metal-organic compounds
Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato-κ3O,N,N′]copper(II) tetrahydrate
aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com
In the title complex, [Cu(C11H9ClN3O2)2]·4H2O, the CuII atom is in a distorted octahedral coordination environment, coordinated by four N atoms and two O atoms from two tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The molecules are linked via intermolecular O—H⋯O hydrogen bonds involving water molecules to form extended chains along [010], and there are short Cl⋯Cl contacts [3.153 (4) Å].
Related literature
For related literature, see: Aliev et al. (1988); Bhatia et al. (1981); Costamagna et al. (1992); Kai et al. (2007); Kuang et al. (1997); Ramazani et al. (2002); Xu et al. (2001); Yaghi & Li (1996); Yin et al. (2007); Zhao et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807068110/rn2033sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068110/rn2033Isup2.hkl
6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid, and CuSO4. 6H2O were available commercially and were used without further purification. Equimolar 6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid (1 mmol, 217 mg) was dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, To this solution was added CuSO4.6H2O (0.5 mmol, 119 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, blue blocks of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 72%). Elemental analysis: found: C, 53.708; H, 4.20; N, 17.04;; calc. for C22H20CuClN6O4: C, 53.78; H, 4.10; N, 17.10.
H atoms on C atoms were positoned geometrically and refined using a riding model with C—H =0.96Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps and the O—H distances were constrained 0.85 Å, with Uiso(H) = 1.2Ueq(O).
Data collection: SMART (Siemens, 1996); cell
SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme, H atoms have been omitted for clarity | |
Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines, H atoms have been omitted for clarity. |
[Cu(C11H9ClN3O2)2]·4H2O | Z = 2 |
Mr = 636.93 | F(000) = 654 |
Triclinic, P1 | Dx = 1.573 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6578 (9) Å | Cell parameters from 3642 reflections |
b = 11.2637 (14) Å | θ = 2.4–27.8° |
c = 14.3127 (18) Å | µ = 1.07 mm−1 |
α = 92.349 (2)° | T = 298 K |
β = 106.090 (2)° | Block, blue |
γ = 114.065 (3)° | 0.59 × 0.52 × 0.50 mm |
V = 1344.7 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 4664 independent reflections |
Radiation source: fine-focus sealed tube | 3789 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.571, Tmax = 0.617 | k = −7→13 |
7014 measured reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0452P)2 + 1.138P] where P = (Fo2 + 2Fc2)/3 |
4664 reflections | (Δ/σ)max < 0.001 |
352 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[Cu(C11H9ClN3O2)2]·4H2O | γ = 114.065 (3)° |
Mr = 636.93 | V = 1344.7 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.6578 (9) Å | Mo Kα radiation |
b = 11.2637 (14) Å | µ = 1.07 mm−1 |
c = 14.3127 (18) Å | T = 298 K |
α = 92.349 (2)° | 0.59 × 0.52 × 0.50 mm |
β = 106.090 (2)° |
Bruker SMART CCD area-detector diffractometer | 4664 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3789 reflections with I > 2σ(I) |
Tmin = 0.571, Tmax = 0.617 | Rint = 0.016 |
7014 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.38 e Å−3 |
4664 reflections | Δρmin = −0.48 e Å−3 |
352 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.26465 (4) | 0.01979 (4) | 0.24804 (3) | 0.03700 (13) | |
Cl1 | 0.05694 (11) | 0.41095 (9) | 0.17347 (7) | 0.0574 (2) | |
Cl2 | 0.08351 (12) | −0.43064 (9) | 0.42400 (7) | 0.0646 (3) | |
N1 | 0.2134 (3) | 0.1366 (2) | 0.16023 (16) | 0.0305 (5) | |
N2 | 0.2500 (3) | 0.0211 (2) | 0.04162 (17) | 0.0352 (5) | |
N3 | 0.2667 (3) | −0.0574 (2) | 0.11161 (18) | 0.0395 (6) | |
N4 | 0.3193 (3) | −0.0982 (2) | 0.33689 (16) | 0.0324 (5) | |
N5 | 0.5845 (3) | 0.0389 (2) | 0.36071 (17) | 0.0347 (5) | |
N6 | 0.5287 (3) | 0.1231 (2) | 0.31390 (18) | 0.0376 (6) | |
O1 | 0.2253 (3) | 0.1378 (2) | 0.34278 (16) | 0.0530 (6) | |
O2 | 0.1882 (3) | 0.3198 (3) | 0.35335 (17) | 0.0664 (7) | |
O3 | 0.0307 (3) | −0.1408 (3) | 0.22898 (19) | 0.0631 (7) | |
O4 | −0.0869 (3) | −0.2981 (3) | 0.3052 (2) | 0.0967 (12) | |
O5 | 0.6077 (3) | 0.6078 (3) | 0.1622 (2) | 0.0812 (9) | |
H5A | 0.5484 | 0.5881 | 0.1987 | 0.097* | |
H5B | 0.7046 | 0.6379 | 0.1991 | 0.097* | |
O6 | 0.4476 (4) | 0.5544 (4) | 0.3027 (2) | 0.1041 (11) | |
H6A | 0.3801 | 0.4903 | 0.3196 | 0.125* | |
H6B | 0.5371 | 0.5849 | 0.3487 | 0.125* | |
O7 | 0.2625 (4) | 0.3401 (4) | 0.5565 (2) | 0.1128 (14) | |
H7D | 0.2174 | 0.3287 | 0.4946 | 0.135* | |
H7E | 0.1920 | 0.3234 | 0.5851 | 0.135* | |
O8 | 0.5577 (6) | 0.3762 (5) | 0.0299 (3) | 0.151 (2) | |
H8A | 0.5727 | 0.4423 | 0.0690 | 0.182* | |
H8B | 0.5076 | 0.3798 | −0.0282 | 0.182* | |
C1 | 0.1974 (4) | 0.2295 (3) | 0.3083 (2) | 0.0409 (7) | |
C2 | 0.1742 (3) | 0.2257 (3) | 0.1976 (2) | 0.0324 (6) | |
C3 | 0.1224 (3) | 0.3012 (3) | 0.1356 (2) | 0.0381 (7) | |
C4 | 0.1170 (4) | 0.2856 (3) | 0.0382 (2) | 0.0479 (8) | |
H4 | 0.0841 | 0.3371 | −0.0034 | 0.057* | |
C5 | 0.1595 (4) | 0.1955 (3) | 0.0018 (2) | 0.0453 (8) | |
H5 | 0.1559 | 0.1847 | −0.0637 | 0.054* | |
C6 | 0.2079 (3) | 0.1210 (3) | 0.0667 (2) | 0.0331 (6) | |
C7 | 0.2632 (5) | 0.0403 (4) | −0.1324 (3) | 0.0605 (10) | |
H7A | 0.1546 | 0.0238 | −0.1664 | 0.091* | |
H7B | 0.3021 | 0.0037 | −0.1754 | 0.091* | |
H7C | 0.3289 | 0.1338 | −0.1134 | 0.091* | |
C8 | 0.2695 (4) | −0.0226 (3) | −0.0424 (2) | 0.0421 (7) | |
C9 | 0.2988 (4) | −0.1298 (3) | −0.0245 (3) | 0.0484 (8) | |
H9 | 0.3181 | −0.1806 | −0.0676 | 0.058* | |
C10 | 0.2944 (4) | −0.1488 (3) | 0.0707 (3) | 0.0444 (8) | |
C11 | 0.3113 (5) | −0.2561 (4) | 0.1247 (3) | 0.0666 (11) | |
H11A | 0.4186 | −0.2238 | 0.1694 | 0.100* | |
H11B | 0.2892 | −0.3304 | 0.0780 | 0.100* | |
H11C | 0.2370 | −0.2828 | 0.1611 | 0.100* | |
C12 | 0.0307 (4) | −0.2160 (3) | 0.2893 (2) | 0.0481 (8) | |
C13 | 0.1965 (3) | −0.2044 (3) | 0.3486 (2) | 0.0359 (7) | |
C14 | 0.2302 (4) | −0.2895 (3) | 0.4077 (2) | 0.0405 (7) | |
C15 | 0.3880 (4) | −0.2626 (3) | 0.4558 (2) | 0.0466 (8) | |
H15 | 0.4108 | −0.3189 | 0.4966 | 0.056* | |
C16 | 0.5106 (4) | −0.1545 (3) | 0.4443 (2) | 0.0446 (8) | |
H16 | 0.6169 | −0.1354 | 0.4771 | 0.054* | |
C17 | 0.4708 (3) | −0.0740 (3) | 0.3816 (2) | 0.0331 (6) | |
C18 | 0.6426 (4) | 0.3362 (3) | 0.2609 (3) | 0.0595 (10) | |
H18A | 0.5317 | 0.3178 | 0.2349 | 0.089* | |
H18B | 0.6886 | 0.3486 | 0.2085 | 0.089* | |
H18C | 0.6986 | 0.4149 | 0.3101 | 0.089* | |
C19 | 0.6568 (4) | 0.2227 (3) | 0.3066 (2) | 0.0407 (7) | |
C20 | 0.7943 (4) | 0.2036 (3) | 0.3471 (2) | 0.0456 (8) | |
H20 | 0.8981 | 0.2598 | 0.3502 | 0.055* | |
C21 | 0.7478 (3) | 0.0879 (3) | 0.3812 (2) | 0.0398 (7) | |
C22 | 0.8476 (4) | 0.0199 (4) | 0.4272 (3) | 0.0674 (11) | |
H22A | 0.9540 | 0.0668 | 0.4241 | 0.101* | |
H22B | 0.8008 | −0.0689 | 0.3919 | 0.101* | |
H22C | 0.8519 | 0.0181 | 0.4949 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0349 (2) | 0.0417 (2) | 0.0385 (2) | 0.01931 (17) | 0.01275 (16) | 0.01578 (16) |
Cl1 | 0.0640 (5) | 0.0492 (5) | 0.0682 (6) | 0.0368 (4) | 0.0159 (5) | 0.0117 (4) |
Cl2 | 0.0792 (7) | 0.0425 (5) | 0.0685 (6) | 0.0132 (4) | 0.0369 (5) | 0.0254 (4) |
N1 | 0.0250 (11) | 0.0347 (13) | 0.0303 (12) | 0.0120 (10) | 0.0074 (10) | 0.0088 (10) |
N2 | 0.0373 (13) | 0.0372 (14) | 0.0299 (13) | 0.0158 (11) | 0.0096 (11) | 0.0087 (10) |
N3 | 0.0433 (14) | 0.0409 (14) | 0.0388 (14) | 0.0223 (12) | 0.0131 (12) | 0.0136 (11) |
N4 | 0.0308 (12) | 0.0356 (13) | 0.0313 (12) | 0.0144 (11) | 0.0101 (10) | 0.0109 (10) |
N5 | 0.0297 (12) | 0.0386 (14) | 0.0354 (13) | 0.0172 (11) | 0.0058 (10) | 0.0105 (11) |
N6 | 0.0317 (13) | 0.0386 (14) | 0.0432 (14) | 0.0171 (11) | 0.0093 (11) | 0.0151 (11) |
O1 | 0.0644 (15) | 0.0755 (17) | 0.0426 (13) | 0.0471 (14) | 0.0236 (11) | 0.0286 (12) |
O2 | 0.094 (2) | 0.087 (2) | 0.0413 (14) | 0.0615 (17) | 0.0213 (14) | 0.0092 (13) |
O3 | 0.0385 (12) | 0.0869 (19) | 0.0636 (16) | 0.0240 (13) | 0.0163 (11) | 0.0444 (15) |
O4 | 0.0394 (15) | 0.117 (3) | 0.111 (3) | 0.0099 (16) | 0.0215 (15) | 0.069 (2) |
O5 | 0.0692 (18) | 0.104 (2) | 0.0615 (17) | 0.0372 (17) | 0.0076 (15) | 0.0196 (16) |
O6 | 0.0652 (19) | 0.133 (3) | 0.080 (2) | 0.019 (2) | 0.0139 (17) | −0.007 (2) |
O7 | 0.072 (2) | 0.211 (4) | 0.0474 (17) | 0.059 (2) | 0.0128 (15) | 0.008 (2) |
O8 | 0.246 (6) | 0.188 (5) | 0.074 (2) | 0.163 (4) | 0.027 (3) | 0.014 (3) |
C1 | 0.0380 (16) | 0.054 (2) | 0.0366 (16) | 0.0244 (15) | 0.0141 (14) | 0.0125 (15) |
C2 | 0.0257 (14) | 0.0333 (15) | 0.0353 (15) | 0.0110 (12) | 0.0085 (12) | 0.0059 (12) |
C3 | 0.0320 (15) | 0.0339 (16) | 0.0462 (18) | 0.0147 (13) | 0.0083 (13) | 0.0091 (13) |
C4 | 0.053 (2) | 0.049 (2) | 0.0448 (19) | 0.0280 (17) | 0.0092 (16) | 0.0218 (16) |
C5 | 0.0541 (19) | 0.052 (2) | 0.0303 (16) | 0.0250 (16) | 0.0103 (14) | 0.0120 (14) |
C6 | 0.0276 (14) | 0.0341 (15) | 0.0316 (15) | 0.0103 (12) | 0.0052 (12) | 0.0074 (12) |
C7 | 0.077 (3) | 0.069 (3) | 0.043 (2) | 0.034 (2) | 0.0275 (19) | 0.0136 (18) |
C8 | 0.0354 (16) | 0.0464 (19) | 0.0366 (17) | 0.0109 (14) | 0.0112 (13) | 0.0033 (14) |
C9 | 0.0469 (19) | 0.0461 (19) | 0.053 (2) | 0.0185 (16) | 0.0208 (16) | −0.0001 (16) |
C10 | 0.0394 (17) | 0.0386 (18) | 0.057 (2) | 0.0178 (14) | 0.0177 (15) | 0.0094 (15) |
C11 | 0.084 (3) | 0.053 (2) | 0.086 (3) | 0.043 (2) | 0.041 (2) | 0.025 (2) |
C12 | 0.0336 (17) | 0.055 (2) | 0.0461 (19) | 0.0095 (16) | 0.0134 (14) | 0.0179 (16) |
C13 | 0.0392 (16) | 0.0363 (16) | 0.0313 (15) | 0.0129 (13) | 0.0152 (13) | 0.0094 (12) |
C14 | 0.0547 (19) | 0.0350 (16) | 0.0340 (16) | 0.0164 (15) | 0.0216 (15) | 0.0121 (13) |
C15 | 0.066 (2) | 0.0470 (19) | 0.0388 (17) | 0.0337 (17) | 0.0184 (16) | 0.0209 (15) |
C16 | 0.0451 (18) | 0.054 (2) | 0.0394 (17) | 0.0282 (16) | 0.0082 (14) | 0.0178 (15) |
C17 | 0.0323 (15) | 0.0373 (16) | 0.0302 (14) | 0.0164 (13) | 0.0087 (12) | 0.0078 (12) |
C18 | 0.057 (2) | 0.047 (2) | 0.076 (3) | 0.0202 (17) | 0.025 (2) | 0.0254 (19) |
C19 | 0.0402 (17) | 0.0364 (17) | 0.0423 (17) | 0.0142 (14) | 0.0122 (14) | 0.0088 (14) |
C20 | 0.0285 (15) | 0.0469 (19) | 0.054 (2) | 0.0098 (14) | 0.0124 (14) | 0.0057 (15) |
C21 | 0.0283 (15) | 0.0466 (18) | 0.0399 (17) | 0.0165 (14) | 0.0047 (13) | 0.0035 (14) |
C22 | 0.0401 (19) | 0.086 (3) | 0.088 (3) | 0.039 (2) | 0.0181 (19) | 0.035 (2) |
Cu1—N1 | 1.969 (2) | C3—C4 | 1.382 (4) |
Cu1—N4 | 2.000 (2) | C4—C5 | 1.373 (5) |
Cu1—O1 | 2.073 (2) | C4—H4 | 0.9300 |
Cu1—N3 | 2.113 (3) | C5—C6 | 1.388 (4) |
Cu1—O3 | 2.176 (2) | C5—H5 | 0.9300 |
Cu1—N6 | 2.214 (2) | C7—C8 | 1.495 (4) |
Cl1—C3 | 1.730 (3) | C7—H7A | 0.9600 |
Cl2—C14 | 1.722 (3) | C7—H7B | 0.9600 |
N1—C6 | 1.327 (4) | C7—H7C | 0.9600 |
N1—C2 | 1.347 (4) | C8—C9 | 1.366 (5) |
N2—C8 | 1.370 (4) | C9—C10 | 1.398 (5) |
N2—N3 | 1.382 (3) | C9—H9 | 0.9300 |
N2—C6 | 1.408 (4) | C10—C11 | 1.500 (4) |
N3—C10 | 1.318 (4) | C11—H11A | 0.9600 |
N4—C17 | 1.329 (3) | C11—H11B | 0.9600 |
N4—C13 | 1.354 (3) | C11—H11C | 0.9600 |
N5—C21 | 1.378 (4) | C12—C13 | 1.538 (4) |
N5—N6 | 1.381 (3) | C13—C14 | 1.382 (4) |
N5—C17 | 1.409 (4) | C14—C15 | 1.383 (4) |
N6—C19 | 1.323 (4) | C15—C16 | 1.364 (4) |
O1—C1 | 1.256 (4) | C15—H15 | 0.9300 |
O2—C1 | 1.229 (4) | C16—C17 | 1.392 (4) |
O3—C12 | 1.235 (4) | C16—H16 | 0.9300 |
O4—C12 | 1.225 (4) | C18—C19 | 1.497 (4) |
O5—H5A | 0.8500 | C18—H18A | 0.9600 |
O5—H5B | 0.8500 | C18—H18B | 0.9600 |
O6—H6A | 0.8501 | C18—H18C | 0.9600 |
O6—H6B | 0.8500 | C19—C20 | 1.400 (4) |
O7—H7D | 0.8499 | C20—C21 | 1.353 (4) |
O7—H7E | 0.8501 | C20—H20 | 0.9300 |
O8—H8A | 0.8501 | C21—C22 | 1.497 (4) |
O8—H8B | 0.8500 | C22—H22A | 0.9600 |
C1—C2 | 1.534 (4) | C22—H22B | 0.9600 |
C2—C3 | 1.386 (4) | C22—H22C | 0.9600 |
N1—Cu1—N4 | 179.30 (9) | H7A—C7—H7B | 109.5 |
N1—Cu1—O1 | 79.35 (9) | C8—C7—H7C | 109.5 |
N4—Cu1—O1 | 101.05 (9) | H7A—C7—H7C | 109.5 |
N1—Cu1—N3 | 77.32 (9) | H7B—C7—H7C | 109.5 |
N4—Cu1—N3 | 102.32 (9) | C9—C8—N2 | 106.0 (3) |
O1—Cu1—N3 | 156.38 (9) | C9—C8—C7 | 128.8 (3) |
N1—Cu1—O3 | 103.12 (9) | N2—C8—C7 | 125.2 (3) |
N4—Cu1—O3 | 77.47 (9) | C8—C9—C10 | 107.2 (3) |
O1—Cu1—O3 | 90.45 (11) | C8—C9—H9 | 126.4 |
N3—Cu1—O3 | 91.28 (10) | C10—C9—H9 | 126.4 |
N1—Cu1—N6 | 103.57 (9) | N3—C10—C9 | 110.2 (3) |
N4—Cu1—N6 | 75.84 (9) | N3—C10—C11 | 120.7 (3) |
O1—Cu1—N6 | 94.00 (10) | C9—C10—C11 | 129.0 (3) |
N3—Cu1—N6 | 94.97 (10) | C10—C11—H11A | 109.5 |
O3—Cu1—N6 | 153.30 (9) | C10—C11—H11B | 109.5 |
C6—N1—C2 | 122.1 (2) | H11A—C11—H11B | 109.5 |
C6—N1—Cu1 | 120.64 (19) | C10—C11—H11C | 109.5 |
C2—N1—Cu1 | 117.06 (18) | H11A—C11—H11C | 109.5 |
C8—N2—N3 | 110.4 (2) | H11B—C11—H11C | 109.5 |
C8—N2—C6 | 133.3 (2) | O4—C12—O3 | 126.5 (3) |
N3—N2—C6 | 116.2 (2) | O4—C12—C13 | 118.1 (3) |
C10—N3—N2 | 106.1 (2) | O3—C12—C13 | 115.4 (3) |
C10—N3—Cu1 | 141.9 (2) | N4—C13—C14 | 119.0 (3) |
N2—N3—Cu1 | 111.56 (18) | N4—C13—C12 | 113.3 (2) |
C17—N4—C13 | 121.4 (2) | C14—C13—C12 | 127.6 (3) |
C17—N4—Cu1 | 120.97 (18) | C13—C14—C15 | 119.5 (3) |
C13—N4—Cu1 | 117.61 (18) | C13—C14—Cl2 | 122.9 (2) |
C21—N5—N6 | 110.6 (2) | C15—C14—Cl2 | 117.6 (2) |
C21—N5—C17 | 132.6 (2) | C16—C15—C14 | 120.9 (3) |
N6—N5—C17 | 116.7 (2) | C16—C15—H15 | 119.6 |
C19—N6—N5 | 105.3 (2) | C14—C15—H15 | 119.6 |
C19—N6—Cu1 | 142.4 (2) | C15—C16—C17 | 117.6 (3) |
N5—N6—Cu1 | 109.55 (16) | C15—C16—H16 | 121.2 |
C1—O1—Cu1 | 115.75 (19) | C17—C16—H16 | 121.2 |
C12—O3—Cu1 | 114.4 (2) | N4—C17—C16 | 121.6 (3) |
H5A—O5—H5B | 108.1 | N4—C17—N5 | 114.6 (2) |
H6A—O6—H6B | 108.5 | C16—C17—N5 | 123.8 (3) |
H7D—O7—H7E | 108.8 | C19—C18—H18A | 109.5 |
H8A—O8—H8B | 108.4 | C19—C18—H18B | 109.5 |
O2—C1—O1 | 127.3 (3) | H18A—C18—H18B | 109.5 |
O2—C1—C2 | 118.0 (3) | C19—C18—H18C | 109.5 |
O1—C1—C2 | 114.7 (3) | H18A—C18—H18C | 109.5 |
N1—C2—C3 | 118.9 (3) | H18B—C18—H18C | 109.5 |
N1—C2—C1 | 112.4 (2) | N6—C19—C20 | 110.7 (3) |
C3—C2—C1 | 128.7 (3) | N6—C19—C18 | 120.5 (3) |
C4—C3—C2 | 119.1 (3) | C20—C19—C18 | 128.8 (3) |
C4—C3—Cl1 | 117.9 (2) | C21—C20—C19 | 107.2 (3) |
C2—C3—Cl1 | 122.9 (2) | C21—C20—H20 | 126.4 |
C5—C4—C3 | 121.1 (3) | C19—C20—H20 | 126.4 |
C5—C4—H4 | 119.4 | C20—C21—N5 | 106.1 (3) |
C3—C4—H4 | 119.4 | C20—C21—C22 | 128.5 (3) |
C4—C5—C6 | 117.3 (3) | N5—C21—C22 | 125.4 (3) |
C4—C5—H5 | 121.3 | C21—C22—H22A | 109.5 |
C6—C5—H5 | 121.3 | C21—C22—H22B | 109.5 |
N1—C6—C5 | 121.3 (3) | H22A—C22—H22B | 109.5 |
N1—C6—N2 | 113.4 (2) | C21—C22—H22C | 109.5 |
C5—C6—N2 | 125.2 (3) | H22A—C22—H22C | 109.5 |
C8—C7—H7A | 109.5 | H22B—C22—H22C | 109.5 |
C8—C7—H7B | 109.5 | ||
O1—Cu1—N1—C6 | −178.1 (2) | N1—C2—C3—Cl1 | 175.8 (2) |
N3—Cu1—N1—C6 | −1.8 (2) | C1—C2—C3—Cl1 | −5.3 (4) |
O3—Cu1—N1—C6 | −90.2 (2) | C2—C3—C4—C5 | 1.1 (5) |
N6—Cu1—N1—C6 | 90.3 (2) | Cl1—C3—C4—C5 | −176.7 (3) |
O1—Cu1—N1—C2 | −2.46 (19) | C3—C4—C5—C6 | 0.0 (5) |
N3—Cu1—N1—C2 | 173.8 (2) | C2—N1—C6—C5 | −0.7 (4) |
O3—Cu1—N1—C2 | 85.5 (2) | Cu1—N1—C6—C5 | 174.8 (2) |
N6—Cu1—N1—C2 | −94.04 (19) | C2—N1—C6—N2 | −178.7 (2) |
C8—N2—N3—C10 | −0.6 (3) | Cu1—N1—C6—N2 | −3.3 (3) |
C6—N2—N3—C10 | 175.6 (2) | C4—C5—C6—N1 | −0.2 (4) |
C8—N2—N3—Cu1 | 173.32 (18) | C4—C5—C6—N2 | 177.6 (3) |
C6—N2—N3—Cu1 | −10.5 (3) | C8—N2—C6—N1 | −175.6 (3) |
N1—Cu1—N3—C10 | 177.1 (4) | N3—N2—C6—N1 | 9.3 (3) |
N4—Cu1—N3—C10 | −2.3 (4) | C8—N2—C6—C5 | 6.4 (5) |
O1—Cu1—N3—C10 | −173.8 (3) | N3—N2—C6—C5 | −168.7 (3) |
O3—Cu1—N3—C10 | −79.8 (3) | N3—N2—C8—C9 | −0.1 (3) |
N6—Cu1—N3—C10 | 74.3 (3) | C6—N2—C8—C9 | −175.3 (3) |
N1—Cu1—N3—N2 | 6.59 (17) | N3—N2—C8—C7 | −178.5 (3) |
N4—Cu1—N3—N2 | −172.80 (17) | C6—N2—C8—C7 | 6.2 (5) |
O1—Cu1—N3—N2 | 15.7 (4) | N2—C8—C9—C10 | 0.6 (3) |
O3—Cu1—N3—N2 | 109.75 (18) | C7—C8—C9—C10 | 179.0 (3) |
N6—Cu1—N3—N2 | −96.23 (18) | N2—N3—C10—C9 | 1.0 (3) |
O1—Cu1—N4—C17 | −98.3 (2) | Cu1—N3—C10—C9 | −169.8 (3) |
N3—Cu1—N4—C17 | 85.1 (2) | N2—N3—C10—C11 | −177.1 (3) |
O3—Cu1—N4—C17 | 173.7 (2) | Cu1—N3—C10—C11 | 12.1 (5) |
N6—Cu1—N4—C17 | −7.0 (2) | C8—C9—C10—N3 | −1.1 (4) |
O1—Cu1—N4—C13 | 82.6 (2) | C8—C9—C10—C11 | 176.9 (3) |
N3—Cu1—N4—C13 | −94.0 (2) | Cu1—O3—C12—O4 | 166.2 (4) |
O3—Cu1—N4—C13 | −5.4 (2) | Cu1—O3—C12—C13 | −14.6 (4) |
N6—Cu1—N4—C13 | 173.9 (2) | C17—N4—C13—C14 | −0.6 (4) |
C21—N5—N6—C19 | −0.4 (3) | Cu1—N4—C13—C14 | 178.5 (2) |
C17—N5—N6—C19 | 177.3 (3) | C17—N4—C13—C12 | −179.0 (3) |
C21—N5—N6—Cu1 | 165.40 (19) | Cu1—N4—C13—C12 | 0.1 (3) |
C17—N5—N6—Cu1 | −16.9 (3) | O4—C12—C13—N4 | −170.4 (3) |
N1—Cu1—N6—C19 | −10.0 (4) | O3—C12—C13—N4 | 10.2 (4) |
N4—Cu1—N6—C19 | 169.6 (4) | O4—C12—C13—C14 | 11.3 (6) |
O1—Cu1—N6—C19 | −90.0 (4) | O3—C12—C13—C14 | −168.1 (3) |
N3—Cu1—N6—C19 | 68.2 (4) | N4—C13—C14—C15 | 2.0 (4) |
O3—Cu1—N6—C19 | 171.0 (3) | C12—C13—C14—C15 | −179.9 (3) |
N1—Cu1—N6—N5 | −167.16 (17) | N4—C13—C14—Cl2 | −177.5 (2) |
N4—Cu1—N6—N5 | 12.44 (17) | C12—C13—C14—Cl2 | 0.7 (5) |
O1—Cu1—N6—N5 | 112.84 (18) | C13—C14—C15—C16 | −1.2 (5) |
N3—Cu1—N6—N5 | −89.03 (18) | Cl2—C14—C15—C16 | 178.2 (3) |
O3—Cu1—N6—N5 | 13.8 (3) | C14—C15—C16—C17 | −0.8 (5) |
N1—Cu1—O1—C1 | −3.6 (2) | C13—N4—C17—C16 | −1.5 (4) |
N4—Cu1—O1—C1 | 175.8 (2) | Cu1—N4—C17—C16 | 179.4 (2) |
N3—Cu1—O1—C1 | −12.7 (4) | C13—N4—C17—N5 | 179.0 (2) |
O3—Cu1—O1—C1 | −106.9 (2) | Cu1—N4—C17—N5 | −0.1 (3) |
N6—Cu1—O1—C1 | 99.4 (2) | C15—C16—C17—N4 | 2.2 (5) |
N1—Cu1—O3—C12 | −168.9 (3) | C15—C16—C17—N5 | −178.4 (3) |
N4—Cu1—O3—C12 | 11.5 (3) | C21—N5—C17—N4 | −170.6 (3) |
O1—Cu1—O3—C12 | −89.7 (3) | N6—N5—C17—N4 | 12.3 (4) |
N3—Cu1—O3—C12 | 113.9 (3) | C21—N5—C17—C16 | 9.9 (5) |
N6—Cu1—O3—C12 | 10.1 (4) | N6—N5—C17—C16 | −167.1 (3) |
Cu1—O1—C1—O2 | −171.3 (3) | N5—N6—C19—C20 | 0.5 (3) |
Cu1—O1—C1—C2 | 8.2 (3) | Cu1—N6—C19—C20 | −157.2 (3) |
C6—N1—C2—C3 | 1.7 (4) | N5—N6—C19—C18 | −178.7 (3) |
Cu1—N1—C2—C3 | −173.9 (2) | Cu1—N6—C19—C18 | 23.6 (5) |
C6—N1—C2—C1 | −177.4 (2) | N6—C19—C20—C21 | −0.4 (4) |
Cu1—N1—C2—C1 | 7.0 (3) | C18—C19—C20—C21 | 178.7 (3) |
O2—C1—C2—N1 | 169.5 (3) | C19—C20—C21—N5 | 0.2 (4) |
O1—C1—C2—N1 | −10.0 (4) | C19—C20—C21—C22 | 177.2 (4) |
O2—C1—C2—C3 | −9.5 (5) | N6—N5—C21—C20 | 0.1 (3) |
O1—C1—C2—C3 | 171.0 (3) | C17—N5—C21—C20 | −177.1 (3) |
N1—C2—C3—C4 | −1.9 (4) | N6—N5—C21—C22 | −177.0 (3) |
C1—C2—C3—C4 | 177.0 (3) | C17—N5—C21—C22 | 5.8 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O6 | 0.85 | 1.96 | 2.804 (4) | 170 |
O5—H5B···O4i | 0.85 | 1.98 | 2.818 (4) | 170 |
O6—H6A···O2 | 0.85 | 2.24 | 3.090 (5) | 176 |
O6—H6B···O7ii | 0.85 | 1.85 | 2.697 (4) | 176 |
O8—H8A···O5 | 0.85 | 2.10 | 2.947 (5) | 178 |
O8—H8B···O5iii | 0.85 | 1.98 | 2.825 (5) | 179 |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C11H9ClN3O2)2]·4H2O |
Mr | 636.93 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 9.6578 (9), 11.2637 (14), 14.3127 (18) |
α, β, γ (°) | 92.349 (2), 106.090 (2), 114.065 (3) |
V (Å3) | 1344.7 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.07 |
Crystal size (mm) | 0.59 × 0.52 × 0.50 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.571, 0.617 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7014, 4664, 3789 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.101, 1.03 |
No. of reflections | 4664 |
No. of parameters | 352 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.48 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O6 | 0.85 | 1.96 | 2.804 (4) | 169.7 |
O5—H5B···O4i | 0.85 | 1.98 | 2.818 (4) | 169.5 |
O6—H6A···O2 | 0.85 | 2.24 | 3.090 (5) | 175.7 |
O6—H6B···O7ii | 0.85 | 1.85 | 2.697 (4) | 175.9 |
O8—H8A···O5 | 0.85 | 2.10 | 2.947 (5) | 178.4 |
O8—H8B···O5iii | 0.85 | 1.98 | 2.825 (5) | 178.8 |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was sponsored by the Talent Highland research program of Guangxi University (grant No. 205121), the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation Guangxi Research Institute of Chemical Industry, and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012 and 0509ZD047).
References
Aliev, Z. G., Atovmyan, L. O. & Saratovskikh, E. A. (1988). lzv. Akad. Nauk. SSSR Khim. pp. 2495–2501. Google Scholar
Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779. CSD CrossRef Web of Science Google Scholar
Costamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67–88. CrossRef CAS Web of Science Google Scholar
Kai, Z., Yin, X.-H., Zhang, S.-S., Zhuang, Y. & Hu, F.-L. (2007). Acta Cryst. E63, o4801. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kuang, S. M., Zhang, Z. Z. & Wang, Q. G. (1997). J. Chem. Soc. Dalton Trans. pp. 4477–4478. Web of Science CSD CrossRef Google Scholar
Ramazani, A., Morsali, A. & Jamali, F. (2002). Z. Kristallogr. New Cryst. Struct. 217, 228–229. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Xu, A.-W., Su, C.-Y., Zhang, Z.-F., Cai, Y.-P. & Chen, C.-L. (2001). New J. Chem. 25, 479–482. Web of Science CSD CrossRef CAS Google Scholar
Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295–296. CSD CrossRef CAS Web of Science Google Scholar
Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3023. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal compounds containing pyrazolyl pyridine ligands have been of great interest for many years (Kuang et al., 1997; Ramazani et al., 2002). These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). Inorganic supramolecular chemistry, and in particular the construction of polymeric coordination networks, is an extremely topical area of research (Xu et al.., 2001; Yaghi et al.., 1996) and the construction of a wide variety of network topologies has been achieved through ligand design and the use of different counter-anions. Our work is aimed at obtaining multidimensional metal complexes. On the basis of the above-mentioned considerations, we designed and synthesized the flexible tridentate ligand 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) (Kai et al., 2007), which offers advantages over rigid ligands in that it can adopt a different coordination modes according to the geometric needs of the coordination environment of the transition metal. Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II)trihydrate (Yin et al., 2007). As a continuation of these investigations, we report in this paper the crystal structure of bis(6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinato) copper(II)tetra-hydrate, (I), Fig. 1.
The title complex, (I), is an asymmetric electronically neutral mononuclear compound with four uncoordinated water molecules (Fig. 1). The CuII atom is coordinated by four N atoms and two O atoms from two tridentate, 6-(3-chloro-(3,5-dimethyl-1H-pyrazol- 1-yl))picolinic acid (CDPA) ligands, respectively. that define a distorted octahedral environment for the copper atom. The Cu—O bond length is 2.073 (2)and 2.176 (2) Å, The Cu—N distances range from 1.969 (2) to 2.214 (2) Å, the C5—C6 and C9—C10 bond lengths are 1.388 (4) and 1.398 (5) Å; they are longer than the normal C=C bond length (1.38 Å) because they participate in the C—N conjugated system. There are many stacking interactions involving the CDPA ligand forming a supramolecular structure.
In the crystal structure, all oxygen atoms, except O1 and O3, bound to the metal center, contribute to the formation of intermolecular hydrogen bonds involving the solvate water molecules (Zhao et al., 2007), and there are short Cl···Cl contacts (Cl2—Cl2= 3.153 Å), their distances are much shorter than the van der Waal distance(Aliev et al., 1988). (Fig.2. for symmetry codes see Table 2). A great number of H-bonds and short Cl···Cl contacts join the complex to form a three-dimensional supramolecular network structure along b axis.