metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-thio­cyanato-κ4N:N-bis­­({2,4-di­bromo-6-[2-(methyl­amino)ethyl­imino­meth­yl]­phenol­ato-κ3N,N′,O}nickel(II))

aDepartment of Chemistry, Huaihua University, Huaihua 418008, People's Republic of China
*Correspondence e-mail: linhongwei1968@126.com

(Received 26 October 2007; accepted 21 December 2007; online 4 January 2008)

The title complex, [Ni2(C11H11Br2N2O)2(NCS)2], is a thio­cyanate-bridged dinuclear nickel(II) complex. The asymmetric unit contains two molecules. Both Ni atoms in each molecule have a square-pyramidal coordination geometry, and each center is bound by one O and two N atoms of one Schiff base ligand and by one N atom of a bridging thio­cyanate ligand, which define the basal planes. N atoms from the bridging thio­cyanate ligands occupy the apical positions.

Related literature

For related literature, see: Arıcı et al. (2005[Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.]); Hebbachi & Benali-Cherif (2005[Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190.]); Henkel & Krebs (2004[Henkel, G. & Krebs, B. (2004). Chem. Rev. 104, 801-824.]); Salmon et al. (2005[Salmon, L., Thuéry, P. & Ephritikhine, M. (2005). Acta Cryst. E61, m2607-m2609.]); Sarı et al. (2006[Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563-m565.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]); Weston (2005[Weston, J. (2005). Chem. Rev. 105, 2151-2174.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C10H11Br2N2O)2(NCS)2]

  • Mr = 451.82

  • Monoclinic, P 21/n

  • a = 9.2040 (18) Å

  • b = 19.833 (4) Å

  • c = 16.319 (3) Å

  • β = 100.71 (3)°

  • V = 2927.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.92 mm−1

  • T = 293 (2) K

  • 0.43 × 0.40 × 0.38 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.155, Tmax = 0.178 (expected range = 0.063–0.072)

  • 25095 measured reflections

  • 6938 independent reflections

  • 2858 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.150

  • S = 0.94

  • 6938 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.91 2.48 3.269 (9) 146
N5—H5A⋯O1i 0.91 2.15 3.012 (9) 158
N5—H5A⋯Br2i 0.91 2.86 3.500 (7) 129
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of multidentate ligands and their metallosupramolecular chemistry are of great interest (Henkel & Krebs, 2004; Tshuva & Lippard, 2004; Weston, 2005). Schiff base ligands readily lead to the formation of diverse complexes with most metal ions (Arıcı et al., 2005; Salmon et al., 2005; Hebbachi & Benali-Cherif, 2005; Sarı et al., 2006).

The two Ni centers in the title dinuclear nickel(II) complex are doubly-bridged by thiocyanato ligands. Both Ni atoms are five-coordinate and have square pyramidal geometry but both thiocyanate bridges are asymmetric where the distances are 2.643 (8) and 1.973 (8)Å for Ni1···N6 and Ni1—N3 respectively and 2.589 (8) and 1.978 (7)Å for Ni2···N3 and Ni2—N6 respectively. The Ni···Ni distance is 3.268 (3) Å.

Related literature top

For related literature, see: Arıcı et al. (2005); Hebbachi & Benali-Cherif (2005); Henkel & Krebs (2004); Salmon et al. (2005); Sarı et al. (2006); Tshuva & Lippard (2004); Weston (2005).

Experimental top

3,5-Dibromosalicylaldehyde (1.0 mmol, 280.0 mg), N-methylethane-1,2-diamine (1.0 mmol, 74.0 mg), NH4NCS (1.0 mmol, 76.0 mg), and Ni(NO3)2.6H2O (1.0 mmol, 290.8 mg) were dissolved in a 50 ml me thanol solution. The mixture was stirred at reflux for half an hour to give a green solution. After keeping the solution in air for 15 days to allow slow evaporation, green block-like crystals were formed.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.91 Å, and with Uiso(H) values set to 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
Di-µ-thiocyanato-κ4N:N-bis({2,4-dibromo-6-[2- (methylamino)ethyliminomethyl]phenolato-κ3N,N',O}nickel(II)) top
Crystal data top
[Ni2(C10H11Br2N2O)2(NCS)2]F(000) = 1760
Mr = 451.82Dx = 2.051 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2040 (18) ÅCell parameters from 1344 reflections
b = 19.833 (4) Åθ = 2.4–24.5°
c = 16.319 (3) ŵ = 6.92 mm1
β = 100.71 (3)°T = 293 K
V = 2927.0 (10) Å3Block, green
Z = 80.43 × 0.40 × 0.38 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6938 independent reflections
Radiation source: fine-focus sealed tube2858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.155, Tmax = 0.178k = 2525
25095 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
6938 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ni2(C10H11Br2N2O)2(NCS)2]V = 2927.0 (10) Å3
Mr = 451.82Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.2040 (18) ŵ = 6.92 mm1
b = 19.833 (4) ÅT = 293 K
c = 16.319 (3) Å0.43 × 0.40 × 0.38 mm
β = 100.71 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6938 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2858 reflections with I > 2σ(I)
Tmin = 0.155, Tmax = 0.178Rint = 0.139
25095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.94Δρmax = 0.65 e Å3
6938 reflectionsΔρmin = 0.77 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.59997 (12)0.01132 (5)0.24264 (7)0.0378 (3)
Ni20.61799 (12)0.12004 (5)0.77631 (7)0.0349 (3)
Br10.41051 (12)0.33151 (5)0.43009 (7)0.0685 (4)
Br20.31619 (12)0.05315 (5)0.46208 (6)0.0564 (3)
Br30.36394 (13)0.17932 (5)1.00163 (7)0.0669 (4)
Br40.37706 (12)0.45174 (5)0.90757 (7)0.0644 (3)
S10.8160 (4)0.18127 (14)0.37004 (19)0.0779 (10)
S20.8415 (4)0.07194 (15)0.8944 (2)0.0851 (10)
O10.4903 (6)0.0452 (3)0.3223 (4)0.0440 (16)
O20.5198 (6)0.1600 (3)0.8571 (3)0.0468 (16)
N10.6349 (8)0.1003 (3)0.2016 (4)0.045 (2)
N20.6704 (8)0.0212 (4)0.1394 (4)0.050 (2)
H2A0.60740.05430.11640.060*
N30.6368 (8)0.0765 (4)0.2996 (5)0.049 (2)
N40.6322 (8)0.2040 (3)0.7179 (5)0.047 (2)
N50.6960 (8)0.0799 (3)0.6800 (4)0.0449 (19)
H5A0.64730.04040.66600.054*
N60.6537 (9)0.0353 (4)0.8409 (5)0.049 (2)
C10.5295 (10)0.1639 (4)0.3041 (5)0.041 (2)
C20.4755 (10)0.1078 (4)0.3426 (5)0.041 (2)
C30.3982 (9)0.1240 (4)0.4082 (5)0.040 (2)
C40.3789 (10)0.1898 (4)0.4331 (6)0.047 (2)
H40.32750.19860.47590.056*
C50.4366 (10)0.2416 (4)0.3938 (6)0.045 (2)
C60.5112 (10)0.2302 (4)0.3303 (6)0.052 (3)
H60.54970.26620.30460.062*
C70.6038 (10)0.1557 (4)0.2333 (6)0.048 (3)
H70.63110.19500.20880.057*
C80.7089 (11)0.0998 (5)0.1295 (6)0.057 (3)
H8A0.81530.09750.14750.068*
H8B0.68480.14030.09630.068*
C90.6515 (11)0.0371 (5)0.0789 (6)0.060 (3)
H9A0.54820.04260.05370.072*
H9B0.70760.02930.03510.072*
C100.7144 (10)0.1202 (5)0.3285 (6)0.045 (2)
C110.5255 (9)0.2750 (4)0.8123 (6)0.041 (2)
C120.4913 (9)0.2237 (4)0.8649 (5)0.037 (2)
C130.4210 (10)0.2452 (4)0.9302 (5)0.045 (2)
C140.3902 (10)0.3114 (4)0.9432 (6)0.048 (3)
H140.34490.32340.98750.057*
C150.4267 (9)0.3604 (4)0.8902 (6)0.043 (2)
C160.4953 (10)0.3435 (4)0.8254 (6)0.047 (2)
H160.52160.37660.79060.057*
C170.5928 (10)0.2625 (5)0.7395 (6)0.052 (3)
H170.60810.29920.70660.062*
C180.6914 (11)0.1982 (4)0.6398 (6)0.059 (3)
H18A0.79730.20590.65020.071*
H18B0.64420.23050.59870.071*
C190.6558 (11)0.1265 (4)0.6100 (6)0.056 (3)
H19A0.55100.12260.58720.067*
H19B0.71030.11530.56640.067*
C200.8556 (10)0.0652 (5)0.6983 (6)0.061 (3)
H20A0.87250.02390.72930.091*
H20B0.90680.10140.73050.091*
H20C0.89140.06070.64690.091*
C210.7334 (10)0.0092 (5)0.8631 (6)0.044 (2)
C220.8217 (10)0.0497 (5)0.1533 (6)0.071 (3)
H22A0.84320.06570.10130.107*
H22B0.82830.08650.19210.107*
H22C0.89170.01540.17550.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0465 (8)0.0318 (6)0.0374 (7)0.0009 (5)0.0140 (6)0.0000 (5)
Ni20.0449 (7)0.0264 (6)0.0357 (7)0.0005 (5)0.0140 (6)0.0007 (5)
Br10.0776 (8)0.0362 (6)0.0944 (9)0.0020 (5)0.0229 (7)0.0143 (6)
Br20.0783 (8)0.0426 (6)0.0560 (7)0.0078 (5)0.0329 (6)0.0048 (5)
Br30.0927 (9)0.0551 (7)0.0637 (7)0.0114 (6)0.0426 (7)0.0071 (6)
Br40.0686 (8)0.0395 (6)0.0873 (9)0.0079 (5)0.0202 (7)0.0125 (6)
S10.101 (2)0.0635 (19)0.069 (2)0.0369 (18)0.0174 (19)0.0090 (16)
S20.088 (2)0.068 (2)0.106 (3)0.0307 (18)0.034 (2)0.0328 (19)
O10.056 (4)0.031 (3)0.048 (4)0.004 (3)0.017 (3)0.003 (3)
O20.063 (4)0.037 (4)0.046 (4)0.005 (3)0.023 (3)0.001 (3)
N10.059 (5)0.036 (4)0.043 (5)0.003 (4)0.015 (4)0.001 (4)
N20.051 (5)0.047 (5)0.053 (5)0.008 (4)0.014 (4)0.003 (4)
N30.053 (6)0.034 (4)0.058 (6)0.003 (4)0.009 (4)0.006 (4)
N40.066 (6)0.032 (4)0.050 (5)0.007 (4)0.027 (4)0.001 (4)
N50.052 (5)0.043 (5)0.043 (5)0.003 (4)0.018 (4)0.002 (4)
N60.064 (6)0.038 (5)0.044 (5)0.003 (4)0.012 (4)0.008 (4)
C10.047 (6)0.035 (5)0.041 (6)0.004 (4)0.006 (5)0.005 (4)
C20.045 (6)0.042 (6)0.032 (6)0.002 (5)0.003 (5)0.001 (4)
C30.048 (6)0.029 (5)0.043 (6)0.007 (4)0.009 (5)0.005 (4)
C40.048 (6)0.043 (6)0.049 (6)0.005 (5)0.008 (5)0.006 (5)
C50.051 (6)0.029 (5)0.052 (7)0.014 (5)0.001 (5)0.005 (5)
C60.052 (7)0.038 (6)0.064 (7)0.007 (5)0.004 (6)0.002 (5)
C70.056 (7)0.039 (6)0.048 (7)0.001 (5)0.010 (5)0.002 (5)
C80.073 (8)0.055 (6)0.049 (7)0.002 (5)0.031 (6)0.008 (5)
C90.077 (8)0.058 (7)0.047 (7)0.006 (6)0.015 (6)0.008 (6)
C100.040 (6)0.053 (6)0.043 (6)0.009 (5)0.012 (5)0.007 (5)
C110.038 (6)0.033 (5)0.052 (6)0.004 (4)0.007 (5)0.011 (5)
C120.040 (6)0.034 (5)0.035 (6)0.008 (4)0.001 (5)0.000 (4)
C130.054 (6)0.046 (6)0.036 (6)0.007 (5)0.014 (5)0.003 (4)
C140.065 (7)0.038 (6)0.044 (6)0.001 (5)0.019 (5)0.012 (5)
C150.033 (6)0.039 (5)0.057 (7)0.006 (4)0.009 (5)0.018 (5)
C160.056 (7)0.032 (5)0.052 (7)0.000 (5)0.007 (5)0.005 (5)
C170.072 (7)0.040 (6)0.046 (6)0.001 (5)0.017 (6)0.012 (5)
C180.086 (8)0.044 (6)0.055 (7)0.007 (5)0.032 (6)0.003 (5)
C190.069 (7)0.045 (6)0.059 (7)0.006 (5)0.025 (6)0.003 (5)
C200.055 (7)0.063 (7)0.070 (8)0.003 (6)0.025 (6)0.017 (6)
C210.046 (6)0.046 (6)0.039 (6)0.008 (5)0.010 (5)0.005 (5)
C220.056 (7)0.078 (8)0.089 (9)0.018 (6)0.040 (7)0.002 (7)
Geometric parameters (Å, º) top
Ni1—O11.911 (6)C2—C31.428 (11)
Ni1—N11.934 (7)C3—C41.388 (11)
Ni1—N22.019 (7)C4—C51.370 (11)
Ni1—N31.973 (8)C4—H40.9300
Ni1—N6i2.643 (8)C5—C61.365 (12)
Ni2—O21.904 (5)C6—H60.9300
Ni2—N3i2.589 (8)C7—H70.9300
Ni2—N41.935 (7)C8—C91.532 (12)
Ni2—N61.978 (7)C8—H8A0.9700
Ni2—N52.010 (7)C8—H8B0.9700
Br1—C51.907 (8)C9—H9A0.9700
Br2—C31.888 (8)C9—H9B0.9700
Br3—C131.889 (9)C11—C121.404 (11)
Br4—C151.902 (8)C11—C161.410 (11)
S1—C101.602 (10)C11—C171.460 (12)
S2—C211.617 (10)C12—C131.412 (11)
O1—C21.299 (9)C13—C141.369 (11)
O2—C121.301 (9)C14—C151.383 (11)
N1—C71.270 (10)C14—H140.9300
N1—C81.466 (10)C15—C161.372 (11)
N2—C221.481 (10)C16—H160.9300
N2—C91.509 (10)C17—H170.9300
N2—H2A0.9100C18—C191.519 (11)
N3—C101.166 (10)C18—H18A0.9700
N4—C171.283 (10)C18—H18B0.9700
N4—C181.481 (10)C19—H19A0.9700
N5—C191.462 (10)C19—H19B0.9700
N5—C201.472 (10)C20—H20A0.9600
N5—H5A0.9100C20—H20B0.9600
N6—C211.161 (10)C20—H20C0.9600
C1—C61.403 (11)C22—H22A0.9600
C1—C21.412 (11)C22—H22B0.9600
C1—C71.457 (11)C22—H22C0.9600
O1—Ni1—N193.3 (3)N1—C7—H7116.8
O1—Ni1—N393.2 (3)C1—C7—H7116.8
N1—Ni1—N3160.5 (3)N1—C8—C9105.8 (7)
O1—Ni1—N2166.4 (3)N1—C8—H8A110.6
N1—Ni1—N284.4 (3)C9—C8—H8A110.6
N3—Ni1—N293.3 (3)N1—C8—H8B110.6
O1—Ni1—N6i86.9 (3)C9—C8—H8B110.6
N1—Ni1—N6i109.2 (3)H8A—C8—H8B108.7
N2—Ni1—N6i81.3 (3)N2—C9—C8106.5 (8)
N3—Ni1—N6i89.5 (3)N2—C9—H9A110.4
O2—Ni2—N493.9 (3)C8—C9—H9A110.4
O2—Ni2—N692.2 (3)N2—C9—H9B110.4
N4—Ni2—N6166.8 (3)C8—C9—H9B110.4
O2—Ni2—N5172.3 (3)H9A—C9—H9B108.6
N4—Ni2—N583.6 (3)N3—C10—S1177.8 (9)
N6—Ni2—N591.8 (3)C12—C11—C16122.2 (8)
O2—Ni2—N3i88.0 (3)C12—C11—C17123.5 (8)
N4—Ni2—N3i101.0 (3)C16—C11—C17114.4 (8)
N5—Ni2—N3i85.2 (3)O2—C12—C11124.9 (8)
N6—Ni2—N3i91.0 (3)O2—C12—C13119.7 (8)
C2—O1—Ni1127.1 (6)C11—C12—C13115.4 (8)
C12—O2—Ni2127.0 (5)C14—C13—C12123.0 (8)
C7—N1—C8120.3 (8)C14—C13—Br3118.6 (7)
C7—N1—Ni1125.8 (6)C12—C13—Br3118.4 (6)
C8—N1—Ni1113.8 (6)C13—C14—C15119.7 (8)
C22—N2—C9112.5 (7)C13—C14—H14120.1
C22—N2—Ni1115.6 (6)C15—C14—H14120.1
C9—N2—Ni1106.6 (5)C16—C15—C14120.7 (8)
C22—N2—H2A107.2C16—C15—Br4120.4 (7)
C9—N2—H2A107.2C14—C15—Br4118.9 (6)
Ni1—N2—H2A107.2C15—C16—C11119.0 (8)
C10—N3—Ni1152.4 (7)C15—C16—H16120.5
C17—N4—C18118.3 (7)C11—C16—H16120.5
C17—N4—Ni2126.4 (6)N4—C17—C11124.1 (8)
C18—N4—Ni2115.2 (6)N4—C17—H17117.9
C19—N5—C20112.4 (7)C11—C17—H17117.9
C19—N5—Ni2106.6 (5)N4—C18—C19104.9 (7)
C20—N5—Ni2114.1 (6)N4—C18—H18A110.8
C19—N5—H5A107.9C19—C18—H18A110.8
C20—N5—H5A107.9N4—C18—H18B110.8
Ni2—N5—H5A107.9C19—C18—H18B110.8
C21—N6—Ni2147.6 (7)H18A—C18—H18B108.9
C6—C1—C2122.1 (8)N5—C19—C18109.5 (8)
C6—C1—C7116.5 (8)N5—C19—H19A109.8
C2—C1—C7121.4 (8)C18—C19—H19A109.8
O1—C2—C1125.3 (8)N5—C19—H19B109.8
O1—C2—C3119.8 (8)C18—C19—H19B109.8
C1—C2—C3115.0 (8)H19A—C19—H19B108.2
C4—C3—C2122.7 (8)N5—C20—H20A109.5
C4—C3—Br2118.6 (7)N5—C20—H20B109.5
C2—C3—Br2118.7 (6)H20A—C20—H20B109.5
C5—C4—C3119.1 (8)N5—C20—H20C109.5
C5—C4—H4120.4H20A—C20—H20C109.5
C3—C4—H4120.4H20B—C20—H20C109.5
C6—C5—C4121.6 (8)N6—C21—S2178.9 (9)
C6—C5—Br1120.1 (7)N2—C22—H22A109.5
C4—C5—Br1118.3 (7)N2—C22—H22B109.5
C5—C6—C1119.5 (9)H22A—C22—H22B109.5
C5—C6—H6120.2N2—C22—H22C109.5
C1—C6—H6120.2H22A—C22—H22C109.5
N1—C7—C1126.3 (8)H22B—C22—H22C109.5
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.912.483.269 (9)146
N5—H5A···O1i0.912.153.012 (9)158
N5—H5A···Br2i0.912.863.500 (7)129
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C10H11Br2N2O)2(NCS)2]
Mr451.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.2040 (18), 19.833 (4), 16.319 (3)
β (°) 100.71 (3)
V3)2927.0 (10)
Z8
Radiation typeMo Kα
µ (mm1)6.92
Crystal size (mm)0.43 × 0.40 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.155, 0.178
No. of measured, independent and
observed [I > 2σ(I)] reflections
25095, 6938, 2858
Rint0.139
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.151, 0.94
No. of reflections6938
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.77

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.912.483.269 (9)145.5
N5—H5A···O1i0.912.153.012 (9)158.3
N5—H5A···Br2i0.912.863.500 (7)128.5
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The author acknowledges Huaihua University for a research grant.

References

First citationArıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHenkel, G. & Krebs, B. (2004). Chem. Rev. 104, 801–824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalmon, L., Thuéry, P. & Ephritikhine, M. (2005). Acta Cryst. E61, m2607–m2609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeston, J. (2005). Chem. Rev. 105, 2151–2174.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds