organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(2-Fur­yl)ethen­yl]propanohydrazide

aDepartment of Chemistry, Weifang College, Weifang 261061, People's Republic of China
*Correspondence e-mail: huanmeiguo@163.com

(Received 17 June 2007; accepted 19 December 2007; online 23 January 2008)

The title compound, C9H12N2O2, was prepared by the reaction of acetyl­furan and propionylhydrazine. The molecule, excluding H atoms, is approximately planar. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature on similar compounds, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); Sutherland & Hoy (1968[Sutherland, H. H. & Hoy, T. G. (1968). Acta Cryst. B24, 1207-1213.]); Tucker et al. (1975[Tucker, P. A., Hoekstra, A., ten Cate, J. M. & Vos, A. (1975). Acta Cryst. B31, 733-734.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O2

  • Mr = 180.21

  • Triclinic, [P \overline 1]

  • a = 4.3314 (13) Å

  • b = 9.560 (3) Å

  • c = 11.695 (4) Å

  • α = 102.338 (6)°

  • β = 98.665 (5)°

  • γ = 91.273 (5)°

  • V = 466.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.38 × 0.14 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 2708 measured reflections

  • 1893 independent reflections

  • 1188 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.149

  • S = 1.01

  • 1893 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.08 2.925 (2) 166
Symmetry code: (i) -x-1, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature, and are attractive from several points of view, such as the possibility of analytical application (Cimerman, et al., 1997). As part of our search for new schiff base compounds, we synthesized the title compound (I). The C7—N2 bond length [1.343 (2) Å] is longer than the typical value for a double bond, but less than for a single bond, due to conjugation effects within the molecule.

Bond lengths and angles in the phenyl ring are normal. The C5—N1 distance of 1.280 (2) Å is similar to the similar distance of 1.287 (2) Å reported in a corresponding compound (Tucker et al., 1975). Similarly, the C7—O2 distance of 1.226 (2) Å is shorter than the similar distance of 1.298 (2) Å reported by Sutherland et al., 1968.

Related literature top

For related literature on similar compounds, see: Cimerman et al. (1997); Sutherland & Hoy (1968); Tucker et al. (1975).

Experimental top

A mixture of the acetyl furan (11 g, 0.10 mol), and propionylhydrazine (8.8 g, 0.10 mol) was stirred in refluxing ethanol (30 ml) for 5 h to afford the title compound (17 g, 0.087 mol, yield 87%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.98 Å, and with Uiso=1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Structure of the title compound at 30% probability displacement ellipsoids showing the atom-numbering scheme.
N'-[1-(2-Furyl)ethenyl]propanohydrazide top
Crystal data top
C9H12N2O2Z = 2
Mr = 180.21F(000) = 192
Triclinic, P1Dx = 1.282 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.3314 (13) ÅCell parameters from 960 reflections
b = 9.560 (3) Åθ = 3.8–25.0°
c = 11.695 (4) ŵ = 0.09 mm1
α = 102.338 (6)°T = 294 K
β = 98.665 (5)°Rod, yellow
γ = 91.273 (5)°0.38 × 0.14 × 0.14 mm
V = 466.9 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1188 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.5°, θmin = 1.8°
ϕ and ω scansh = 55
2708 measured reflectionsk = 1111
1893 independent reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.0266P]
where P = (Fo2 + 2Fc2)/3
1893 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H12N2O2γ = 91.273 (5)°
Mr = 180.21V = 466.9 (3) Å3
Triclinic, P1Z = 2
a = 4.3314 (13) ÅMo Kα radiation
b = 9.560 (3) ŵ = 0.09 mm1
c = 11.695 (4) ÅT = 294 K
α = 102.338 (6)°0.38 × 0.14 × 0.14 mm
β = 98.665 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1188 reflections with I > 2σ(I)
2708 measured reflectionsRint = 0.017
1893 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
1893 reflectionsΔρmin = 0.18 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5016 (3)0.10932 (14)0.42113 (12)0.0532 (4)
O20.5552 (4)0.16062 (16)0.03731 (13)0.0648 (5)
N10.0408 (3)0.04514 (17)0.23834 (13)0.0438 (4)
N20.1921 (4)0.00438 (17)0.14220 (14)0.0471 (4)
H20.23810.06060.09450.057*
C10.7274 (5)0.1722 (3)0.51195 (18)0.0590 (6)
H10.82640.12640.56890.071*
C20.7882 (5)0.3074 (3)0.50874 (19)0.0616 (6)
H2A0.93320.37250.56160.074*
C30.5891 (5)0.3330 (2)0.40919 (18)0.0542 (6)
H30.57780.41870.38370.065*
C40.4190 (4)0.2105 (2)0.35796 (16)0.0424 (5)
C50.1730 (4)0.1706 (2)0.25591 (16)0.0416 (5)
C60.0995 (5)0.2787 (2)0.18300 (18)0.0598 (6)
H6A0.20150.25700.11440.090*
H6B0.17210.37240.22910.090*
H6C0.12250.27660.15840.090*
C70.3475 (5)0.1237 (2)0.12307 (17)0.0473 (5)
C80.2606 (5)0.2171 (2)0.20869 (19)0.0579 (6)
H8A0.33130.17580.28280.070*
H8B0.03450.21880.22450.070*
C90.3969 (7)0.3681 (2)0.1651 (2)0.0839 (8)
H9A0.62070.36740.14830.126*
H9B0.33930.42180.22490.126*
H9C0.31810.41180.09420.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0553 (8)0.0502 (8)0.0480 (8)0.0076 (6)0.0124 (7)0.0125 (7)
O20.0681 (10)0.0591 (9)0.0549 (9)0.0098 (7)0.0248 (8)0.0106 (7)
N10.0404 (9)0.0468 (9)0.0388 (9)0.0009 (7)0.0046 (7)0.0055 (7)
N20.0464 (9)0.0467 (10)0.0429 (9)0.0028 (7)0.0096 (7)0.0103 (7)
C10.0565 (13)0.0668 (15)0.0453 (12)0.0079 (11)0.0145 (10)0.0108 (10)
C20.0605 (14)0.0653 (15)0.0484 (12)0.0172 (11)0.0077 (10)0.0029 (11)
C30.0579 (13)0.0475 (12)0.0523 (13)0.0093 (10)0.0005 (10)0.0076 (10)
C40.0416 (10)0.0434 (10)0.0402 (11)0.0023 (8)0.0027 (9)0.0078 (8)
C50.0393 (10)0.0442 (11)0.0403 (11)0.0007 (8)0.0054 (8)0.0082 (8)
C60.0613 (14)0.0611 (13)0.0548 (14)0.0063 (11)0.0053 (11)0.0191 (11)
C70.0474 (11)0.0478 (12)0.0405 (11)0.0009 (9)0.0069 (9)0.0056 (9)
C80.0639 (13)0.0508 (12)0.0528 (13)0.0044 (10)0.0118 (11)0.0128 (10)
C90.0964 (19)0.0543 (14)0.0903 (19)0.0127 (13)0.0248 (16)0.0214 (13)
Geometric parameters (Å, º) top
O1—C11.354 (2)C4—C51.452 (3)
O1—C41.361 (2)C5—C61.485 (3)
O2—C71.226 (2)C6—H6A0.9600
N1—C51.280 (2)C6—H6B0.9600
N1—N21.374 (2)C6—H6C0.9600
N2—C71.343 (2)C7—C81.492 (3)
N2—H20.8600C8—C91.500 (3)
C1—C21.323 (3)C8—H8A0.9700
C1—H10.9300C8—H8B0.9700
C2—C31.410 (3)C9—H9A0.9600
C2—H2A0.9300C9—H9B0.9600
C3—C41.342 (3)C9—H9C0.9600
C3—H30.9300
C1—O1—C4106.66 (15)C5—C6—H6B109.5
C5—N1—N2117.46 (16)H6A—C6—H6B109.5
C7—N2—N1119.69 (16)C5—C6—H6C109.5
C7—N2—H2120.2H6A—C6—H6C109.5
N1—N2—H2120.2H6B—C6—H6C109.5
C2—C1—O1110.85 (19)O2—C7—N2119.93 (18)
C2—C1—H1124.6O2—C7—C8121.89 (18)
O1—C1—H1124.6N2—C7—C8118.18 (17)
C1—C2—C3106.23 (19)C7—C8—C9113.33 (19)
C1—C2—H2A126.9C7—C8—H8A108.9
C3—C2—H2A126.9C9—C8—H8A108.9
C4—C3—C2107.3 (2)C7—C8—H8B108.9
C4—C3—H3126.4C9—C8—H8B108.9
C2—C3—H3126.4H8A—C8—H8B107.7
C3—C4—O1109.02 (18)C8—C9—H9A109.5
C3—C4—C5133.29 (19)C8—C9—H9B109.5
O1—C4—C5117.66 (16)H9A—C9—H9B109.5
N1—C5—C4116.21 (17)C8—C9—H9C109.5
N1—C5—C6126.62 (17)H9A—C9—H9C109.5
C4—C5—C6117.16 (16)H9B—C9—H9C109.5
C5—C6—H6A109.5
C5—N1—N2—C7177.01 (17)N2—N1—C5—C60.4 (3)
C4—O1—C1—C20.3 (2)C3—C4—C5—N1173.8 (2)
O1—C1—C2—C30.2 (3)O1—C4—C5—N14.2 (3)
C1—C2—C3—C40.0 (3)C3—C4—C5—C66.0 (3)
C2—C3—C4—O10.2 (2)O1—C4—C5—C6176.03 (17)
C2—C3—C4—C5178.3 (2)N1—N2—C7—O2179.89 (17)
C1—O1—C4—C30.3 (2)N1—N2—C7—C80.4 (3)
C1—O1—C4—C5178.77 (16)O2—C7—C8—C912.9 (3)
N2—N1—C5—C4179.81 (15)N2—C7—C8—C9167.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.082.925 (2)166
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC9H12N2O2
Mr180.21
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)4.3314 (13), 9.560 (3), 11.695 (4)
α, β, γ (°)102.338 (6), 98.665 (5), 91.273 (5)
V3)466.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.14 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2708, 1893, 1188
Rint0.017
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.01
No. of reflections1893
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.082.925 (2)165.7
Symmetry code: (i) x1, y, z.
 

References

First citationBruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSutherland, H. H. & Hoy, T. G. (1968). Acta Cryst. B24, 1207–1213.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationTucker, P. A., Hoekstra, A., ten Cate, J. M. & Vos, A. (1975). Acta Cryst. B31, 733–734.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds