H7C109.5
N4—Cu1—N3102.32 (9)C9—C8—N2106.0 (3)
O1—Cu1—N3156.38 (9)C9—C8—C7128.8 (3)
N1—Cu1—O3103.12 (9)N2—C8—C7125.2 (3)
N4—Cu1—O377.47 (9)C8—C9—C10107.2 (3)
O1—Cu1—O390.45 (11)C8—C9—H9126.4
N3—Cu1—O391.28 (10)C10—C9—H9126.4
N1—Cu1—N6103.57 (9)N3—C10—C9110.2 (3)
N4—Cu1—N675.84 (9)N3—C10—C11120.7 (3)
O1—Cu1—N694.00 (10)C9—C10—C11129.0 (3)
N3—Cu1—N694.97 (10)C10—C11—H11A109.5
O3—Cu1—N6153.30 (9)C10—C11—H11B109.5
C6—N1—C2122.1 (2)H11A—C11—H11B109.5
C6—N1—Cu1120.64 (19)C10—C11—H11C109.5
C2—N1—Cu1117.06 (18)H11A—C11—H11C109.5
C8—N2—N3110.4 (2)H11B—C11—H11C109.5
C8—N2—C6133.3 (2)O4—C12—O3126.5 (3)
N3—N2—C6116.2 (2)O4—C12—C13118.1 (3)
C10—N3—N2106.1 (2)O3—C12—C13115.4 (3)
C10—N3—Cu1141.9 (2)N4—C13—C14119.0 (3)
N2—N3—Cu1111.56 (18)N4—C13—C12113.3 (2)
C17—N4—C13121.4 (2)C14—C13—C12127.6 (3)
C17—N4—Cu1120.97 (18)C13—C14—C15119.5 (3)
C13—N4—Cu1117.61 (18)C13—C14—Cl2122.9 (2)
C21—N5—N6110.6 (2)C15—C14—Cl2117.6 (2)
C21—N5—C17132.6 (2)C16—C15—C14120.9 (3)
N6—N5—C17116.7 (2)C16—C15—H15119.6
C19—N6—N5105.3 (2)C14—C15—H15119.6
C19—N6—Cu1142.4 (2)C15—C16—C17117.6 (3)
N5—N6—Cu1109.55 (16)C15—C16—H16121.2
C1—O1—Cu1115.75 (19)C17—C16—H16121.2
C12—O3—Cu1114.4 (2)N4—C17—C16121.6 (3)
H5A—O5—H5B108.1N4—C17—N5114.6 (2)
H6A—O6—H6B108.5C16—C17—N5123.8 (3)
H7D—O7—H7E108.8C19—C18—H18A109.5
H8A—O8—H8B108.4C19—C18—H18B109.5
O2—C1—O1127.3 (3)H18A—C18—H18B109.5
O2—C1—C2118.0 (3)C19—C18—H18C109.5
O1—C1—C2114.7 (3)H18A—C18—H18C109.5
N1—C2—C3118.9 (3)H18B—C18—H18C109.5
N1—C2—C1112.4 (2)N6—C19—C20110.7 (3)
C3—C2—C1128.7 (3)N6—C19—C18120.5 (3)
C4—C3—C2119.1 (3)C20—C19—C18128.8 (3)
C4—C3—Cl1117.9 (2)C21—C20—C19107.2 (3)
C2—C3—Cl1122.9 (2)C21—C20—H20126.4
C5—C4—C3121.1 (3)C19—C20—H20126.4
C5—C4—H4119.4C20—C21—N5106.1 (3)
C3—C4—H4119.4C20—C21—C22128.5 (3)
C4—C5—C6117.3 (3)N5—C21—C22125.4 (3)
C4—C5—H5121.3C21—C22—H22A109.5
C6—C5—H5121.3C21—C22—H22B109.5
N1—C6—C5121.3 (3)H22A—C22—H22B109.5
N1—C6—N2113.4 (2)C21—C22—H22C109.5
C5—C6—N2125.2 (3)H22A—C22—H22C109.5
C8—C7—H7A109.5H22B—C22—H22C109.5
C8—C7—H7B109.5
O1—Cu1—N1—C6178.1 (2)N1—C2—C3—Cl1175.8 (2)
N3—Cu1—N1—C61.8 (2)C1—C2—C3—Cl15.3 (4)
O3—Cu1—N1—C690.2 (2)C2—C3—C4—C51.1 (5)
N6—Cu1—N1—C690.3 (2)Cl1—C3—C4—C5176.7 (3)
O1—Cu1—N1—C22.46 (19)C3—C4—C5—C60.0 (5)
N3—Cu1—N1—C2173.8 (2)C2—N1—C6—C50.7 (4)
O3—Cu1—N1—C285.5 (2)Cu1—N1—C6—C5174.8 (2)
N6—Cu1—N1—C294.04 (19)C2—N1—C6—N2178.7 (2)
C8—N2—N3—C100.6 (3)Cu1—N1—C6—N23.3 (3)
C6—N2—N3—C10175.6 (2)C4—C5—C6—N10.2 (4)
C8—N2—N3—Cu1173.32 (18)C4—C5—C6—N2177.6 (3)
C6—N2—N3—Cu110.5 (3)C8—N2—C6—N1175.6 (3)
N1—Cu1—N3—C10177.1 (4)N3—N2—C6—N19.3 (3)
N4—Cu1—N3—C102.3 (4)C8—N2—C6—C56.4 (5)
O1—Cu1—N3—C10173.8 (3)N3—N2—C6—C5168.7 (3)
O3—Cu1—N3—C1079.8 (3)N3—N2—C8—C90.1 (3)
N6—Cu1—N3—C1074.3 (3)C6—N2—C8—C9175.3 (3)
N1—Cu1—N3—N26.59 (17)N3—N2—C8—C7178.5 (3)
N4—Cu1—N3—N2172.80 (17)C6—N2—C8—C76.2 (5)
O1—Cu1—N3—N215.7 (4)N2—C8—C9—C100.6 (3)
O3—Cu1—N3—N2109.75 (18)C7—C8—C9—C10179.0 (3)
N6—Cu1—N3—N296.23 (18)N2—N3—C10—C91.0 (3)
O1—Cu1—N4—C1798.3 (2)Cu1—N3—C10—C9169.8 (3)
N3—Cu1—N4—C1785.1 (2)N2—N3—C10—C11177.1 (3)
O3—Cu1—N4—C17173.7 (2)Cu1—N3—C10—C1112.1 (5)
N6—Cu1—N4—C177.0 (2)C8—C9—C10—N31.1 (4)
O1—Cu1—N4—C1382.6 (2)C8—C9—C10—C11176.9 (3)
N3—Cu1—N4—C1394.0 (2)Cu1—O3—C12—O4166.2 (4)
O3—Cu1—N4—C135.4 (2)Cu1—O3—C12—C1314.6 (4)
N6—Cu1—N4—C13173.9 (2)C17—N4—C13—C140.6 (4)
C21—N5—N6—C190.4 (3)Cu1—N4—C13—C14178.5 (2)
C17—N5—N6—C19177.3 (3)C17—N4—C13—C12179.0 (3)
C21—N5—N6—Cu1165.40 (19)Cu1—N4—C13—C120.1 (3)
C17—N5—N6—Cu116.9 (3)O4—C12—C13—N4170.4 (3)
N1—Cu1—N6—C1910.0 (4)O3—C12—C13—N410.2 (4)
N4—Cu1—N6—C19169.6 (4)O4—C12—C13—C1411.3 (6)
O1—Cu1—N6—C1990.0 (4)O3—C12—C13—C14168.1 (3)
N3—Cu1—N6—C1968.2 (4)N4—C13—C14—C152.0 (4)
O3—Cu1—N6—C19171.0 (3)C12—C13—C14—C15179.9 (3)
N1—Cu1—N6—N5167.16 (17)N4—C13—C14—Cl2177.5 (2)
N4—Cu1—N6—N512.44 (17)C12—C13—C14—Cl20.7 (5)
O1—Cu1—N6—N5112.84 (18)C13—C14—C15—C161.2 (5)
N3—Cu1—N6—N589.03 (18)Cl2—C14—C15—C16178.2 (3)
O3—Cu1—N6—N513.8 (3)C14—C15—C16—C170.8 (5)
N1—Cu1—O1—C13.6 (2)C13—N4—C17—C161.5 (4)
N4—Cu1—O1—C1175.8 (2)Cu1—N4—C17—C16179.4 (2)
N3—Cu1—O1—C112.7 (4)C13—N4—C17—N5179.0 (2)
O3—Cu1—O1—C1106.9 (2)Cu1—N4—C17—N50.1 (3)
N6—Cu1—O1—C199.4 (2)C15—C16—C17—N42.2 (5)
N1—Cu1—O3—C12168.9 (3)C15—C16—C17—N5178.4 (3)
N4—Cu1—O3—C1211.5 (3)C21—N5—C17—N4170.6 (3)
O1—Cu1—O3—C1289.7 (3)N6—N5—C17—N412.3 (4)
N3—Cu1—O3—C12113.9 (3)C21—N5—C17—C169.9 (5)
N6—Cu1—O3—C1210.1 (4)N6—N5—C17—C16167.1 (3)
Cu1—O1—C1—O2171.3 (3)N5—N6—C19—C200.5 (3)
Cu1—O1—C1—C28.2 (3)Cu1—N6—C19—C20157.2 (3)
C6—N1—C2—C31.7 (4)N5—N6—C19—C18178.7 (3)
Cu1—N1—C2—C3173.9 (2)Cu1—N6—C19—C1823.6 (5)
C6—N1—C2—C1177.4 (2)N6—C19—C20—C210.4 (4)
Cu1—N1—C2—C17.0 (3)C18—C19—C20—C21178.7 (3)
O2—C1—C2—N1169.5 (3)C19—C20—C21—N50.2 (4)
O1—C1—C2—N110.0 (4)C19—C20—C21—C22177.2 (4)
O2—C1—C2—C39.5 (5)N6—N5—C21—C200.1 (3)
O1—C1—C2—C3171.0 (3)C17—N5—C21—C20177.1 (3)
N1—C2—C3—C41.9 (4)N6—N5—C21—C22177.0 (3)
C1—C2—C3—C4177.0 (3)C17—N5—C21—C225.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.851.962.804 (4)170
O5—H5B···O4i0.851.982.818 (4)170
O6—H6A···O20.852.243.090 (5)176
O6—H6B···O7ii0.851.852.697 (4)176
O8—H8A···O50.852.102.947 (5)178
O8—H8B···O5iii0.851.982.825 (5)179
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C11H9ClN3O2)2]·4H2O
Mr636.93
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.6578 (9), 11.2637 (14), 14.3127 (18)
α, β, γ (°)92.349 (2), 106.090 (2), 114.065 (3)
V3)1344.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.59 × 0.52 × 0.50
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.571, 0.617
No. of measured, independent and
observed [I > 2σ(I)] reflections
7014, 4664, 3789
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.03
No. of reflections4664
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.48

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.851.962.804 (4)169.7
O5—H5B···O4i0.851.982.818 (4)169.5
O6—H6A···O20.852.243.090 (5)175.7
O6—H6B···O7ii0.851.852.697 (4)175.9
O8—H8A···O50.852.102.947 (5)178.4
O8—H8B···O5iii0.851.982.825 (5)178.8
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was sponsored by the Talent Highland research program of Guangxi University (grant No. 205121), the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation Guangxi Research Institute of Chemical Industry, and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012 and 0509ZD047).

References

First citationAliev, Z. G., Atovmyan, L. O. & Saratovskikh, E. A. (1988). lzv. Akad. Nauk. SSSR Khim. pp. 2495–2501.  Google Scholar
First citationBhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.  CSD CrossRef Web of Science Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationKai, Z., Yin, X.-H., Zhang, S.-S., Zhuang, Y. & Hu, F.-L. (2007). Acta Cryst. E63, o4801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuang, S. M., Zhang, Z. Z. & Wang, Q. G. (1997). J. Chem. Soc. Dalton Trans. pp. 4477–4478.  Web of Science CSD CrossRef Google Scholar
First citationRamazani, A., Morsali, A. & Jamali, F. (2002). Z. Kristallogr. New Cryst. Struct. 217, 228–229.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, A.-W., Su, C.-Y., Zhang, Z.-F., Cai, Y.-P. & Chen, C.-L. (2001). New J. Chem. 25, 479–482.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295–296.  CSD CrossRef CAS Web of Science Google Scholar
First citationYin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3023.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m284-m285
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds