organic compounds
2-Hydroxy-1,6,7,8-tetramethoxy-3-methylanthraquinone
aCollege of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: lfshjyu@scut.edu.cn
The title compound, C19H18O7, also known as chrysoobtusin, was isolated from Cassia tora L. (Leguminosae). The anthraquinone ring system is almost planar, the dihedral angle between the two benzene rings being 4.27 (4)°. The structure is stabilized by intra- and intermolecular O—H⋯O and C—H⋯O hydrogen bonds, and by weak π–π stacking interactions along the b axis, with a centroid–centroid distance between related benzene rings of 3.800 (4) Å.
Related literature
For related literature, see: Boonnak et al. (2005); Hao et al. (1995); Jia et al. (2007); Ng et al. (2005); Patil et al. (2004); Wu & Yen (2004); Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807067864/rz2185sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807067864/rz2185Isup2.hkl
The seeds of Cassia tora L. (800 g) were shattered to powder (about 30 mesh) and extracted with 60% ethanol (3000 ml) for 40 min by microwave irradiation at 333 K. The extraction procedure was repeated three times. The extracts were combined and evaporated to dryness under reduced pressure at 333 K, the residue was redissolved in water (600 ml) and was added 400 ml light petroleum to remove low-polar substaces three times. Then the enriched extracts were extracted with chloroform four times (500 ml for each time), the chlorofrom solution were combined and evaporated to dryness under reduced pressure at 333 K, 4.52 g crude extracts was obtained. The crude extracts were separated with n-hexane-ethyl acetate-methanol-water (11: 90: 10: 10, v/v) using high-speed counter-current
(HSCCC) to obtain 2-hydroxy-1,6,7,8-tetramethoxy-3-methylanthraquinone (yield 46.2 mg). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 and O—H = 0.82 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL (Bruker, 2004).C19H18O7 | F(000) = 752 |
Mr = 358.33 | Dx = 1.402 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3645 reflections |
a = 12.2960 (3) Å | θ = 1.4–28.0° |
b = 7.8545 (2) Å | µ = 0.11 mm−1 |
c = 18.3361 (5) Å | T = 296 K |
β = 106.581 (2)° | Block, yellow |
V = 1697.24 (8) Å3 | 0.30 × 0.28 × 0.26 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 2527 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 27.5°, θmin = 1.8° |
f and ω scans | h = −15→15 |
13295 measured reflections | k = −10→10 |
3871 independent reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2883P] where P = (Fo2 + 2Fc2)/3 |
3871 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C19H18O7 | V = 1697.24 (8) Å3 |
Mr = 358.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.2960 (3) Å | µ = 0.11 mm−1 |
b = 7.8545 (2) Å | T = 296 K |
c = 18.3361 (5) Å | 0.30 × 0.28 × 0.26 mm |
β = 106.581 (2)° |
Bruker APEXII area-detector diffractometer | 2527 reflections with I > 2σ(I) |
13295 measured reflections | Rint = 0.032 |
3871 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.19 e Å−3 |
3871 reflections | Δρmin = −0.21 e Å−3 |
241 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.12772 (16) | 0.3847 (2) | −0.08053 (10) | 0.0478 (4) | |
C2 | 0.23670 (15) | 0.3514 (2) | −0.03234 (10) | 0.0479 (4) | |
C3 | 0.25066 (14) | 0.2624 (2) | 0.03525 (9) | 0.0417 (4) | |
C4 | 0.15663 (13) | 0.2073 (2) | 0.05800 (9) | 0.0391 (4) | |
C5 | 0.04861 (13) | 0.2443 (2) | 0.00932 (9) | 0.0394 (4) | |
C6 | 0.03506 (15) | 0.3313 (2) | −0.05891 (9) | 0.0452 (4) | |
H6 | −0.0376 | 0.3536 | −0.0902 | 0.054* | |
C7 | −0.05610 (14) | 0.1888 (2) | 0.02762 (9) | 0.0419 (4) | |
C8 | −0.04420 (13) | 0.10489 (19) | 0.10100 (9) | 0.0391 (4) | |
C9 | 0.06335 (13) | 0.07377 (19) | 0.15239 (9) | 0.0385 (4) | |
C10 | 0.16909 (14) | 0.1101 (2) | 0.12996 (9) | 0.0420 (4) | |
C11 | 0.06680 (13) | −0.0001 (2) | 0.22235 (9) | 0.0404 (4) | |
C12 | −0.03346 (14) | −0.0496 (2) | 0.23820 (9) | 0.0447 (4) | |
C13 | −0.14001 (14) | −0.0222 (2) | 0.18680 (9) | 0.0459 (4) | |
C14 | −0.14247 (14) | 0.0570 (2) | 0.11918 (9) | 0.0444 (4) | |
H14 | −0.2124 | 0.0793 | 0.0844 | 0.053* | |
C15 | 0.01444 (17) | 0.4980 (3) | −0.19883 (11) | 0.0645 (5) | |
H15A | −0.0223 | 0.3913 | −0.2157 | 0.097* | |
H15B | 0.0236 | 0.5600 | −0.2418 | 0.097* | |
H15C | −0.0311 | 0.5634 | −0.1744 | 0.097* | |
C16 | 0.3571 (2) | 0.5740 (3) | −0.04686 (16) | 0.0795 (7) | |
H16A | 0.2951 | 0.6370 | −0.0794 | 0.119* | |
H16B | 0.4246 | 0.5946 | −0.0619 | 0.119* | |
H16C | 0.3690 | 0.6098 | 0.0049 | 0.119* | |
C17 | 0.41092 (17) | 0.0855 (3) | 0.06199 (13) | 0.0682 (6) | |
H17A | 0.3652 | −0.0108 | 0.0666 | 0.102* | |
H17B | 0.4855 | 0.0729 | 0.0967 | 0.102* | |
H17C | 0.4163 | 0.0920 | 0.0109 | 0.102* | |
C18 | 0.21311 (19) | 0.1135 (3) | 0.32189 (12) | 0.0727 (6) | |
H18A | 0.2443 | 0.1858 | 0.2907 | 0.109* | |
H18B | 0.2723 | 0.0790 | 0.3660 | 0.109* | |
H18C | 0.1559 | 0.1745 | 0.3375 | 0.109* | |
C19 | −0.24641 (16) | −0.0758 (3) | 0.20556 (12) | 0.0666 (6) | |
H19A | −0.3114 | −0.0311 | 0.1680 | 0.100* | |
H19B | −0.2450 | −0.0327 | 0.2548 | 0.100* | |
H19C | −0.2507 | −0.1978 | 0.2058 | 0.100* | |
O1 | 0.12327 (11) | 0.46722 (18) | −0.14620 (7) | 0.0641 (4) | |
O2 | 0.33123 (11) | 0.39758 (17) | −0.05315 (8) | 0.0617 (4) | |
O3 | 0.36000 (9) | 0.23760 (15) | 0.07962 (6) | 0.0495 (3) | |
O4 | 0.26068 (10) | 0.05769 (19) | 0.16791 (7) | 0.0642 (4) | |
O5 | −0.14949 (10) | 0.21417 (18) | −0.01744 (7) | 0.0581 (4) | |
O6 | 0.16389 (10) | −0.03329 (16) | 0.27947 (6) | 0.0510 (3) | |
O7 | −0.02886 (10) | −0.12633 (19) | 0.30522 (7) | 0.0599 (4) | |
H7 | 0.0376 | −0.1434 | 0.3291 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0551 (11) | 0.0446 (9) | 0.0446 (9) | 0.0084 (8) | 0.0161 (8) | 0.0035 (8) |
C2 | 0.0478 (10) | 0.0460 (9) | 0.0522 (10) | 0.0032 (8) | 0.0180 (8) | −0.0028 (8) |
C3 | 0.0395 (9) | 0.0421 (9) | 0.0407 (9) | 0.0039 (7) | 0.0069 (7) | −0.0082 (7) |
C4 | 0.0396 (9) | 0.0387 (8) | 0.0363 (8) | 0.0037 (7) | 0.0064 (7) | −0.0053 (7) |
C5 | 0.0412 (9) | 0.0371 (8) | 0.0367 (8) | 0.0034 (7) | 0.0061 (7) | −0.0039 (7) |
C6 | 0.0450 (9) | 0.0420 (9) | 0.0455 (9) | 0.0075 (7) | 0.0080 (7) | 0.0007 (8) |
C7 | 0.0409 (9) | 0.0399 (9) | 0.0401 (8) | 0.0051 (7) | 0.0038 (7) | −0.0022 (7) |
C8 | 0.0399 (9) | 0.0369 (8) | 0.0368 (8) | 0.0029 (7) | 0.0047 (7) | −0.0036 (7) |
C9 | 0.0396 (8) | 0.0349 (8) | 0.0376 (8) | 0.0017 (7) | 0.0056 (7) | −0.0034 (7) |
C10 | 0.0388 (9) | 0.0431 (9) | 0.0392 (9) | 0.0036 (7) | 0.0032 (7) | −0.0049 (7) |
C11 | 0.0386 (8) | 0.0389 (8) | 0.0379 (8) | 0.0025 (7) | 0.0017 (7) | −0.0031 (7) |
C12 | 0.0474 (10) | 0.0459 (9) | 0.0379 (8) | 0.0022 (8) | 0.0078 (7) | 0.0005 (7) |
C13 | 0.0426 (9) | 0.0484 (10) | 0.0450 (9) | 0.0006 (8) | 0.0098 (7) | −0.0017 (8) |
C14 | 0.0368 (8) | 0.0475 (9) | 0.0435 (9) | 0.0043 (7) | 0.0026 (7) | −0.0019 (8) |
C15 | 0.0741 (14) | 0.0684 (13) | 0.0482 (10) | 0.0172 (11) | 0.0129 (10) | 0.0118 (10) |
C16 | 0.0717 (15) | 0.0681 (14) | 0.1065 (19) | −0.0097 (12) | 0.0382 (14) | 0.0046 (14) |
C17 | 0.0536 (11) | 0.0765 (14) | 0.0700 (13) | 0.0212 (10) | 0.0104 (10) | −0.0125 (11) |
C18 | 0.0665 (13) | 0.0868 (16) | 0.0526 (11) | −0.0165 (12) | −0.0026 (10) | −0.0160 (11) |
C19 | 0.0477 (11) | 0.0890 (15) | 0.0636 (12) | −0.0002 (10) | 0.0165 (9) | 0.0115 (11) |
O1 | 0.0621 (8) | 0.0764 (9) | 0.0543 (8) | 0.0081 (7) | 0.0177 (7) | 0.0207 (7) |
O2 | 0.0554 (8) | 0.0657 (9) | 0.0712 (9) | 0.0024 (7) | 0.0298 (7) | 0.0041 (7) |
O3 | 0.0375 (6) | 0.0581 (7) | 0.0487 (7) | 0.0028 (5) | 0.0056 (5) | −0.0093 (6) |
O4 | 0.0424 (7) | 0.0934 (11) | 0.0526 (7) | 0.0150 (7) | 0.0069 (6) | 0.0189 (7) |
O5 | 0.0399 (7) | 0.0773 (9) | 0.0495 (7) | 0.0038 (6) | 0.0005 (6) | 0.0141 (7) |
O6 | 0.0447 (7) | 0.0585 (7) | 0.0411 (6) | −0.0002 (6) | −0.0016 (5) | 0.0051 (6) |
O7 | 0.0489 (7) | 0.0822 (10) | 0.0461 (7) | 0.0018 (7) | 0.0096 (6) | 0.0156 (7) |
C1—O1 | 1.355 (2) | C13—C14 | 1.380 (2) |
C1—C6 | 1.374 (2) | C13—C19 | 1.505 (2) |
C1—C2 | 1.403 (2) | C14—H14 | 0.9300 |
C2—O2 | 1.372 (2) | C15—O1 | 1.429 (2) |
C2—C3 | 1.390 (2) | C15—H15A | 0.9600 |
C3—O3 | 1.3723 (19) | C15—H15B | 0.9600 |
C3—C4 | 1.405 (2) | C15—H15C | 0.9600 |
C4—C5 | 1.403 (2) | C16—O2 | 1.419 (2) |
C4—C10 | 1.494 (2) | C16—H16A | 0.9600 |
C5—C6 | 1.393 (2) | C16—H16B | 0.9600 |
C5—C7 | 1.485 (2) | C16—H16C | 0.9600 |
C6—H6 | 0.9300 | C17—O3 | 1.428 (2) |
C7—O5 | 1.2245 (19) | C17—H17A | 0.9600 |
C7—C8 | 1.468 (2) | C17—H17B | 0.9600 |
C8—C14 | 1.394 (2) | C17—H17C | 0.9600 |
C8—C9 | 1.409 (2) | C18—O6 | 1.425 (2) |
C9—C11 | 1.397 (2) | C18—H18A | 0.9600 |
C9—C10 | 1.499 (2) | C18—H18B | 0.9600 |
C10—O4 | 1.2144 (19) | C18—H18C | 0.9600 |
C11—O6 | 1.3699 (18) | C19—H19A | 0.9600 |
C11—C12 | 1.400 (2) | C19—H19B | 0.9600 |
C12—O7 | 1.355 (2) | C19—H19C | 0.9600 |
C12—C13 | 1.395 (2) | O7—H7 | 0.8200 |
O1—C1—C6 | 125.14 (16) | C13—C14—C8 | 122.57 (15) |
O1—C1—C2 | 115.97 (16) | C13—C14—H14 | 118.7 |
C6—C1—C2 | 118.88 (16) | C8—C14—H14 | 118.7 |
O2—C2—C3 | 118.82 (16) | O1—C15—H15A | 109.5 |
O2—C2—C1 | 120.56 (16) | O1—C15—H15B | 109.5 |
C3—C2—C1 | 120.52 (16) | H15A—C15—H15B | 109.5 |
O3—C3—C2 | 116.80 (15) | O1—C15—H15C | 109.5 |
O3—C3—C4 | 122.02 (15) | H15A—C15—H15C | 109.5 |
C2—C3—C4 | 121.13 (15) | H15B—C15—H15C | 109.5 |
C5—C4—C3 | 117.20 (15) | O2—C16—H16A | 109.5 |
C5—C4—C10 | 120.50 (14) | O2—C16—H16B | 109.5 |
C3—C4—C10 | 122.29 (14) | H16A—C16—H16B | 109.5 |
C6—C5—C4 | 121.45 (15) | O2—C16—H16C | 109.5 |
C6—C5—C7 | 117.22 (14) | H16A—C16—H16C | 109.5 |
C4—C5—C7 | 121.32 (15) | H16B—C16—H16C | 109.5 |
C1—C6—C5 | 120.80 (16) | O3—C17—H17A | 109.5 |
C1—C6—H6 | 119.6 | O3—C17—H17B | 109.5 |
C5—C6—H6 | 119.6 | H17A—C17—H17B | 109.5 |
O5—C7—C8 | 121.37 (16) | O3—C17—H17C | 109.5 |
O5—C7—C5 | 120.42 (15) | H17A—C17—H17C | 109.5 |
C8—C7—C5 | 118.21 (14) | H17B—C17—H17C | 109.5 |
C14—C8—C9 | 120.37 (15) | O6—C18—H18A | 109.5 |
C14—C8—C7 | 118.30 (14) | O6—C18—H18B | 109.5 |
C9—C8—C7 | 121.33 (15) | H18A—C18—H18B | 109.5 |
C11—C9—C8 | 117.57 (15) | O6—C18—H18C | 109.5 |
C11—C9—C10 | 121.97 (14) | H18A—C18—H18C | 109.5 |
C8—C9—C10 | 120.37 (14) | H18B—C18—H18C | 109.5 |
O4—C10—C4 | 121.60 (15) | C13—C19—H19A | 109.5 |
O4—C10—C9 | 120.89 (15) | C13—C19—H19B | 109.5 |
C4—C10—C9 | 117.48 (13) | H19A—C19—H19B | 109.5 |
O6—C11—C9 | 124.92 (15) | C13—C19—H19C | 109.5 |
O6—C11—C12 | 114.54 (14) | H19A—C19—H19C | 109.5 |
C9—C11—C12 | 120.53 (14) | H19B—C19—H19C | 109.5 |
O7—C12—C13 | 118.00 (15) | C1—O1—C15 | 118.27 (15) |
O7—C12—C11 | 120.03 (14) | C2—O2—C16 | 115.05 (15) |
C13—C12—C11 | 121.98 (15) | C3—O3—C17 | 113.79 (13) |
C14—C13—C12 | 116.89 (15) | C11—O6—C18 | 113.88 (14) |
C14—C13—C19 | 122.28 (16) | C12—O7—H7 | 109.5 |
C12—C13—C19 | 120.83 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···O4 | 0.96 | 2.53 | 3.074 (3) | 116 |
C17—H17A···O4 | 0.96 | 2.60 | 3.046 (3) | 109 |
C16—H16A···O1 | 0.96 | 2.50 | 3.049 (3) | 116 |
O7—H7···O6 | 0.82 | 2.19 | 2.6482 (17) | 116 |
O7—H7···O3i | 0.82 | 2.02 | 2.7221 (16) | 144 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C19H18O7 |
Mr | 358.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 12.2960 (3), 7.8545 (2), 18.3361 (5) |
β (°) | 106.581 (2) |
V (Å3) | 1697.24 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.28 × 0.26 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13295, 3871, 2527 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.133, 1.02 |
No. of reflections | 3871 |
No. of parameters | 241 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.21 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···O4 | 0.96 | 2.53 | 3.074 (3) | 116.2 |
C17—H17A···O4 | 0.96 | 2.60 | 3.046 (3) | 108.7 |
C16—H16A···O1 | 0.96 | 2.50 | 3.049 (3) | 116.0 |
O7—H7···O6 | 0.82 | 2.19 | 2.6482 (17) | 115.5 |
O7—H7···O3i | 0.82 | 2.02 | 2.7221 (16) | 144.1 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
The authors acknowledge the Ministry of Science and Technology of China (fund No. 2006BAD27B03) for financial support, and South China University of Technology and South China Normal University for supporting this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Boonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S., Atta-ur-Rahman & Karalai, C. (2005). Acta Cryst. E61, o410–o412. Google Scholar
Bruker (2004). APEX2 (Version 7.23A), SAINT (Version 7.23A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hao, N. J., Huang, M. P. & Lee, H. (1995). Mutat. Res. 328, 183–191. CrossRef CAS PubMed Web of Science Google Scholar
Jia, Z. B., Tao, F., Guo, L., Tao, G. L. & Ding, X. L. (2007). LWT Food Sci. Technol. 40, 1072–1077. Google Scholar
Ng, S.-L., Razak, I. A., Fun, H.-K., Boonsri, S., Chantrapromma, S. & Prawat, U. (2005). Acta Cryst. E61, o3656–o3658. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patil, U. K., Saraf, S. & Dixit, V. K. (2004). J. Ethnopharmacol. 90, 249–252. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Wu, C. H. & Yen, G. C. (2004). Life Sci. 76, 85–101. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anthraquinone derivatives extracted from the seeds of Cassia tora L. (most common familiar name in China: Juemingzi) have been used traditionally to improve visual acuity. Recent studies have demonstrated that they have multiple pharmacological actions such as antimicrobial, diuretic, antidiarrhoic, antioxidant, antihepatotoxic and antimutagenic activities (Wu & Yen, 2004). One component found in Cassia tora L., 2-hydroxy-1,6,7,8-tetramethoxy-3-methylanthraquinone, is known as chrysoobusin and exhibits a variety of potent biological effects such as suppression of mutagenicity of mycotoxins (Hao et al., 1995), antioxidant activity (Jia et al., 2007) and hypolipidemic activity (Patil et al., 2004). We report here the structure of the title compound.
In the title compound (Fig. 1), the C—C bond lengths show normal values (Allen et al., 1987), and the C—O and C=O bond lengths are comparable to those observed in similar structures (Ng et al., 2005; Boonnak et al., 2005). The anthraquinone ring system is substantially planar, the dihedral angle between the two benzene rings being 4.27 (4)°. The molecules are self-assembled by intra- and intermolecular C—H···O and O—H···.O hydrogen bonding interactions (Table 1) into a superamolecular network. The crystal structure is further stabilized by weak π-π stacking interactions along the b axis (Fig. 2) occurring between centrosymmetrically related anthraquinone ring systems. The centroid-to-centriod distances between related benzene rings of the stacked molecules is 3.800 (4) Å.